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Abstract
Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem
cells (LSCs) and protects these cells against conventional therapies. However, it
may open up an opportunity to target LSCs by breaking the close connection
between LSCs and the BMM. The elimination of LSCs is of high importance, since
they follow cancer stem cell theory as a part of this population. Based on cancer
stem cell theory, a cell with stem cell-like features stands at the apex of the
hierarchy and produces a heterogeneous population and governs the disease.
Secretion of cytokines, chemokines, and extracellular vesicles, whether through
autocrine or paracrine mechanisms by activation of downstream signaling
pathways in LSCs, favors their persistence and makes the BMM less hospitable
for normal stem cells. While all details about the interactions of the BMM and
LSCs remain to be elucidated, some clinical trials have been designed to limit
these reciprocal interactions to cure leukemia more effectively. In this review, we
focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their
milieu in the bone marrow, how to segregate them from the normal
compartment, and finally the possible ways to eliminate these cells.
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Core tip: Chronic myeloid leukemia stem cells (LSCs) and acute myeloid LSCs are
resistant to common therapies due to the activation of downstream signaling pathways
that guarantee their survival. In addition, they are smart enough to escape immune
surveillance. Bone marrow microenvironment underlies these phenomena by providing
an environment that favors leukemia development. Recent studies confirm that targeting
LSCs and their crosstalk with the bone marrow microenvironment significantly reduced
residual disease burden and eventuated in LSCs removal.
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URL: https://www.wjgnet.com/1948-0210/full/v11/i8/476.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i8.476

INTRODUCTION
Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell (HSC) disorder,
emanating from t(9;22)(q34;q11.2), a translocation that involves fusion of Abelson
murine leukemia viral oncogene homolog 1 (ABL1) on chromosome 9 and breakpoint
cluster region protein (BCR) on chromosome 22[1]. The encoded protein by constitutive
tyrosine  kinase  activity  stimulates  downstream signaling pathways  that  lead to
increased  expansion  of  leukemic  cells.  Although  the  chronic  phase  of  CML  is
concomitant with normal cell maturation, in the absence of appropriate treatment, a
second mutation transforms the chronic phase into acute phase that mimics the same
pattern as de novo acute leukemia[2,3].

Acute myeloid leukemia (AML) is the most common form of leukemia in adults
and  is  characterized  by  perturbed  proliferation,  block  of  differentiation,  and
infiltration of leukemic cells into the bone marrow and blood[4]. Current therapies
result in overall survival of about 40% in patients younger than 60 years of age, while
this rate declines in older patients to 5%-15% and is associated with higher morbidity
and mortality[5]. One major concern in the treatment of AML is drug resistance, and a
promising approach such as targeted therapy for relapsed or refractory AML is of the
essence.  While in CML the introduction of  tyrosine kinase inhibitors (TKIs)  as  a
milestone in  the  treatment  of  CML results  in  overall  survival  of  about  86% and
attaining treatment-free remission (TFR) seems achievable[6].

Common treatment of AML and CML is based on the elimination of bulk disease
population[7].  As  propagation  of  resistant  leukemic  cells  may continue  after  the
treatment discontinuation, the concept of cancer stem cell (CSC) came to light. Based
on this theory, a cell with the self-renewal capability and leukemic related genetic
alterations, which stands at the apex of the hierarchy, may be able to resist to therapy
and sustain the relapse of the disease later on[8] (Figure 1). The first approach that
proved the existence of CSC was in AML, where the transplantation of a small cell
population with stem cell-like properties into non-obese diabetic/severe combined
immunodeficiency mice culminated in leukemia[9]. The fact that every cell in different
stages of the maturation by gaining stem cell-like features has the potential to become
CSC is of paramount importance and depicts that it is not crucial for CSC to have
stem cell origin[10].

While both CML and AML leukemia stem cells (LSCs) have distinctive characte-
ristics in case of the biology and immunophenotype, they share common properties
such as drug resistance, quiescence, heterogeneity, and the microenvironment they
reside. The bone marrow microenvironment (BMM) underpins normal hematopoiesis
by  secreting  various  growth  factors  and  physical  interactions  with  HSCs  and
progenitor cells[11]. In AML and CML, the BMM boosts leukemogenesis through an
interaction  with  LSCs,  and  in  turn,  LSCs  change  the  BMM  based  on  their
requirements  and  make  it  less  hospitable  for  normal  stem/progenitor  cells[12].
Considering BMM as the main sanctuary for LSCs, targeting these interactions may
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Figure 1

Figure 1  Cancer stem cell theory.

provide an ample opportunity to treat  leukemia more effectively.  In this  review
paper, we focus on the protective role of the BMM in the survival of CML and AML
LSCs. We then move toward specific markers to identify these cells and put forward
possible ways to target them within the BMM.

