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Abstract
Cancer stem-like cells (CSCs) with potential of self-renewal drive tumorigenesis. 
Brain tumor microenvironment (TME) has been identified as a critical regulator of 
malignancy progression. Many researchers are searching new ways to 
characterize tumors with the goal of predicting how they respond to treatment. 
Here, we describe the striking parallels between normal stem cells and CSCs. We 
review the microenvironmental aspects of brain tumors, in particular composition 
and vital roles of immune cells infiltrating glioma and medulloblastoma. By 
highlighting that CSCs cooperate with TME via various cellular communication 
approaches, we discuss the recent advances in therapeutic strategies targeting the 
components of TME. Identification of the complex and interconnected factors can 
facilitate the development of promising treatments for these deadly malignancies.

Key Words: Cancer stem-like cells; Microenvironment; Brain tumor; Inflammation; 
Clinical application; Glioma
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Core Tip: To better understand the effects of interplaying between cancer stem-like 
cells (CSCs) and tumor microenvironment (TME) on brain tumor progression, we 
review the distinct characters of CSCs and the mechanisms regarding how TME 
regulates CSC self-renewal. Moreover, we emphasize the valuable application of sing-
cell RNA sequencing technology in the cancer research.
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INTRODUCTION
Brain tumors respond poorly to existing therapies, leading to the poor prognoses. The 
recurrence of malignant brain tumors accounts for a majority of mortality and points a 
significant challenge for conventional treatment modalities[1,2]. The available therapies 
including operation and chemoradiotherapy mainly focus on the bulk of tumor cells, 
however, they are not able to impair the subpopulation that has been identified as 
cancer stem-like cells (CSCs)[3]. Actually, CSCs present the strong self-proliferation and 
diverse differentiation capability, which induces tumor progression and therapeutic 
resistance[4,5]. However, it is noticeable that CSCs cannot maintain the stem-like 
properties by relying on themselves. They need to interact with tumor micro-
environment (TME) to insist the stemness and protect themselves against the 
chemotherapeutic elements and radiation[6]. Even when spreading along the 
circulation, CSCs recruit microenvironmental components, forming a cluster of 
metastasis niche or generating a pre-metastatic niche at the faraway organs before 
arriving. Previously, although bulk tumor sequence analysis can interrogate the 
genetic status with average expression profiles, it provides limited insight into the 
specific cell type, especially the immune heterogenicity[7]. Importantly, it is difficult to 
identify the mechanisms of TME activities at the different stages of brain tumors 
through traditional methods. To address these challenges, sing-cell RNA sequencing 
(scRNA-seq) has characterized cancer and immune cell types at high resolution, which 
figures out the oncogenic signaling, proliferation, and complement/immune 
response[8,9]. Therefore, to better understand the effects of interplaying between CSCs 
and TME on brain tumor progression, we review the distinct characters of CSCs and 
the mechanisms regarding how TME regulates CSC self-renewal. Moreover, we 
emphasize the valuable application of scRNA-seq technology in the cancer research.

CSCs
Stem cells and CSCs
Stem cells can perpetuate themselves via self-renewal and generate the particular 
mature cells via differentiation. Nevertheless, the rigorous ways to purification and 
identification of the somatic stem cells have been under debate in some conditions[10]. 
Neural stem cells (NSCs), an undifferentiated cell type originating in the central 
nervous system (CNS), have the potential to give rise to offspring cells differentiating 
to multiple lineages, including neuronal and non-neuronal populations[11]. NSCs have 
been isolated from mice and humans using the traditional methods as well as 
confirmed by the advanced scRNA-seq analysis[12,13]. The pathways mediating the 
stemness of NSCs, such as Notch, WNT/β-catenin, and Hedgehog signaling, are also 
critical in glioma stem-like cells to drive tumorigenicity[14,15]. Recently, novel 
therapeutic approaches are established with the goal of not only reducing the tumor 
burden but also targeting CSCs involved[16].

