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Abstract
Coronavirus disease 2019 (COVID-19), a pandemic disease caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV2), is growing at an 
exponential rate worldwide. Manifestations of this disease are heterogeneous; 
however, advanced cases often exhibit various acute respiratory distress 
syndrome-like symptoms, systemic inflammatory reactions, coagulopathy, and 
organ involvements. A common theme in advanced COVID-19 is unrestrained 
immune activation, classically referred to as a “cytokine storm”, as well as 
deficiencies in immune regulatory mechanisms such as T regulatory cells. While 
mesenchymal stem cells (MSCs) themselves are objects of cytokine regulation, 
they can secrete cytokines to modulate immune cells by inducing anti-
inflammatory regulatory Treg cells, macrophages and neutrophils; and by 
reducing the activation of T and B cells, dendritic and nature killer cells. 
Consequently, they have therapeutic potential for treating severe cases of COVID-
19. Here we discuss the unique ability of MSCs, to act as a “living anti-
inflammatory”, which can “rebalance” the cytokine/immune responses to restore 
equilibrium. We also discuss current MSC trials and present different concepts for 
optimization of MSC therapy in patients with COVID-19 acute respiratory distress 
syndrome.

Key Words: Mesenchymal stem cells; SARS-CoV-2; COVID-19; Cytokine storm; Acute 
respiratory distress syndrome; Immunomodulation
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Core Tip: Coronavirus disease 2019 a disease caused by the severe acute respiratory 
syndrome coronavirus 2, is growing exponentially, with no treatments currently 
available. Preclinical and clinical studies have shown that mesenchymal stem cells 
(MSCs) work in reversing acute respiratory distress syndrome caused by other 
conditions such as influenza virus infection, or sepsis. In this review we discuss the 
unique ability of MSCs, to act as a “living anti-inflammatory”, which can “rebalance” 
the cytokine/immune responses to restore equilibrium.

Citation: Lin F, Ichim TE, Pingle S, Jones LD, Kesari S, Ashili S. Mesenchymal stem cells as 
living anti-inflammatory therapy for COVID-19 related acute respiratory distress syndrome. 
World J Stem Cells 2020; 12(10): 1067-1079
URL: https://www.wjgnet.com/1948-0210/full/v12/i10/1067.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i10.1067

INTRODUCTION
The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) are 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with few 
effective treatments currently available. SARS-CoV-2 along with SARS-CoV and 
middle east respiratory syndrome coronavirus are coronaviruses that have caused 
significant human morbidity and mortality[1]. We are currently in the middle of a 
SARS-CoV-2 global pandemic. As of August 7, 2020, based on a Johns Hopkins 
University Coronavirus Resource Center Report, there have been at least 19.4 million 
confirmed cases worldwide, with at least 722706 deaths, and a mortality rate reaching 
approximately 3.7%. In the United States alone, approximately 5 million people are 
infected resulting in 161810 deaths and a mortality rate of 3.3%. COVID-19 infection of 
the lungs leads to extraordinary intensive care unit resource utilization and mortality.

One of the ways COVID-19 produces morbidity and mortality is by severely 
impairing lung function, causing a condition called acute respiratory distress 
syndrome (ARDS). This is characterized by a rapid onset of cytokine storm 
widespread lung inflammation, and sepsis-like conditions. Currently there is no 
effective anti-viral treatment for COVID-19. However, a few therapeutic strategies 
have been tested in the clinic or in trials for the treatment of patients with COVID-19. 
The anti-viral remdesivir can reduce death risk of severe COVID-19 patients as much 
as 62% when compared with standard care alone. Other anti-viral drugs such as but 
not limited to lopinavir-ritonavir, favipiravir, chloroquine and hydroxychloroquine 
have been proposed to treat COVID-19. Many of these anti-viral agents are currently 
being tested in clinical trials. Anti-inflammatory drugs such as dexamethasone were 
found to have beneficial effects in critically ill COVID-19 patients. Additionally, 
tocilizumab and siltuximab are interleukin-6 inhibitors being studied as therapeutics 
in critically ill patients with severe respiratory failure and elevated serum IL-6. The 
immunomodulatory functions of mesenchymal stem cells (MSCs) have been well 
documented in recent years. While MSCs themselves are objects of cytokine 
regulation, they can secrete cytokines to modulate immune cells by inducing anti-
inflammatory regulatory Treg (T) cells, macrophages and neutrophils; and by 
reducing the activation of T and B cells, dendritic and nature killer (NK) cells. 
Consequently, they have therapeutic potential for treating severe cases of COVID-19.