CML LSCs AND BONE MARROW MICROENVIRONMENT
CML  LSCs,  due  to  their  resemblance  to  normal  stem  cells,  reside  in  the  same
microenvironment  in  which  a  reciprocal  relationship  between  these  cells  and
components of the BMM is linked with enhanced proliferation, quiescence, and drug
resistance. All of these mechanisms are conducted by sets of adhesion molecules or
secretion of cytokines, chemokines, and growth factors via  paracrine or autocrine
mechanisms.

C-X-C motif  chemokine ligand 12 (CXCL12),  a  known chemoattractant for the
homing process, is secreted by mesenchymal stromal cells and osteoblastic cells and
has a role in the localization of CML LSC and normal HSC in the BMM[13]. However,
perturbed expression of C-X-C chemokine receptor type 4 (CXCR4) by CML LSCs or
CXCL12 targeting by CML LSCs impacts  the homing process.  Kinase activity of
P210BCRABL1  and  activation  of  downstream  signaling  pathways,  such  as
phosphoinositide  3-kinases/protein  kinase  B  [PI3K/PKB(AKT)],  result  in
downregulation  of  CXCR4  by  CML  cells[14].  Moreover,  increased  secretion  of
granulocyte-colony stimulating factor (G-CSF) as an antagonist of CXCL12 by CML
LSCs[15] and aberrant expression of surface marker dipeptidyl peptidase 4 (CD26) on
CML LSCs with a chemokine cleavage activity favor mobilization of CML LSCs into
the  blood[16].  However,  TKIs,  by  inhibiting  P210BCRABL1,  contribute  to  the
upregulation of CXCR4 and migration of CML LSCs to the BMM[14].

The homing process for normal HSCs initiates with tethering and rolling of HSCs
on endothelial cells via interaction with P and E-selectin. Then, a strong attachment
through very late antigen-4 (VLA-4) and VLA-5 with vascular cell adhesion molecule
1 (VCAM-1) and fibronectin on endothelial cells and extracellular matrix supports the
trafficking toward the BMM[17,18]. While CML LSCs have normal expression patterns of
VLA-4 and VLA-5,  their  impaired function demonstrates that  these cells  are not
entirely contingent on β1-integrins for the homing[19].  Simultaneously, it has been
reported that E and L-selectin and related ligands such as CD44 seem to be closely
involved in the bone marrow lodgment of  CML LSCs and are considered as  the
compensatory mechanisms as opposed to normal stem cells[20]. Meanwhile, imatinib,
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which  is  in  first-line  therapy for  CML,  increases  another  adhesion  molecule  N-
cadherin  in  CML  LSCs.  Enhancement  of  N-cadherin  promotes  attachment  to
mesenchymal stromal cells and leads to N-cadherin-β catenin interaction[21].  Also,
secretion of exogenous WNT by mesenchymal stromal cells activates WNT-β catenin
pathway in CML LSCs[21].  WNT-β catenin is the leading signaling cascade in self-
renewal and maintenance of normal HSCs and also CML LSCs, and it is important in
leukemogenesis and drug resistance[22,23]. Although TKIs may attenuate the constative
activity  of  this  cascade  by  targeting  P210BCRABL1  and  destabilize  β  catenin[24],
activation via the BMM may negate this inhibitory effect.

Apart from direct contacts of CML LSCs with the BMM, secretion of some soluble
factors prepares a proper context for the growth of CML LSCs and confers a number
of disadvantages for the growth of the normal compartment. It has been reported that
enhanced  secretion  of  some  chemokines  and  cytokines,  such  as  macrophage
inflammatory protein 1 alpha (MIP-1α) , MIP-1β, interleukin- 1 alpha (IL-1α), IL-1β,
and tumor  necrosis  factor  alpha  (TNFα)  in  the  CML BMM,  selectively  impedes
growth of  normal  HSCs and supports  the growth of  CML LSCs[15].  Furthermore,
secretion of IL-10, transforming growth factor beta (TGF-β), and IL-4 by the BMM or
by  CML  LSCs  in  an  autocrine  manner  downregulates  expression  of  major
histocompatibility  complex-II  (MHC-II)  and helps  CML LSCs to  evade from the
immune system and subsequent eradication[25].