The differentiation and self-proliferation potential of NSCs and their clinical 
applications have been discovered in many studies[17]. For example, the stem cell 
biology can provide new insights into cancer research and treatment. The intermediate 
filament protein, nestin, serves as a biomarker for stem cells and has been further 
identified to label the CSCs[18]. We are now studying the critical role of nestin in 
Hedgehog signaling and revealing the proper interaction between Bergmann glia of 
the cerebellum and granular neuronal precursors induced by nestin. Based on these 
findings, our team continuously demonstrated that nestin drives sonic hedgehog 
(SHH)-medulloblastoma and uncovered Gli3 as a therapeutic target to treat these 
malignancies[19]. Furthermore, the study was expanded to TME, indicating that tumor-
associated astrocytes (TAAs)-derived SHH drives nestin expression in medullo-
blastoma cells through a smoothened-dependent mechanism[20]. Therefore, the 
similarity between stem cells and CSCs sheds light on targeting the stemness 
associated profiles to control cancer progression.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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TME heterogeneity mediated by CSCs
Heterogeneity has been phenotypically and functionally identified among all the 
malignancies[21]. Importantly, the multiple differentiation of CSCs and micro-
environmental influences provide a model for generating phenotypic and functional 
heterogeneity beyond the clonal evolution[22]. The CSC models have been well 
established for cancer research, which differentiate into progenies with limited 
proliferation potential. Some cancers including medulloblastoma, neuroblastoma, and 
hierarchically organized cancers can arise from normal stem cells or restricted 
progenitors through mutations[23,24]. Although CSCs may not address the cell of origin, 
this population can significantly affect the microenvironment construction. CSCs are 
enough “clever” to order the other populations, such as fibroblasts, astrocytes, and 
microglia/macrophages, to activate for serving themselves via cytokine or exosome 
secretion. Phenotypic and functional heterogeneity always occurs in cancer-associated 
fibroblasts (CAFs)[25]. Differences in subtypes and functions of CAF behaviors lead to 
microenvironmental heterogeneity, which is mediated by augmented expression of 
proteolytic enzymes, deposition of extracellular matrix, and pathogenic angiogenesis 
derived from CSCs. In addition to the existing components, CSCs can contribute to 
tumor heterogeneity via differentiating to various kinds of stroma cells as occasion 
requires[26]. Especially in resistance to chemoradiotherapies or recurrences, the tumor 
cells undergo de-differentiation to stem-like status and then differentiate to the 
stromal populations to override the wicked conditions[27]. To better understand the 
heterogeneity of cancers, the typical flow cytometry and advanced sing-cell multi-
omics sequencing are the most popular technologies. The application of flow 
cytometry makes it possible to harvest the distinct subpopulations of malignant and 
non-malignant cells based on the well-known markers[28]. Using this approach, the 
different kinds of cells can be separated for the following culture and experiments.

Trans-differentiation and de-differentiation
Trans-differentiation and de-differentiation have been discussed extensively in many 
studies. Similar to normal stem cells, CSCs can trans-differentiate into other cell 
lineages in addition to the original lineage arising from tumors[29]. Trans-differentiation 
of CSCs provides a possible therapeutic target to control recurrence even though this 
molecular basis has not yet been fully recovered. A cell or tissue from one 
differentiated state changes to another. The de-differentiated state is unnatural and 
unstable, which sometimes may present during trans-differentiation[30]. It is supposed 
that the cell de-differentiates to immature status and then differentiates to the other 
lineage[31]. However, this routine seems to consume more energy than the direct trans-
differentiation, which is mediated or affected by microenvironmental factors. CAFs 
have been reported to be abundant in gliomas, breast, prostate, and pancreatic cancers. 
The production of TGF-β1, TGF-β2, PDGF, IL6, and bFGF and protein kinase C in 
cancer cells play crucial roles in tumor-induced trans-differentiation of surrounding 
fibroblasts[32]. Furthermore, TGF-β1 or TGF-β2 actually makes sense to the full-extent 
trans-differentiation, whereas the others, such as PDGF, bFGF, or IL6 (each alone), 
induce only partial trans-differentiation[33]. In addition to cytokines, the cancer cell-
derived exosomes contain abundant and diverse signaling factors particularly under 
hypoxic conditions[32], which interact with CAFs, astrocytes, and immune cells to 
mediate trans-differentiation.

Having identified the functions of factors on inducing trans-differentiation, the cell 
fusion is another approach involved in cell fate reprogramming. Somatic cells are 
fused with the embryonic stem cells, thereby exposing them to the reprogramming 
milieu of stem cells[34,35]. The method has been confirmed in cancers using both murine 
and human cells. We are interested in the interaction between CSCs and microglia. We 
have found that microglia phagocytosed the oligodendrocyte progenitor cell like 
malignant cells, therefore forming de-differentiated microglia presenting both parental 
cell features including self-proliferation and proinflammation characters. However, 
the molecular mechanism regarding this two-lineage fusion induced de-differentiation 
remains unclear. Thus, it is important for malignant cells to achieve the ability to 
reprogram host body cells into stroma cells and to modulate their microenvironment 
and receive positive feedback for growth and drug resistance[36].