Preclinical and clinical studies have shown that MSCs work in reversing ARDS 
caused by other conditions such as influenza virus infection, or sepsis. For example, 
MSCs derived from adipose[2-5], bone marrow[6-25], placental[26], amniotic membrane[27,28], 
umbilical cord[29-35], menstrual blood[36], and lung[37,38] origin, as well as conditioned 
media[39-46], have demonstrated reduction of pulmonary injury, and neutrophil 
accumulation. Early clinical trials[47,48] have shown safety of systemic infusions and 
bronchial instillations of MSCs for treating ARDS and other pulmonary complications. 
Most recently small studies[49,50] have also suggested that MSCs can be effective in 
COVID-19 ARDS; however, these approaches have not been well validated. In this 
review, we discuss the immunomodulatory effects of stem cells and the role of MSCs 
as potential therapeutic options for cytokine storm and/or ARDS in COVID-19.

https://www.wjgnet.com/1948-0210/full/v12/i10/1067.htm
https://dx.doi.org/10.4252/wjsc.v12.i10.1067
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COVID-19 AND ITS PATHOLOGY
SARS-CoV-2 enters host cells through the angiotensin converting enzyme 2 (ACE2) 
receptor. ACE2 expression was found to be high in the lung, heart, ileum, kidney and 
bladder[51]. ACE2 is highly expressed on the apical side of lung epithelial cells in the 
alveolar space, which is how SARS-CoV-2 virus can likely enter and destroy these 
cells. This is probably why early lung injury was often seen in the distal airway. The 
issue now becomes in what way does the immune system respond to viral infection in 
the lung. Innate immunity in the airway mainly includes epithelial cells, alveolar 
macrophages and dendritic cells. They fight against the virus until adaptive immunity 
is initiated. T cell mediated responses are initiated by antigen presentation via 
dendritic cells and macrophages. CD4+ T cells activate B cells to promote the 
production of virus-specific antibody CD8+ T cells which can kill virus infected cells. 
Approximately 80% percent of patients with COVID-19 are asymptomatic or 
experience only mild symptoms such as fever, dry cough and shortness of breath. 
However, some patients deteriorate quickly and develop ARDS[52]. Patients with severe 
diseases were reported to have increased plasma levels of proinflammatory cytokines, 
including IL-6, IL-8, IL-10, GM-CSF, macrophage inflammatory protein 1-alpha, and 
TNF-alpha[53].

Information regarding the pathological findings in COVID-19 is still limited, 
although several reports on this topic have been published recently.  Xu et al[54]

 reported one case where the patient presented 15 d of symptoms. Biopsy samples 
from both lungs showed bilateral diffuse alveolar damage[55] with cellular fibromyxoid 
exudates and hyaline membrane formation, indicating ARDS in both lungs. 
Noteworthy is the observation that the pathological features of COVID-19 greatly 
resemble those seen in SARS and middle east respiratory syndrome coronavirus 
infections[56,57]. In addition, over-activation of T-cells was manifested by an increase of 
Th17 and high cytotoxicity of CD8 T cells, partially accounting for the severe immune 
injury in the patient.

Tian et al[58] described the early histopathological features in two patients who 
underwent postmortem for lung cancer but were later discovered to have had COVID-
19 upon resection. The results of the lung evaluation from the two patients exhibited 
only nonspecific histologic changes, including edema, proteinaceous exudate, 
hyperplastic pneumocytes, patchy inflammation, and multinucleated giant cells with 
no hyaline membrane. Given that the two patients were asymptomatic from COVID-
19 at the time of postmortem, they were likely only in the early stages of acute lung 
injury from the infection[58]. Tian et al[59] also conducted another postmortem study of 
four COVID-19 patients with a minimum of 15 days of symptoms, demonstrated 
ARDS in all biopsies.