A  study  reported  that  the  higher  expression  of  bone  morphogenetic  protein
receptor type 1b in TKI resistant CML LSCs is  activated by bone morphogenetic
protein 4 via paracrine and autocrine loops and triggers upregulation of twist family
BHLH transcription factor 1, which promotes TKI resistance[26,27]. Moreover, paracrine
secretion of  fibroblast  growth factor 2 (FGF2) by mesenchymal stromal cells  can
provoke imatinib-resistance in CML patients[28].  Direct contact of CML cells with
mesenchymal stromal cells stimulates secretion of placental growth factor, which in
turn  increases  proliferation  and  metabolism  of  leukemic  cells  and  promotes
angiogenesis within the BMM[29].

Another secretory factor that reinforces quiescence and resistance of CML LSCs is
germane to miR-126. miR-126 is considered to be the regulator of dormancy of CML
LSCs  as  well  as  of  normal  HSCs [30].  P210BCRABL1  kinase  activity  induces
phosphorylation of Sprouty-related, EVH1 domain-containing protein 1, which causes
reduction of mature miR-126 in CML LSCs. This depletion should be compensated by
an external resource to keep up stemness features[30]. In the BMM, endosteal Sca-1+
endothelial cells are the credible alternative by providing a high amount of miR-126
possibly through extracellular vesicles[30]. Considering this, constraining the activity of
miR-126 sensitizes LSCs to TKI and may expedite their removal[30].

Another  experiment  highlighted  the  role  of  the  hypoxic  BMM  in  favor  of
p210BCRABL1 independent mechanisms in the survival of CML LSCs. In this milieu,
a specific selection of LSC population occurs following the suppression of mature cells
and stimulates  TKI resistance.  Sensitivity  of  leukemic  cells  to  TKI is  rescued by
enhanced protein levels of BCRABL1 when LSCs migrate to normoxic condition[31,32].
As HSCs reside in the hypoxic endosteal niche, enhancement of low oxygen area in
the bone marrow of leukemia patients coincides with resistance and presence of
minimal  residual  disease[33,34].  Furthermore,  it  was  demonstrated  that  hypoxia
stabilizes hypoxia-inducible factor1 (HIF1), a transcription factor with a vital role in
regulating proliferation, maintenance, and survival of CML LSCs[15]. Our knowledge
about the interactions of  CML LSC with the putative BMM is  limited and much
remains to be elucidated. Interaction of CML LSCs with their environment through
different molecules is described in Table 1 and Figure 2.

AML LSCs AND BONE MARROW MICROENVIRONMENT
Recent studies reported that AML LSCs are highly dependent to the leukemic BMM.
In  vivo  cell  tracking  has  specified  the  anatomical  adjacent  of  these  cells  to  the
trabecular osteoblasts via cell adhesion molecules[35]. Upregulation of VLA-4 in AML
LSCs and its interaction with fibronectin that is distributed abundantly in endosteum
facilitates AML LSCs homing to the niche. VLA-4 also has an integrity to VCAM-1
that is expressed by most of the niche cells, particularly endothelial cells[36]. These
interactions promote drug resistance in LSCs, so that the combination of cytarabine
with  the  antibody  against  VLA-4  in  non-obese  diabetic/severe  combined
immunodeficiency mice prevents AML LSC lodgment to the niche and makes them
an easy target[37]. Meanwhile, similar to CML LSCs, elevated expression of CD44 on
AML LSCs and high hyaluronic  acid as  its  ligand on endosteal  niche shift  LSCs
toward the BMM and chemoresistance state. Furthermore, this interaction promotes
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Table 1  Possible molecules and their role in chronic myeloid leukemia stem cells-bone marrow
microenvironment interaction

Target Source Role Ref.

G-CSF CML LSC Mobilization
[15]

CD26 CML LSC Mobilization
[16]

β1-integrins CML LSC Homing
[19]

Selectins CML LSC, endothelial cells Homing
[20]

CD44 CML LSC Homing
[20]

Chemokines (MIP-1α, MIP-1β, etc) BMM, CML LSC Growth of CML LSC
[15,25]

Cytokines (IL-1α, IL-1β, TNFα, etc) BMM, CML LSC Growth of CML LSC
[15,25]

BMP2/4 MSC, CML LSC Drug resistance
[26]

FGF2 MSC Drug resistance
[28]

PIGF MSC Proliferation, metabolism
[29]

miR-126 CML LSC, endothelial cells Dormancy
[30]

HIF-1 CML LSC Growth of CML LSC
[15]

Jagged-1 Osteoblast Dormancy
[94]

Parathyroid hormone BMM CML LSC removal
[95]

WNT BMM Growth of CML LSC
[21]

