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Abstract
This article presents the stem and progenitor cells from subcutaneous adipose
tissue, briefly comparing them with their bone marrow counterparts, and
discussing their potential for use in regenerative medicine. Subcutaneous adipose
tissue differs from other mesenchymal stromal/stem cells (MSCs) sources in that
it contains a pre-adipocyte population that dwells in the adventitia of robust
blood vessels. Pre-adipocytes are present both in the stromal-vascular fraction
(SVF; freshly isolated cells) and in the adherent fraction of adipose stromal/stem
cells (ASCs; in vitro expanded cells), and have an active role on the chronic
inflammation environment established in obesity, likely due their monocytic-
macrophage lineage identity. The SVF and ASCs have been explored in cell
therapy protocols with relative success, given their paracrine and
immunomodulatory effects. Importantly, the widely explored multipotentiality
of ASCs has direct application in bone, cartilage and adipose tissue engineering.
The aim of this editorial is to reinforce the peculiarities of the stem and
progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a
recently described biotechnological tool for cell therapy and tissue engineering.
Innovative cell culture techniques, in particular 3D scaffold-free cultures such as
spheroids, are now available to increase the potential for regeneration and
differentiation of mesenchymal lineages. Spheroids are being explored not only
as a model for cell differentiation, but also as powerful 3D cell culture tools to
maintain the stemness and expand the regenerative and differentiation capacities

WJSC https://www.wjgnet.com January 26, 2020 Volume 12 Issue 11

https://www.wjgnet.com
https://dx.doi.org/10.4252/wjsc.v12.i1.1
http://orcid.org/0000-0001-9998-8044
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:leandrabaptista@xerem.ufrj.br


Published online: January 26, 2020

P-Reviewer: Garg M, Hernanda PY,
Musumeci G
S-Editor: Dou Y
L-Editor: A
E-Editor: Zhang YL

of mesenchymal cell lineages.

Key words: Mesenchymal stromal/stem cells; Subcutaneous adipose tissue; Stromal-
vascular fraction; Adipose stromal/stem cells; Regenerative medicine; Cell therapy;
Tissue engineering; Spheroids

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Adipose tissue, notably subcutaneous, has a population of CD34-positive
progenitor cells functionally known as pre-adipocytes. The pre-adipocytes have
molecular and functional identities with the monocytic-macrophagic lineage and are
altered in metabolic diseases such as obesity. To what extent will new 3D tools in cell
culture, such as spheroids, be able to overcome the limitations imposed by 2D monolayer
culture and unravel dormant capabilities of adipose stromal/stem cells?

Citation: Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and
limitations. World J Stem Cells 2020; 12(1): 1-7
URL: https://www.wjgnet.com/1948-0210/full/v12/i1/1.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i1.1

INTRODUCTION
Mesenchymal stromal/stem cells (MSCs) were first described and isolated from bone
marrow as adherent colony-forming units of fibroblasts (CFU-F), and the primary role
attributed  to  MSCs  was  to  form  niches  for  hematopoietic  cells,  supporting
hematopoiesis[1]. In 1999, Pittenger et al[2] first described the in vitro multipotential
nature  of  human  bone  marrow  MSCs,  introducing  their  use  in  cell  therapy
approaches, by delivering MSC suspensions to injury sites. The hypothesis was that
MSCs were capable of tissue repair through grafting and differentiation into tissue-
resident cells[3,4]. A few years later, an adipose tissue MSC population was described
that shared some properties with MSCs isolated from the bone marrow, but had
important unique characteristics[5,6].

Currently the widely accepted mechanism for tissue repair using bone marrow and
adipose tissue sources (based on data from preclinical studies) is that MSCs interact
with  injured  cells,  creating  tissue  microenvironments  or  temporary  niches  that
facilitate repair[7].  Thus, tissue regeneration by MSC transplantation may not rely
exclusively on MSC differentiation, and the potential of MSCs to differentiate into
multiple lineages is yet to be confirmed in vivo. In regenerative medicine approaches,
the paracrine activity of MSCs fits well with cellular therapy protocols, while there in
vitro  multilineage potential  is  beneficial  for tissue engineering.  Furthermore,  the
“stemness” of MSCs and their in vitro multilineage potential can be optimized by cell
culture conditions. The aim of this editorial is to reinforce the peculiarities of the stem
and progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a
recently  described biotechnological  tool  for  cell  therapy and tissue engineering.
Spheroids are a 3D cell culture approach where cell clusters are formed in the absence
of  a  scaffold  (scaffold-free),  optimizing  cell-cell  and  cell-extracellular  matrix
interactions[8,9]. Recent studies have shown that culture as spheroids can be used to
optimize the stemness and multilineage potential of MSCs[10], unraveling unknown
characteristics  of  these  cells,  as  well  as  opening  new  avenues  for  MSC  use  in
regenerative medicine.