Two COVID-19 autopsies on the lungs of a 77-year-old man revealing diffuse 
alveolar damage, the most common histopathologic correlation with ARDS, and on the 
lungs of a 42-year-old man presenting no evidence of diffuse alveolar 
damage/ARDS[60]. Magro et al[61] demonstrated in a report of five cases that diffuse 
alveolar damage was not prominent with the presentation of hyaline membranes, 
inflammation, and type II pneumocyte hyperplasia, all hallmarks of classic 
ARDS. These pulmonary findings were accompanied by significant deposits of 
terminal complement components C5b-9, C4d, and mannose binding lectin-associated 
serine protease 2, in the microvasculature, consistent with sustained, systemic 
activation of the alternative and lectin-based complement pathways. There was co-
localization of COVID-19 spike glycoproteins with C4d and C5b-9 in the interalveolar 
septa and the cutaneous microvasculature of two cases examined. This indicated the 
pathophysiologic importance of complement in COVID-19. The results suggest that at 
least a subset of severe COVID-19 infection involves a catastrophic, complement-
medicated thrombotic microvascular injury syndrome with sustained activation of the 
alternative and lectin-based cascades, possible pathways apart from virus spike 
protein engagement.

In general, ARDS is a common manifestation of cytokine storms and as well could 
be the cause of death in many COVID-19 patients, although other mechanisms may 
also be involved. A better understanding of COVID-19 patients’ underlying 
pathogenesis will pave the way for formulating a timely therapeutic strategy to reduce 
mortality.
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MSCS IMMUNOMODULATORY EFFECTS
MSCs are fibroblast-like and multipotent stromal cells. Human MSCs are positive for a 
number of cell surface markers including CD73, CD44, CD90, and CD105 and negative 
for the hematopoietic markers of CD34, CD45 and HLA-DR[62]. MSCs are traditionally 
isolated from bone marrow, and a variety of fetal, neonatal and adult tissues, 
including cord blood, peripheral blood, fetal liver and lung, adipose tissue, compact 
bone, dental pulp, dermis, endometrial, human islet, adult brain, skeletal muscle, 
amniotic fluid, synovium, and the circulatory system[63-65]. MSCs can differentiate into a 
variety of cell types of mesodermal origin, including osteoblasts, chondrocytes, 
cardiomyocytes, neural cells, smooth muscle cells and adipocytes[62,66-68]. MSCs are 
likely the only stem cell type that possesses both regenerative and immunomodulatory 
capabilities. Consequently, they have been used widely in the treatment of many 
degenerative and inflammatory diseases.

One property that greatly increases the value of MSCs in therapeutic applications is 
their ability to modulate immune responses. MSCs can exert their immunomodulatory 
function by producing many molecules having immunomodulatory effects, these 
include prostaglandin E2 (PGE2)[69], nitric oxide[70], indolamine 2,3-dioxigenase 
(IDO)[71], transforming growth factor beta[72,73], IL-6[74,75], hemoxygenase-1[76], leukocyte 
inhibitory factor[77], HLAG5 and chemokines[78], PDL1/2[79] and other surface markers-
FasL[80]. MSCs can escape the immune system because bone marrow derived MSCs 
(BM-MSCs) are not recognized by NK cells as they lack expression of HLA Class I 
surface markers. They also lack expression of HLA Class II antigens, which is desirable 
for transplantation applications.

The immunosuppressive activity of MSCs is well described, with recent reports 
providing some mechanistic insights into key soluble factors and receptors. 
Programmed death-ligand 1/CD274 also known as B7 Homolog 1 (B7-H1) has been 
shown to be expressed in cultured MSCs and is strongly upregulated following IFN-γ 
stimulation. Combination therapy using rapamycin and MSCs induced immune 
tolerance to allografts, but monoclonal antibodies against B7-H1 were shown to 
abrogate this tolerance leading to allograft rejection[81]. The immunomodulatory effects 
of MSCs were mediated in part through upregulation of regulatory immune cells 
including CD4+CD25+FoxP3+ T cells[82,83] and tolerogenic dendritic cells[84] and a 
decrease in alloantibody levels. MSCs that expressed B7H1 may also induce the 
apoptosis of activated T-cells as a co-culture of CD4+CD25- T cells with MSCs 
resulting in significant upregulation of programmed cell death-1 receptor (PD-1) on 
activated T cells[85]. Similar results were reported by Chinnadurai et al[86] who further 
examined the role of IFN-γ in the “licensing” of MSCs to inhibit the proliferation of 
activated T cells[86]. Both MSCs and IFN-γ licensed MSCs inhibited T-cell proliferation; 
however, only IFN-γ licensed MSCs significantly inhibited Th1 cytokine (IFN-γ, TNFα 
and IL-2) production as well as T-cell degranulation. This IFN-γ licensed MSCs 
inhibitory effect on T-cells is thought to be dependent on IDO[71]; however, 
Chinnadurai showed that MSC IDO catalytic function is dispensable with regard to 
MSC driven T-cell inhibition. Chinnadurai et al[86] identified the B7-H1 PD1 pathways 
as essential effectors in blocking T-cell function. Further complexity was also 
suggested by a recent report that IFN-γ treatment of MSCs upregulated HLA-DR 
/Class II MHC after 48 h, and MSCs ability to inhibit T cells through B7-H1 was 
dependent upon the presence of HLA-DR[87].