N-cadherin CML LSC Drug resistance
[21]

CML LSC: chronic myeloid leukemia stem cell; BMM: bone marrow microenvironment; MSC: mesenchymal
stromal cell; G-CSF: granulocyte-colony stimulating factor; MIP-1α: macrophage inflammatory protein 1
alpha; MIP-1β: macrophage inflammatory protein 1 beta; IL-1α: Interleukin-1 alpha; IL-1β: Interleukin-1 beta;
TNFα: tumor necrosis factor alpha; BMP2/4: bone morphogenetic protein 2/4; FGF2: fibroblast growth factor
2; PIGF: placental growth factor; HIF-1: hypoxia-inducible factor1.

activation of tyrosine kinases and proto-oncogenic signals in leukemic cells including
human epidermal growth factor receptor 2, non-receptor kinase Src, Rho-associated
protein kinase, and Rac family small GTPase 1[38]. While several adhesion molecules
and stromal factors are involved in leukemic cell protection in the BMM, the principal
mediator is related to the CXCL12-CXCR4 axis[39]. Elevated CXCR4 level in AML cells
is concomitant with a poor prognosis and causes strong adhesion of AML LSCs to the
BMM[40,41]. These cells play a bidirectional role by remarked Jagged1 expression that
commences Notch1 pathway in neighbor leukemic cells  and promotes autocrine
signals in Jagged1 expressed stromal cells within the niche. Activation of Notch1
pathway accelerates self-renewal capacity of LSCs[42,43].

When AML LSCs reside in this supportive milieu, secretion of some growth factors,
cytokines, and chemokines is considerably important to keep leukemogenesis up in
the BMM. Secretion of IL-8 in an autocrine mechanism and its receptor CXCR2 by
AML  LSCs  supports  IL8-CXCR2  interaction  and  triggers  activation  of  multiple
pathways,  including  PI3K/AKT,  phospholipase  C/protein  kinase  C,  mitogen-
activated protein kinase,  β catenin,  HIF-1,  and nuclear  factor  kappa-light-chain-
enhancer  of  activated  B  cells  (NF-kB)  in  AML  LSCs  that  brings  about  tumor
progression and survival[44]. Moreover, CXCR2 inhibition reverses the growth of AML
LSCs and enhances their removal[44].

Another  study  reported  that  elevated  parathyroid  hormone  signaling  in
osteoblastic cells controls HSC pool. While parathyroid administration increases the
number of AML LSCs, it decreases the number of CML LSCs and reflects the distinct
role of the BMM components in different hematologic malignancies[45]. Activation of
angiopoietin-Tie2  signaling  in  the  osteoblastic  niche  preserves  AML  LSCs  in
dormancy and stimulates drug resistance[46]. Meanwhile, release of pro-angiogenesis
factors, such as vascular endothelial growth factor, hepatocyte growth factor, basic
fibroblast growth factor, TNFα, and vascular endothelial growth factor receptor by
LSCs increases neoangiogenesis. On the other hand, secretion of inflammatory and
proliferative  cytokines  like  TNFα,  IL-6,  IL-1β,  and G-CSF by leukemic  cells  and
granulocyte-monocyte CSF by endothelial cells shares in niche neo vasculature that is
considered as the major foundation of leukemia progression by providing metabolites
and  oxygen  for  AML  LSC[47-51].  In  some  conditions,  human  AML  LSCs  increase
vascular permeability to reduce nitric oxide levels produced during the anaerobic
glycolytic  pathway[52].  In  a  close  relationship,  endothelial  cells  also  mediate
proliferation and survival of LSCs by elevating the expression of CXCR4[53].

AML LSCs are capable of maintaining long term reconstitution in the hypoxia
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Figure 2

Figure 2  CML LSCs and their interaction with the bone marrow microenvironment. Expression of CXCR4 is downregulated by kinase activity of P210BCRABL1,
and secretion of G-CSF and expression of CD26 by CML LSCs altogether lead to mobilization of CML LSCs into the blood. At the same time, secretion of some
proteins such as bone morphogenetic protein 4, miR-126, and other chemokines and cytokines through autocrine or paracrine mechanisms may support dormancy,
growth, and drug resistance of CML LSCs. CML LSC: Chronic myeloid leukemia stem cell; HSC: Hematopoietic stem cell; CAR cell: CXCL12-abundant reticular cell;
G-CSF: Granulocyte-colony stimulating factor; CXCL12: C-X-C motif chemokine ligand 12; CXCR4: C-X-C chemokine receptor type 4; BMP4: Bone morphogenetic
protein 4.

environment and modulate the differentiation process[54]. This finding is in agreement
with low metabolism and energy status of AML LSCs in the BMM. However, during
stresses  and  apoptosis,  high  expression  of  CD36,  a  fatty  acid  transporter,  and
enhanced lipolysis by leukemic stem cells provide a compensatory source of energy
that underlies their persistence[55,56]. More investigations in LSCs and BMM crosstalk
are needed to provide new insights to leukemogenesis biology and effective strategies
for leukemia treatment. Interaction of AML LSCs with their environment through
different molecules is summarized in Table 2 and Figure 3.