REVEALING THE POTENTIAL OF STROMAL CELL
POPULATIONS IN SUBCUTANEOUS ADIPOSE TISSUE
The subcutaneous adipose tissue is composed of adipocytes and of a heterogeneous
“stromal-vascular  fraction”  (SVF).  These  two  main  cell  compartments  can  be
separated by a centrifugation approach that results in the adipocytes floating as a
layer, while SVFs sediment to the bottom of the tube. Previously, the SVF was known
as a compartment containing cells capable of accumulating intracytoplasmic lipids in
vitro[11]. Currently, the SVF is defined as a heterogeneous population containing pre-
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adipocytes, endothelial mature cells, macrophages and fibroblasts. Furthermore, the
SVF  contains  stem  and  progenitors  cells  showing  different  degrees  of
differentiation[12]. Due to their cell heterogeneity, the SVF is a major contributor to the
unique molecular identity of the different depots of adipose tissue[13].

In 2001, Zuk et al[5]  first described an MSC population in human subcutaneous
adipose tissue isolated from the SVF. In 2013, the International Federation for Adipose
Therapeutics  and  Science  and  the  International  Society  for  Cellular  Therapy
established the minimal definitions for stromal cells  derived from subcutaneous
adipose tissue[14]. The stromal cells within the SVF comprise heterogeneous cell types
not amenable to culture in vitro, and a population of adherent, stromal/stem cells that
can  be  culture  in  vitro.  The  latter  are  referred  to  as  “adipose  tissue  derived
stromal/stem cells” (ASCs), and this term will be used throughout this manuscript.

While ASCs were initially described as having the same in vitro  multipotential
nature, clonogenic potential (CFU-F) and similar surface markers as human bone
marrow MSCs[15], differences between bone marrow and adipose MSCs emerged in
subsequent publications (Table 1). Importantly, the tissue microenvironment differs
significantly between the bone marrow and white adipose tissue. In these tissues,
MSCs interacts with different neighboring cells, including an osteoblastic niche in the
bone marrow[16] and cells from the more vascularized microenvironment in the white
adipose tissue[6]. Consequently, bone marrow MSCs shows an intrinsic capacity to
form bone and to  support  hematopoiesis  after  in  vivo  transplantation to  ectopic
sites[17], while ASCs have a superior angiogenic capacity[18]. Intriguingly, adipose tissue
is  also  capable  of  supporting  hematopoiesis  (in  a  specific  form),  despite  the
remarkable differences in tissue microenvironment relative to the bone marrow[21]. In
comparison  with  the  MSC  population  derived  from  bone  marrow  after  in  vitro
expansion, MSCs derived from subcutaneous adipose tissue can be distinguished by
being positive for CD36 and negative for CD106[14]. Given the differences between
bone marrow MSCs and ASCs, different morphogens are required and commonly
used to induce the full range of multipotential differentiation of these cells in vitro.

Importantly, uncultured SVFs from subcutaneous adipose tissue contain a unique
cell population: The pre-adipocytes[14]. These cells dwell in the adventitia of robust
blood vessels and are identified as negative for the pan hematopoietic surface marker
(CD45),  the  mesenchymal  stem cell  surface  marker  (CD146)  and for  the  mature
endothelial cell surface marker (CD31), being positive only for CD34[6]. Pre-adipocytes
had already been identified in adipose tissue even before the discovery of the MSC
population[11,22]. In mice, pre-adipocytes and macrophages both originate from the
monocytic  lineage  (CD14  positive  cells)[23].  In  line  with  this  observation,  pre-
adipocytes share some surface markers with macrophages,  as well  as having the
capacity to acquire certain macrophage properties[24].