MSCs express the adhesion molecules VCAM-1 and ICAM-1, which allow T-
lymphocytes to adhere to their surface. Subsequently MSCs can affect them by 
molecules which have a short half-life. Their effect is in the immediate vicinity of the 
cell[70]. Examples of such molecules include nitric oxide, PGE2, HGF[88], and activation 
of receptor PD-1. MSCs reduce T cell proliferation between G0 and G1 cell cycle 
phases G[89], and decrease the expression of IFNγ of Th1 cells while increasing the 
expression of IL-4 of Th2 cells[90]. MSCs also inhibit the proliferation of B-lymphocytes 
between G0 and G1 cell cycle phases.

A novel mechanism for MSC-induced immunosuppression was recently proposed 
by Obermajer and colleagues who showed that cells of the Th17 type, predominantly 
associated with the rejection of allogeneic solid organ grafts, can be directly converted 
into a regulatory T cell type[91]. The induction of Tregs was preceded by development 
of a CD11b(hi)Gr1(int) myeloid-derived immunosuppressive cell-mediated Th17. They 
identified retinoic acid receptor-related orphan receptor γ as a common factor in the 
differentiation of T and Th17 cells. The identification of a specific subset of T cells IL-
17A+Foxp3+ double-positive and ex-IL-17- producing IL-17A-Foxp3+ in this paper 
argues for direct conversion as the mechanism for MSC-mediated immuno-tolerance. 
This proposed mechanism where MSC-induced myeloid-derived immunosuppressive 
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cells act as mediator for immune tolerance without complete immunosuppression may 
have significant implications for therapeutic applications.

MSCs have an effect on macrophages, neutrophils, NK cells, mast cells and 
dendritic cells in innate immunity and effector T cells, regulatory T cells, and B cells in 
adaptive immunity illustrated in Figure 1. In severe COVID-19 patients, their immune 
responses to SARS-CoV-2 infection are usually over-activated. MSCs are able to exert 
their anti-inflammatory effect by regulating immune cells and balancing the immune 
responses. Furthermore, MSCs can migrate to the site of injury, where they polarize 
through GE2 macrophages into phenotype-2 which is characterized by an anti-
inflammatory effect[92,93]. Further, PGE2 inhibits the ability of mast cells to degranulate 
and produce TNF-α. Proliferation and cytotoxic activity of NK cells are inhibited by 
PGE2 and IDO. MSCs also reduce the expression of NK cell receptors-NKG2D, NKp44 
and NKp30[94], MSCs inhibit respiratory flare and apoptosis of neutrophils by 
production of cytokines IL-6 and IL-8[95]. Differentiation and expression of dendritic 
cell surface markers is inhibited by IL-6 and PGE2 of MSCs[96]. The immuno-
suppressive effects of MSCs also depend on IL-10, but it is not certain whether they 
produce it alone, or only stimulate other cells to produce it[97,98].

MSCS THERAPY FOR INHIBITION OF ACUTE INFLAMMATION AND 
CYTOKINE STORM
MSCs have been shown to possess a comprehensive and powerful immuno-
modulatory function to suppress excessive activation of the immune system, thus 
promoting endogenous repair by improving the microenvironment. There have been 
13 MSCs therapies approved for treating a number of conditions (Table 1) outside of 
the United States, mainly in the EU, Japan, South Korea and India. Among the 
conditions, two adipose tissue derived MSC products, Alofisel® and Cupistem®, have 
been used for complex perianal fistulas in Crohn’s disease. The underlying mechanism 
of action is the MSC immunomodulatory and anti-inflammatory effects at the 
inflammation sites. Specifically MSCs impair proliferation of activated lymphocytes 
and reduce the inflammatory cytokines. Two BM-MSC products, Prochymal® and 
Temcell® HS, have been used for treating GvHD, due to MSCs immunomodulatory 
effects.