SPECIFIC MARKERS OF CML AND AML STEM CELLS
As CML LSCs reside in the CD34+/CD38- cell fraction, finding specific markers is one
step ahead for recognizing and selectively targeting these cells and to discriminate
from normal HSCs. A useful CD marker should first distinguish between normal and
leukemic stem cells, and, second, show lack or limited expression on the more mature
population.

Many  markers,  such  as  CD44  and  CD117[57,58],  have  been  recommended  for
detection of CML LSC, but shared expression with normal HSC has limited their
application. On the other hand, surface markers such as CD25, IL-1 receptor accessory
protein (IL-1RAP),  and CD26 may offer  a  viable  alternative in segregating CML
LSCs[16,59,60]. CD25 (IL2Rα), which is expressed by CML LSCs, is regulated by signal
transducer and activator of transcription 5 activity and serves as the suppressor of cell
growth in CML LSCs. However, expression on the surface of progenitor cells might
also  be  detectable[59].  IL-1RAP  as  a  co-receptor  of  IL-1  receptor  participates  in
activation of NF-kB and AKT signaling pathways that promote the growth of CML
LSCs. As IL-1RAP expression increases with the disease progression, it seems that it
may be a diagnostic marker for the advanced phase of the CML[60].  CD26, with a
chemokine cleavage activity, has a role in the mobilization of the CML LSCs into the
blood by cleaving CXCL12[16,61]. Expression of this marker in CML is just limited to
CML LSCs in the chronic phase and is not expressed by normal HSCs, more mature
population, and acute phase of the disease. So, CD26 may be regarded as a target
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Table 2  Possible molecules and their role in acute myeloid leukemia stem cells-bone marrow microenvironment interaction

Target Source Role Ref.

VLA-4 AML LSCs Homing
[37]

CD44 AML LSCs Homing
[38,96]

CXCR4 AML LSCs Adhesion
[40]

Jagged-1 Osteoblast Proliferation
[42]

CXCR2 AML LSCs Proliferation, survival
[44]

Parathyroid hormone BMM OB proliferation, LSCs growth
[97]

Proangiogenesis factors (VEGF, HGF, BFGF, VEGFR) AML LSCs, BMM Endothelial and LSC proliferation
[47,48]

Cytokines (IL-6, IL1β, TNFα, G-CSF, GM-CSF) AML LSCs, BMM Angiogenesis, LSC proliferation
[51]

Tie-2 Osteoblast LSCs quiescent
[46]

CD36 AML LSCs Energy source provider
[56]

AML LSC: Acute myeloid leukemia stem cell; BMM: Bone marrow microenvironment; VLA-4: Very late antigen-4; CXCR4: C-X-C chemokine receptor type
4; CXCR2: C-X-C chemokine receptor type 2; VEGF: Vascular endothelial growth factor; HGF: Hepatocyte growth factor; BFGF: Basic fibroblast growth
factor; VEGFR: Vascular endothelial growth factor receptor; IL-6: Interleukin-6; IL-1β: Interleukin-1 beta, TNFα: Tumor necrosis factor alpha; G-CSF:
Granulocyte-colony stimulating factor; GM-CSF: Granulocyte-monocyte colony stimulating factor.

marker  for  detection  of  CML LSCs  in  newly  diagnosed  patients[16].  While  acute
lymphoblastic leukemia LSCs with P210BCRABL1 also express CD26[62], whether its
expression  in  acute  lymphoblastic  leukemia  and  CML  LSC  is  P210BCRABL1
dependent or independent remains to be discovered.