scRNA-seq technology
The flow cytometry sorting programs are restricted to the well-established cell surface 
markers, thus resulting in incapable identification of new subpopulations. 
Additionally, a cluster of cells rather than single cells in one unit are obtained after 
sorting[28,37]. On the other hand, it is difficult to accurately analyze heterogeneous 
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populations and status due to technical limitations of marker-based approaches. Over 
the past decade, the powerful scRNA-seq technology has been applied to overcome 
the limitations and provide an unbiased view of cell-to-cell variability with gene 
signatures of each subgroup[38] (Figure 1). Both microfluidic and barcoding approaches 
are most commonly utilized to assay the transcriptomes from tens of thousands of 
single cells[39]. Due to the exponential increase in the amounts of single-cell 
transcriptomic data, it is also necessary to develop computational tools to achieve the 
meaningful findings. To analyze the cancer heterogeneity, two bioinformatic 
approaches in scRNA-seq data have been developed: (1) The discrete cluster indicators 
for cell subtypes and status are labelled in a discrete latent variable approach; and (2) 
the continuous pseudo-time for differentiation trajectories is constructed in a latent 
variable approach[9]. However, the double droplets and limited throughput resolution 
are still the major challenges.

Glioma and medulloblastoma
Glioma is the most common primary malignant brain tumor, accounting for almost 
40% of primary CNS tumors, of which glioblastoma is the leading cause of 
mortality[40]. Unfortunately, in spite of significant advances in diagnostic and 
therapeutic approaches, the median survival of glioblastoma patients remains about 
14.2 mo. This could be attributed to the existing classic treatment producing limited 
efficacy on CSCs[41]. Although many studies discuss pathways driving tumor initiation 
and progression, epigenetic reprogramming increases oncogenic potential of CSCs, 
which can lead to tumor growth or therapeutic resistance[42]. Our previous study 
revealed that the tumor-specific maternal embryonic leucine zipper kinase (MELK) 
activity was essential for the EZH2/NF-κB interaction via enhancing the methy-
ltransferase activity and maintained the stemness[43]. NF-κB as the downstream of the 
MELK/EZH2 complex opens another exciting pathway to better understand the 
mechanism of tumorigenesis, beyond the well-established Rel/NF-κB interaction[44]. 
Activation of NF-κB involves a series of sequential events including cooperation with 
TME via activating the inflammation associated transcriptions. On the other hand, 
immune microenvironment also contributes to the glioma stem-like property 
insistence. Zhang et al[45] reported that C-C motif ligand 8 (CCL8) was a tumor-
associated macrophage (TAM) associated factor to mediate glioblastoma stemness via 
ERK1/2 signaling and targeting CCL8 could provide an insight strategy for glioma 
treatment.

Medulloblastoma constitutes the most common malignant brain tumor in 
childhood[46]. Despite the advanced therapeutic strategies, the 5-year survival rate in 
high-risk group is only about 40% and about half of patients suffer from metastasizing 
along the neuraxis[47,48]. Recurrent or disseminated medulloblastoma accounts for the 
majority of pediatric brain tumor-related mortality[49]. Previously, medulloblastoma 
stem-like cells (MBSCs) have been identified to drive tumorigenesis and recurrence 
with the potential of self-renewal and resistance to chemoradiotherapy[50]. Among the 
primary medulloblastoma, MBSCs maintain stemness via activation of key pathways, 
such as Notch, WNT/β-catenin, and JAK2/STAT3 signaling[51]. Nestin-expressing 
medulloblastoma cells are the source of medulloblastoma proliferation. MBSCs show 
restricted capacity to maintain stemness when undergoing metastasis, which requires 
the efficient cooperation of MBSC niche to protect stem-like properties. Astrocytes, the 
most abundance of glial cells, are reactivated to play a critical role in supporting tumor 
growth and inducing protection from chemotherapy[20,52]. We have found the elevated 
proportion of TAAs in disseminated medulloblastoma compared with primary 
medulloblastoma. MBSC enrichment in recurrent medulloblastoma was attributed to 
an increased level of C-C motif ligand 2 (CCL2) released by TAAs undergoing 
necroptosis[53]. Noticeably, no specific markers for MBSCs have been identified until 
now, which restricts their purification. CD133, CD15, CD34, and nestin are usually 
used to label or collect the MBSCs. However, the usage of CD133 to mark MBSCs has 
its specific drawbacks as follows: The percentage of CD133+ cells is less than that of 
CD15+ in medulloblastoma, which shows greater potential in labeling the CSCs. Only 
one marker is chosen to identify MBSCs with less meaningful results probably coming 
from two indexes, such as CD133+CD15, CD15+CD34, or CD133+nestin[5,23,54].