Preclinical study has demonstrated that MSCs can inhibit the progress of acute 
inflammation in the lungs and alleviate symptoms of respiratory distress[99]. The 
feasibility of utilizing MSCs for the treatment of ARDS has been demonstrated in 
animal models and extracorporeal lung models[100]. MSCs of adipose, bone marrow, 
placental, amniotic membrane, umbilical cord, menstrual blood, and lung, origin, as 
well as conditioned media with secreted exosomes, have demonstrated a reduction of 
pulmonary injury and neutrophil accumulation. In a recent study using a sheep model 
of ARDS[9], both endobronchial and intravenous administration of bone marrow-
derived multipotent adult progenitor cells were effective for the treatment of ARDS.

Additionally, an analysis of 342 systemic infusions and 57 bronchial instillations 
(204 recipients) of cells of various origins for ARDS and other pulmonary issues 
demonstrated safety in early human clinical trials[47]. Recently, a study involving two 
patients with severe refractory ARDS, both showed improvement[99]. Both patients 
received 2 × 106 cells per kilogram of body weight. Subsequently, each of the patients 
improved with resolution of respiratory, hemodynamic, and multiorgan failure. In 
parallel, a decrease was seen in multiple pulmonary and systemic markers of 
inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, 
proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs 
demonstrated a broad anti-inflammatory capacity, including suppression of T-cell 
responses and induction of regulatory phenotypes in T cells, monocytes, and 
neutrophils. Some of these in vitro potency assessments correlated with, and were 
relevant to, the observed in vivo actions.

RECENT SUCCESS OF MSCS FOR COVID-19 PATIENTS AND CLINICAL 
TRIALS
Currently, drugs alone or in combination with other therapeutic approaches have not 
afforded a cure; however a number of investigational drugs in clinical trials, including 
antivirals such as chloroquine/hydroxychloroquine, remdesivir, immune-based 
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Table 1 Approved mesenchymal stem cell therapies outside of United States in the past 20 years

Product name Source Autologous/Allogeneic Indication Company/Country

1 Alofisel Adipose tissue-derived 
stem cells

Allogeneic Complex perianal fistuals in 
Crohn’s disease

TiGenix NV/Takeda 
PharmaceuticalEU

2 Chondrocytes-T-
Ortho-ACI

Chondrocyte Autologous Cartilage damage, lesions 
and defects

Ortho Cell, Australia

3 Spherox Chondrocyte Autologous Symptomatic articular 
cartilage defects

CO.DON AG, Germany and EU

4 Ossgrow BM-MSCs Autologous Avascular necrosis Regrow, India

5 Stempeucel BM-MSCs Allogeneic CLI Stempeutics, India

6 Porchymal BM-MSCs Allogeneic GvHD in children Osiris Therapeutics, Canada

7 Temcell HS BM-MSCs Allogeneic GvHD JCR Pharmaceuticals, Japan

8 NeuroNata-R BM-MSCs Autologous Lou Gehrig’s disease, or ALS Corestem, Korea

9 Cupistem AT-MSCs Autologous Crohn’s fistula Anterogen, Korea

10 Cartistem, UC-blood-derived 
MSCs

Allogeneic Damaged cartilage Medipost Inc., Korea

11 Cellgram-AMI BM-MSCs Autologous Acute myocardial infarction Pharmicell, Korea 

12 AstroStem AT-MSCs Autologous Alzheimer’s disease Nature cell, Korea

13 Stemilac BM-MSCs Autologous Alzheimer’s disease Nipro and Sapporo Medical 
University, Japan

MSCs: Mesenchymal stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells; EU: European Union; UC-MSCs: Umbilical cord mesenchymal 
stem cells; AT-MSCs: Adipose tissue-derived mesenchymal stem cells.

therapies and adjunctive therapies have shown promise, particularly in mitigating 
certain systemic markers according to NIH COVID-19 Guidelines. Potential antiviral 
drugs: remdesivir, chloroquine or hydroxychloroquine, hydroxychloroquine plus 
azithromycin, lopinavir/ritonavir and other HIV protease inhibitors. Immune-based 
therapy under evaluation: Convalescent plasma, Immunoglobulins: SAR-CoV-2-
specific and non-SAR-CoV-2 specific, MSCs, Corticosteroids, Interferons alpha and 
beta, IL-1 and IL-6 inhibitors, Kinase inhibitors: Bruton’s tyrosine kinase inhibitors and 
Janus kinase inhibitors; Adjunctive therapy: antithrombotic therapy, vitamin C and 
vitamin D, zinc supplementation.