In contrast to the chronic phase of CML in which CML LSCs are defined in the
CD34+/CD38- fraction, AML LSCs are composed of heterogenous populations and
except the CD34+/CD38- fraction,  they also reside in CD34+/CD38+ and CD34-
fractions[63,64].  While  the  preleukemic  state  in  AML  initiates  in  HSC,  they  are
considered non-leukemic, and progenitors are responsible for leukemia development.
It  has  been  reported  that  lymphoid  primed  multipotent  progenitor  cells  in
CD34+/CD38- fraction and granulocyte-macrophage progenitors in CD34+/CD38+
fraction are major AML LSC populations and that lymphoid primed multipotent
progenitor cell like cells give rise to granulocyte-macrophage progenitor like cells (not
vice versa)  and show a higher self-renewal capability[63].  However,  based on the
engraftment potential and transcriptomic analysis, CD34 is not a determinant marker
of AML LSCs,  and other markers are needed for the identification of  these cells.
Meanwhile, CML acute phase mimics the same pattern as acute leukemia, and LSC
populations in acute phase of CML are extended to different types of progenitor cells
that reflect LSCs heterogeneity[65]. So, considering these, finding a proper marker to
differentiate  normal  and leukemic  stem cells  in  AML seems rather  difficult  and
applying different markers is indispensable. For instance, some markers, such as
CD96[66],  C-type  lectin-like  molecule-1[67],  CD123[68],  CD25[69],  CD47[70],  T-cell
immunoglobulin and mucin domain-3[71], etc, have been proposed for AML LSCs and
are variably expressed by AML patients. In this case, a panel of markers might be
helpful in dealing with AML LSCs. Apart from diagnosis, targeting of CML and AML
LSCs based on these markers  is  already well  underway,  which may open up an
opportunity to eliminate selectively LSCs and spare normal stem/progenitor cells.
Different markers proposed for CML and AML LSCs are summarized in Table 3 and
Figure 4.

TARGETING LEUKEMIC STEM CELLS AND THEIR
ENVIRONMENT
Clinical trials have been reported that about 40%-60% of CML patients are eligible for
treatment discontinuation[72,73]. While losing MR3 in CML patients is considered the
sign of TFR failure, almost all of them achieve major molecular response and deeper
molecular responses after resuming the treatment[74,75]. Identification of the minimal
residual disease is dependent on the application of quantitative real-time polymerase
chain reaction, and subsequently it has been confirmed that CML LSCs are present
from diagnosis, during the treatment and also in patients who are in TFR. These cells
may  be  considered  BCRABL1  negative  due  to  undetectable  transcript  level  of
BCRABL1 in CML LSCs[76]. Furthermore, an inverse correlation between the number
of  residual  CD26+ CML LSCs and the probability of  remaining in TFR has been
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Figure 3

Figure 3  AML LSCs and their interaction with the bone marrow microenvironment in contrast to chronic myeloid leukemia stem cells, AML LSCs have high
expression of CXCR4 that help them to reside in the bone marrow microenvironment. Meanwhile, autocrine secretion of IL-8 by AML LSCs increases their
survival. Enhanced secretion of pro-angiogenesis factors via autocrine and paracrine mechanism extends angiogenesis, which by providing metabolites and oxygen
for AML LSCs leads to leukemia progression. AML LSCs: Acute myeloid leukemia stem cell; HSC: Hematopoietic stem cell; CAR cell: CXCL12-abundant reticular cell;
CXCL12: C-X-C motif chemokine ligand 12; CXCR4: C-X-C chemokine receptor type 4; CXCR2: C-X-C chemokine receptor type 2; IL-8: Interleukin-8.

reported[76]. Whereas CML LSCs are insensitive to common TKI therapy, targeting the
BMM and breaking the close intimacy between CML LSCs and the BMM may help
more patients achieve TFR and sustain it for a longer period.

A promising option in targeting CML LSCs is to disrupt the connection between
these cells and the BMM, making them more sensitized to conventional therapy. Since
the presence of CXCR4-CXCL12 axis enhances proliferation and survival of CML cells
by  upregulation  of  different  signaling  pathways,  such  as  extracellular  signal-
regulated protein kinases 1 and 2, AKT, and Janus kinase (JAK)/STAT, interrupting
this axis may dwindle the protective role of the BMM[77,78]. It has been reported that
plerixafor  (AMD31000),  a  CXCR4  antagonist,  in  combination  with  different
generations of TKIs failed to reduce residual disease burden[79]. However, another
experiment  proved the  potent  role  of  BKT140,  another  antagonist  of  CXCR4,  in
declining the growth of leukemic cells both in vitro and in vivo[77].

IL-1RAP is a good marker for targeting CML LSCs in a selective manner due to its
specific expression on CML LSCs. It was reported using an antibody against IL-1RAP
that  IL-1RAP  potentially  targets  CML  LSCs  while  normal  stem  cells  remain
untouched [ 8 0 ].  This  killing  effect  was  increased  when  TKIs  were  used  in
combination[80].  However,  the  limitation  of  therapeutic  antibodies  led  to  the
introduction of IL1RAP CAR T cell, which is a prominent approach in dealing with
resistant CML LSCs[81].