Macrophages, especially the tissue resident population (M2), have a crucial role in
adipose tissue homeostasis[22].  This  role  is  highlighted in  obesity,  where chronic
inflammation leads to macrophage polarization from an M2 to an M1 phenotype,
disrupting adipose tissue homeostasis[25]. This disruption also alters the behavior of
pre-adipocyte, as well as increasing their frequency in early stages of obesity[26]. In our
hands,  the  subcutaneous  adipose  tissue  samples  from obese  individuals  do  not
present  alterations  in  the  pre-adipocyte  population  per  se,  but  have  increased
frequency of mesenchymal precursors in the SVF, and ASCs with altered behavior in
vitro[27].

Our research group first showed that the frequency and size of blood vessels are
increased  in  subcutaneous  adipose  tissue  from ex-obese  donors  that  have  been
subjected to bariatric surgery[28]. In addition to blood vessels alterations, we described
a significant increase in the number of pre-adipocytes cells in the SVF, together with a
more heterogeneous population of ASCs, containing pre-adipocytes[27]. The increase in
pre-adipocyte frequency can be linked to the increase in the size of blood vessels,
since robust vessels have the adventitia layer, where pre-adipocytes dwell[6]. Thus,
adipose tissue from ex-obese individuals appears to keep a cellular “memory” of the
inflammatory  microenvironment  of  obese  tissue,  despite  relevant  clinical
improvement in obesity[29].

Both  fractions  of  subcutaneous  adipose  cells  -  SVF  and  ASCs  -  have  been
extensively used in clinical trials, mainly due their paracrine and immunomodulatory
potentials; however some discrepancies between studies have emerged, mainly due
donor-to-donor variability combined with differences between the protocols for cell
isolation and expansion in vitro, highlighting the need to better characterize even the
ASCs[30]. In spite of their apparent homogeneity in vitro, ASCs contain a population of
pre-adipocytes whose true potential has not yet been fully elucidated, especially in
obese and ex-obese subcutaneous adipose tissue samples.

WJSC https://www.wjgnet.com January 26, 2020 Volume 12 Issue 1

Baptista LS. ASCs: potentials and limitations

3



Table 1  Differences of mesenchymal stromal/stem cell niche, cell subpopulations, mesenchymal stromal/stem cell surface in vitro
markers and multipotentiality between bone marrow and adipose tissue

Tissue MSC niche Cell subpopulations MSC in vitro surface
markers Multipotentiality

Bone marrow Subendosteal and vascular Osteoblasts, Endothelial
progenitor and mature cells,
Macrophages, MSCs

Positive: CD44, CD71, CD73,
CD90, CD105, CD106,
CD120a and

Adipogenic, Chondrogenic,
and Osteogenic. Pre-
committed into osteogenic
lineage.Hematopoietic stem and

progenitor cells,
lymphocytes,
megakaryocytes,
erythrocytes, monocytes,
neutrophils, basophils,
eosinophils

CD124

Negative: CD14, CD34 and
CD45

Adipose tissue Vascular Adipocytes Positive: CD13, CD29, Adipogenic, Chondrogenic,
and Osteogenic. Pre-
committed into adipogenic
lineage.

CD44, CD73, CD34, CD36,
CD90 and CD105

SVF: Pre-adipocytes,
endothelial progenitor and
mature cells, macrophages,
fibroblasts, MSCs

Negative: CD31, CD45,
CD235a and CD106

MSCs: Mesenchymal stromal/stem cells; SVF: Stromal-vascular fraction.

ARE MULTIPOTENTIALITY AND PLURIPOTENTIALITY
DEPENDENT ON CELL CULTURE CONDITIONS?
ASCs  has  been  extensively  described  in  the  scientific  literature  as  having  their
embryonic origin in a mesodermal progenitor population[31]. As a consequence, the
typical multilineage capacity of ASCs represents their ability to form adipose tissue,
bone and cartilage in vitro[14]. The multilineage capacity of ASCs has been extensively
explored in tissue engineering, mainly by scaffold-based approaches. Recently, non-
classical, scaffold-free approaches to tissue engineering have emerged that often rely
on the production of  3D cell  clusters  called “spheroids”[32].  Spheroids mimic the
embryonic stages of tissue development, optimizing the multilineage differentiation
capacity of ASCs and MSCs (Figure 1). Moreover, spheroids are currently used not
only as 3D culture models of cell differentiation in vitro, but also as a powerful cell
culture tool to maintain the stemness and increase the regenerative, anti-inflammatory
and angiogenic potentials of ASCs and MSCs[33]. The increase in the stemness of ASC
and  MSC  spheroids  (compared  with  2D  culture)  is  indicated  by  their  higher
multilineage  potential,  increased  expression  of  pluripotency  genes  and  late
senescence[10], which reflect the cytoskeletal reorganization and expressive changes in
cell morphology observed in spheroids[34]. However, the limitations of ASC and MSC
spheroids comprise the low proliferation rate, causing in vitro cell expansion to still
occur by monolayer culture.  Furthermore,  part  of  tissue engineering approaches
intends to repair tissue critical-sized defects, requiring a scaffold.