To date, there are over 50 clinical trials using MSCs to treat COVID-19 patients 
based on the registration in clinicaltrial.gov website, we listed the most relevant 
studies in Table 2. Umbilical cord MSCs (UC-MSCs), BM-MSCs, AT-MSCs and other 
MSCs, as well as exosomes from MSCs are used in clinical trials, among them UC-
MSCs are the most desirable for treating severely compromised COVID-19 patients 
due to its rich and extensive source of stem cells, scalable expansion capability, and 
ability to be allogeneic as low MHC-I expression[49]. The dose and delivery times are 
also varied in different trials. Recent reviews have described the potential for and 
rationale of using different types of MSCs for treating severe COVID-19 patients to 
protect alveolar epithelial cells, to reclaim the pulmonary microenvironment, to induce 
anti-inflammatory macrophages, regulatory T and B cells, and regulatory dendritic 
cells. In addition, MSCs can inactivate T cells in order to prevent cytokine 
storm, prevent pulmonary fibrosis and cure lung dysfunction[101-104]. Details of MSCs 
clinical trials for COVID-19 have also been discussed in other reviews[101,104-106].

MSCs have been used effectively to treat patients with COVID-19 in recent 
reports[50,107,108]. The underlying processes involve preventing the cytokine storm from 
occurring as well as reversing the cytokine storm in compromised patients. A total of 
seven patients with COVID-19 were enrolled in the study[50], the results have shown 
that MSCs significantly improved the functional outcome without observed adverse 
effects. The pulmonary function and symptoms of these patients were significantly 
improved in two days after MSC transplantation. Among them, two common and one 
severe patient recovered and were discharged within 10 d after the treatment. 
Compared to the placebo control group, the level of TNF-alpha was significantly 
decreased, and IL-10 increased in the MSCs treatment group. The gene profile showed 
MSCs were ACE2- and TMPRSS2- which indicate MSCs are free from COVID-19 
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Table 2 The most relevant clinical trials of mesenchymal stem cell treating COVID-19 patients

NCT number Cell type Autologous Phase Sponsor

NCT04490486 UC-MSCs Allogeneic I Joshua M Hare, United States

NCT04456361 UC-MSCs Allogeneic I Instituto de Medicina Regenerativa, Mexico

NCT04313322 UC -MSCs Allogeneic I Stem Cells, Arabia

NCT04288102 MSCs NA II Beijing 302 Hospital

NCT04346368 BM-MSCs NA I/II Guangzhou Institute of Respiratory Disease

NCT04366323 Adipose-derived MSCs Allogeneic I/II Andalusian Network for Design and Translation of Advanced 
Therapies

NCT04273646 UC-MSCs Allogeneic I Wuhan Union Hospital, China

NCT04349631 Adipose-derived MSCs Autologous  II Hope Biosciences

 NCT04339660 UC-MSCs Allogeneic I/II Puren Hospital Affiliated to Wuhan University of Science and 
Technology

NCT04366063 MSCs NA II/III Royan Institute

NCT04352803 Adipose-derived MSCs Autologous I Regeneris Medical

NCT04355728 UC-MSCs Allogeneic I/II Camillo Ricordi

NCT04366271 UC-MSCs Allogeneic II Hospital Infantil Universitario Niño Jesús, Madrid, Spain

NCT04348461 Adipose-derived MSCs Allogeneic I Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz

NCT04345601 BM-MSCs Allogeneic I Baylor College of Medicine

NCT03042143 UC-MSCs (CD362 enriched) Allogeneic I/II Belfast Health and Social Care Trust

NCT04361942 MSCs Allogeneic II Red de Terapia Celular

NCT04269525 UC-MSCs Allogeneic II Zhi-Yong Peng, Hospital

NCT04333368 UC-MSCs Allogeneic I Assistance Publique - Hôpitaux de Paris

NCT04299152 Cord blood stem cells (CB-SC) Allogeneic II Tianhe Stem Cell Biotechnologies Inc.