As  mentioned  above,  secretion  of  some  cytokines  via  autocrine  or  paracrine
mechanisms helps CML LSC to escape from the immune system. These cytokines
proceed  through  activation  of  JAK,  which  may  activate  in  a  P210BCRABL1
independent fashion. So, applying ruxolitinib, a JAK inhibitor, might help upregulate
MHC-II expression in CML LSCs and increase their immunogenicity for the detection
and targeting by the immune system[25,82].

While targeting AML LSCs as leukemia-initiating cells may guarantee duration of
the remission, eradication of these cells seems difficult because of their heterogeneity.
In targeting AML LSCs, we have a vast variety of options considering cell  cycle,
surface markers that are useful for the segregation from normal HSCs, oncoproteins,
and  epigenetic  participants[83].  However,  the  supportive  role  of  the  BMM  is  an
undeniable  fact  and  affects  all  pathways  related  to  cell  protection.  Therefore,
combination therapy with specific targets in the BMM is a promising approach to
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Table 3  Chronic myeloid leukemia and acute myeloid leukemia stem cell markers for detection
and selective targeting

Target CD CML LSC AML LSC Normal HSC Normal progenitor Ref.

IL-2Rα CD25 + + - +/-
[59,69]

DPP4 CD26 + - - -
[16]

Siglec-3 CD33 + + + +
[98]

SCARB3 CD36 + + +/- +
[99]

Pgp-1 CD44 + + + +
[38]

IAP CD47 + + + +
[70]

Campath-1 CD52 + + + +
[100]

C1qR1 CD93 + + +/- +/-
[101]

Tactile CD96 - + - -
[66]

MIC2 CD99 - + + +
[102]

SCFR CD117 + + +/- +/-
[64]

IL-3Rα CD123 + + +/- +/-
[68]

CLL-1 - +/- + +/- +
[67]

TIM-3 - - + +/- +/-
[71]

IL-1RAP - + + - +
[60,103]

CML LSC:  Chronic  myeloid  leukemia  stem cells;  AML LSC:  Acute  myeloid  leukemia  stem cell;  HSC:
Hematopoietic stem cell; IL-2Rα: Interleukin-2 receptor alpha; DPP4: Dipeptidyl peptidase 4; Siglec-3: Sialic
acid-binding  immunoglobulin-type  lectin-3;  SCARB3:  Mast/stem cell  growth factor  receptor;  IL-3Rα:
Interleukin receptor subunit α; CLL-1: C-type lectin-like molecule-1; TIM-3: T-cell immunoglobulin mucin-3;
IL-1RAP: Interleukin-1 receptor accessory protein.

overcome resistance and to eradicate LSCs more effectively[10,84].
It was reported that blocking CXCR4 by plerixafor suppresses CXCL12-CXCR4 axis

and  increases  the  release  of  AML  LSCs  from  the  bone  marrow  to  the  blood[85].
AMD3465, another CXCR4 antagonist, in combination with G-CSF and bortezomib, a
proteasome  inhibitor,  prevents  AML  LSC  migration  toward  the  BMM  and
consequently makes them more accessible to chemotherapy agents[86,87]. Meanwhile, in
the  leukemic  BMM,  HIF1-α  and  vascular  endothelial  growth  factor  modulate
expression of CXCR4 and CXCL12, and targeting of these two in combination with
CXCR4 antagonists  significantly  reduces  homing of  myeloid leukemia cells  and
reflects inducing mobilization of these cells to the blood might suppress leukemia
development[88].