Embryonic development in mammals starts with a cluster of epiblast stem cells[35].
Therefore, in vitro culture as spheroid-like cell clusters is used not only for embryonic
stem cells, which are isolated from the early blastocyst stage, but also for induced
pluripotent  stem cells  (iPSC)  obtained by “reprogramming” adult  somatic  cells.
Recapitulating  embryogenesis,  iPSCs  initially  form cell  clusters  that  eventually
become 3D cell aggregates representing spheroids.

A population of cells recently isolated from mesenchymal human tissue, named
multilineage-differentiating  stress  enduring  cells  (Muse),  is  capable  of  forming
pluripotent  spheroid-like  cell  clusters[36]  in  the  absence  of  in  vivo  tumorigenic
capacity[37]. The differentiation of Muse cells for non-mesenchymal lineages relies on
cell culture as clusters or spheroids, as well as on the use of a lower percentage of
serum (or even on serum deprivation) during cell culture[38]. Human ASCs cultured in
early passage under a lower percentage of autologous serum formed floating 3D
spheroid-like cell clusters spontaneously[39].  Adipose-Muse cells differentiate into
mesodermal, ectodermal and endodermal lineages, without teratoma formation[40].

The  capacity  of  mature  adipocytes  to  dedifferentiate  and to  differentiate  into
multiple cell lineages was already described before the identification of Adipose-
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Figure 1

Figure 1  Spheroids mimic the embryonic stages of tissue development, optimizing the multilineage differentiation capacity of Adipose stromal/stem cells
and mesenchymal stromal/stem cells. A: Adipose stromal/stem cells (ASCs) and mesenchymal stromal/stem cells (MSCs) can be harvested from monolayer and
seeded into 3D culture plate dishes; B: The cell suspension starts to establish cell-cell interaction in a process known as self-assembly; C: The resulting spheroids
containing cells and extracellular matrix components, are described for optimizing the stemness; D: Multilineage differentiation capacity of ASCs and MSCs under
appropriate morphogens.

Muse cells[41,42], with some signs of pluripotency[36]. Accordingly, it is not surprising
that spheroid-based culture, which is known to increase the stemness capacity of cells,
may  increase  the  potential  of  ASC  differentiation  beyond  that  expected  for
mesenchymal lineage cells. The major advantage in exploring the pluripotency of ASC
spheroids will be their safety in regenerative medicine protocols, since some studies
show the absence of teratoma formation after Adipose-Muse transplantation[40].

CONCLUDING REMARKS
In  2001,  ASCs  emerged  as  an  accessible  source  of  adult  multipotent  stem cells,
showing high angiogenic and regenerative potential. The in vitro expansion of ASCs
as monolayers may mask the multipotency and anti-inflammatory capacities of ASCs
from obese and ex-obese donors. Embryonic development is marked by the formation
of  spheroid-like  cell  clusters,  which  can  be  mimicked  in  vitro  by  3D  culture  as
spheroids. Spheroid culture promises to reveal features of ASCs that were masked by
culture in monolayers, including their pluripotency. In conclusion, ASC spheroids can
be delivered into the injury site in an undifferentiated state due their regenerative
potential or even as a tissue engineered construct, while allowing the use of obese and
ex-obese ASCs in regenerative medicine protocols.

FUTURE DIRECTIONS
The transition from 2D monolayer culture of ASCs to 3D culture as spheroids brought
previously unimaginable advantages. The next step is to translate the advantages of
spheroid culture into novel therapeutic uses of ASCs in tissue regeneration and tissue
engineering.
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