NCT04341610 Adipose-derived MSCs Allogeneic I/II Rigshospitalet, Denmark

NCT04276987 Adipose MSC-derived exosomes (inhalation) Allogeneic I Ruijin Hospital

NCT03857841 BM-MSC derived extracellular vesicles 
(UNEX-42)

Allogeneic I United Therapeutics

MSC: Mesenchymal stem cells; BM-MSC: Bone marrow derived mesenchymal stem cells; UC-MSCs: Umbilical cord mesenchymal stem cells.

infection. In another case report[107], UC-MSCs were infused into a severely 
compromised COVID-19 patient. The pulmonary function and symptoms of the 
patient were significantly improved in 2 d after UC-MSCs transplantation. The patient 
recovered and was discharged in 7 d after treatment. The percentage and counts of 
lymphocyte subsets (CD3, CD4, and CD8 T cell) were increased, and the level of IL-6, 
TNF-α, and C-reactive protein was shown to have significantly decreased after UC-
MSCs treatment. Guo et al[108] reported a 31-patient trial with UC-MSCs infusion. After 
the first infusion of UC-MSCs, the SARS-CoV-2 PCR results of 30 patients (96.8%) 
became negative after a mean time of 10.7 d (SD, 4.2 d). Laboratory parameters tended 
to improve after UC-MSCs therapy compared to the status before treatment, including 
elevated lymphocyte count, decreased C-reactive protein and IL-6 levels. Thus far, the 
intravenous transplantation of MSCs has been shown to be effective for the treatment 
of patients with COVID-19 pneumonia, especially for the patients in critical condition.

Exosomes derived from MSCs have been studied in clinical trials for treating 
severely compromised COVID-19 patients[104,109,110]. Exosomes (ExoFloTM) derived from 
allogeneic bone marrow MSCs in a single 15 mL dose were evaluated in a 24-patient 
trial[110] for both safety and efficacy from days 1 to 14 post-treatment. No adverse 
events were observed; a survival rate of 83% was observed; 71 patents recovered, 13% 
remained critically ill though stable, and 16% patients expired for reasons unrelated to 
the treatment. Overall, after one treatment, patients’ clinical status and oxygenation 
improved with an average pressure of arterial oxygen to fraction of inspired oxygen 
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Figure 1 Immunomodulatory effects of mesenchymal stem cells on immune cells. Mesenchymal stem cells secrete cytokines to modulate immune 
cells by inducing anti-inflammatory regulatory Treg cells, macrophages and neutrophils, reducing the activation of Treg and B cells, dendritic and nature killer cells. T 
cell: Treg cell; PGE2: Prostaglandin E2; NK cell: Nature killer cell.

ratio (PaO2/FiO2) increase of 192%. Laboratory values revealed significant 
improvements in absolute neutrophil count and lymphopenia with average CD3+, 
CD4+, and CD8+ lymphocyte counts increasing by 46%, 45%, and 46%, respectively. 
Likewise, acute phase reactants declined, with mean C-reactive protein, ferritin, and 
D-dimer reduction of 77%, 43%, and 42%, respectively. The study demonstrated the 
excellent safety profile and capacity to restore oxygenation, downregulate cytokine 
storm, and reconstitute immunity. Exosome derived from MSCs is a promising 
therapeutic candidate for severely compromised COVID-19 patients.

CONCLUSION
The social burden of COVID-19 is growing with the global pandemic. However, there 
is no effective or curative therapy for COVID-19, and preventive vaccines, other than 
the vaccine recently approved in Russia, but for which there is limited information, are 
still under development and will not be available until next year. The most recent 
clinical trials with MSCs may fulfill the unmet medical need of COVID-19, to reduce 
the related ARDS and cytokine storm. There are several issues that need to be 
addressed in order to move forward: dose, delivery times, type of MSCs, efficacy and 
cost-effectiveness. An understanding of all facets of MSCs and pathomechanism of 
COVID-19 is necessary to fully translate the MSCs therapy into a meaningful 
treatment for COVID-19. The next therapeutic strategies may focus on a combination 
approach using two or more types of MSCs, certain type of MSCs, and immune-based 
therapies or antiviral therapies to achieve maximal therapeutic efficacy.
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