On  the  other  hand,  upregulation  of  CD44,  VLA-4,  and  Tie2  on  AML LSCs  is
considered a putative target. Anti-CD44 therapy in AMLs prevents LSCs homing.
Also, neutralizing VLA-4 antibody together with cytarabine treatment hampers AML
development in a patient-derived xenograft mouse model[38,89]. Adhesion of LSCs to
mesenchymal stromal cells via VLA-4/VCAM-1 axis triggers NF-kB activation as an
anti-apoptotic factor in AML LSCs and stromal cells. AS101, a VLA-4 inhibitor that is
in  Phase  II  of  a  clinical  trial,  prevents  NF-kB  activation  and  renders  LSCs  to
chemotherapy[90]. Whilst interaction of Tie2 with Ang-1 concludes LSCs quiescent,
disruption of Ang-1/Tie2 interaction makes cells to cycle and recover LSCs sensitivity
to cell cycle targeting agents. Ang1/2 neutralizing peptibody Trebananib (AMG 386),
a combination of a peptide with an antibody, demonstrated promising results in a
monotherapy program in a clinical trial[91]. Another putative marker in AML LSCs is
CD47 (SIRPα ligand), which is highly expressed by these cells. Interaction of CD47
with its ligand blocks phagocytosis, while blockade of this molecule leads to tumor
cell phagocytosis and AML LSCs elimination in an efficient manner[70]. Direct contact
of AML LSCs with the BMM via Notch1-Jagged interaction initiates Notch signaling
by  intracellular  domain  cleavage  of  Notch1  following  -secretase  activation.
Application of  -secretase inhibitors  like dibenzazepine in order to inhibit  Notch
signaling culminates in the suppression of LSC cell growth[83]. However, in Kannan et
al[92], a pan-Notch inhibitor could not affect LSC proliferation, which confirms further
study is needed to consider Notch signaling for targeting AML LSCs.

Inducing apoptosis also is a common approach in AML targeted therapy. O’ Reilly
et al[93] reported that microenvironment mediated drug resistance in AML might occur
following overexpression of  myeloid cell  leukemia 1,  a  BCL-2 family protein,  in
mesenchymal stromal cells. They confirmed that inhibition of myeloid cell leukemia 1
reverts the BMM mediated resistance against cytarabine and daunorubicin, prevents
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Figure 4

Figure 4  Detection of AML and CML LSCs. While CML LSCs in chronic phase are in CD34+/CD38-, using CD26 helps to segregate them from normal
hematopoietic stem cells. In AML, CD34 is not a fixed marker for detection of AML LSCs, and due to the heterogeneity of AML LSC populations, other markers are
needed to identify these cells. CLL-1: C-type lectin-like molecule-1; TIM-3: T-cell immunoglobulin and mucin domain-3; AML LSCs: Acute myeloid leukemia stem cell;
HSC: Hematopoietic stem cell; CML LSCs: Chronic myeloid leukemia stem cells.

disease relapse, and ultimately improves patient survival. The proposed compounds
under clinical trials related to targeting CML and AML LSCs interaction with BMM
are  summarized  in  Table  4.  Other  studies  reported  another  possible  target  for
elimination of AML LSCs by inhibiting the IL8-CXCR2 axis. This approach selectively
eliminates AML LSCs while sparing normal HSCs[44].

CONCLUSION
The therapeutic approaches that we listed above are in most cases already the object
of investigational clinical trials. Many others will certainly follow, and, as far as our
knowledge about the biology,  the phenotypical  appearance and the biochemical
pathways typical of the leukemic stem cells will be better understood. It is unlikely
that a single agent will be able to eliminate the leukemic stem cells. Targeted therapy
will most likely be a combination of new drugs and more conventional therapeutic
agents, ranging from traditional chemotherapy to new molecularly targeted agents or
immune modulating agents. The final goal that we hope to achieve is to cure the vast
majority of our patients and to improve their quality of their life.
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Table 4  A draft of compounds under clinical trial in leukemic stem cell bone marrow microenvironment target therapy

Disease Target Compound Clinical trial ID

CML CXCR4 BL-8040 NCT02115672

CML IL-1RAP CAR-LMC NCT02842320

CML JAK-inhibitor Ruxolitinib NCT01702064, NCT03654768, NCT01751425, NCT03610971

AML CXCR4 Plerixafor (AMD3100) NCT01455025

AML Hypoxia TH-302 NCT01149915

AML VEGF Aflibercept NCT00601991

AML VLA-4 AS101 NCT01010373

AML Ang-1/2 Trebananib (AMG 386) NCT01555268

AML CD47 SRF231, TTI-621, CC90002, Hu5F9-G4 NCT03512340, NCT02663518, NCT02367196, NCT02678338, NCT03248479

AML Notch LY3039478, MK0752 NCT01695005, NCT00100152

AML XIAP AEG35156 NCT00363974

AML BH3 ABT-199 NCT01994837

AML Pan FGFR LY274455 NCT01212107

CML: Chronic myeloid leukemia; AML: Acute myeloid leukemia; CXCR4: C-X-C chemokine receptor type 4; IL-1RAP: Interleukin-1 receptor accessory
protein; JAK: Janus kinase; VEGF: Vascular endothelial growth factor; VLA-4: Very late antigen-4; Ang-1/2: angiopoietin-1/2; XIAP: X-Linked inhibitor of
apoptosis; FGFR: Fibroblast growth factor receptor.
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