TME
TME contains many non-malignant cells in addition to cancer cells, including immune 
cells, endothelial cells, pericytes, fibroblasts, and others[21]. Especially, the astrocytes, 
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Figure 1 Sing-cell RNA sequencing charts cellular heterogeneity in gliomas. Sing-cell RNA sequence analysis showing various kinds of cells within 
glioma tumor microenvironment including tumor cells, microglia/macrophages, T cells, fibroblasts, and endotheliocytes.

microglia, and neurons are special tissue-resident populations in the CNS. The unique 
properties of the CNS require a specific framework to generate the TME-targeted 
interventions. As shown in Figure 2, the expression of markers for vessels, immune 
cells, and astroglia stroma suggested the complex compositions of malignant brain 
tumors. TME has been emerging as a crucial mediator for tumor progression in both 
primary and metastatic brain malignancies. Brain tumors respond poorly to current 
therapies, in which TME has been recognized to play critical roles[55]. The CSCs may be 
considered as the cell origin for tumor recurrence and TME construction[56]. However, 
the tumor-associated parenchymal cells also importantly function in controlling the 
course of pathogenesis. We focus on glioma and medulloblastoma to review how brain 
TME regulates tumor progression and therapeutic response via interacting with CSCs.

Immune microenvironment
Microglia and macrophage: The normal brain has been considered to be “immune 
privileged” in the whole body, which must be sheltered from immune cell entrance. 
The activated immune cells produce inflammatory factors that are cytotoxic to cause 
neurodegeneration. When dissociating the brain tumor tissues into single cells, the 
majority of cells are TAMs including the blood-derived macrophages and resident 
microglia accounting for about 35%[57]. Some studies focus on defining context-specific 
microglia/macrophage activation and phenotype as a measure of functional diversity. 
Microglia/macrophage activation is classified into the pro-inflammatory M1 state and 
anti-inflammatory M2 state[57,58]. TAMs exist along a linear M1-to-M2 phenotypic 
continuum. TAMs tend to be pro-tumorigenic and accumulate gradually with higher 
tumor grade[59], which produce high levels of pro-inflammatory cytokines promoting 
tumor proliferation and stemness maintenance. However, macrophage infiltration is 
considered as a double-edged sword, exerting both tumor-promoting and anti-tumor 
effects[60]. To support the role of macrophage-mediated inflammation in cancer 
induction, a previous study has discovered that genetic ablation of STAT3, an anti-
inflammatory transcription factor, in macrophages resulted in a chronic inflammatory 
response in the colon that was sufficient to induce invasive adenocarcinoma. 
Additionally, loss of IL10 that acts through STAT3 enhanced carcinogen-induced 
tumorigenesis in the intestine[61]. Macrophage infiltration varies relying on the 
pathologic type or process. The immune function of macrophages can be suppressed 
when they are located in the glioma microenvironment[57,62].

Microglia, the resident myeloid cell population in the CNS and a major component 
of brain immune system, play an essential role in neuronal homeostasis and regulate 
multiple pathogeneses of disorders, such as neurodegenerative diseases and brain 
tumors[63]. Recently, accumulated research has reported that microglia distinguish from 
macrophages. Under homeostatic conditions, microglia originate from hematopoietic 
stem cells in the yolk sac but not from bone marrow[64]. Although microglia share some 
traits with monocyte-derived macrophages, they express numbers of special genes at 
high levels, which may be affected by CNS environment[65]. In glioma, microglia are 
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Figure 2 Hematoxylin and eosin staining and immunohistochemical staining of brain tumors. A: Hematoxylin and eosin staining displaying the 
pathological vessels distributed in medulloblastoma (bar, 20 µm); B: Expression of CD34 (vascular endothelial cell marker) in chordoma (bar, 20 µm); C: Expression 
of CD38 (T cell marker) in anaplastic diffuse astrocytoma (bar, 20 µm); D: Expression of CD68 (macrophage marker) in medulloblastoma (bar, 10 µm); E: Expression 
of IBA1 (microglia marker) in glioblastoma (bar, 10 µm); F: Expression of glial fibrillary acidic protein (astrocyte marker) in medulloblastoma (bar, 10 µm). GFAP: Glial 
fibrillary acidic protein.

reactivated within or in close proximity to masses up to half of TME, which shape the 
TME via releasing a wide range of cytokines for tumor proliferation and invasion[66]. 
Therefore, targeting the microglia has represented a novel therapeutic approach to this 
malignancy.

Previously, Venteicher et al[67] detected a continuum model characterizing transition 
from microglia-like state to macrophage-like state in IDH1/2 mutant gliomas. Müller 
et al[9] clearly separated microglial TAMs and monocyte-derived TAMs by ontogeny in 
IDH1/2 wild-type glioblastoma. Both studies provided evidence that microglia vary 
across different grades and subtypes of gliomas. However, the underlying molecular 
basis involved in reactivated microglia transition and interaction with glioma cells 
remains poorly understood. By scRNA-seq analysis of > 50000 single cells isolated 
from gliomas, we are now focusing a microglial subtype associated with high-grade 
glioma possessing inflammasome mediated proinflammation and stem-like features, 
which shapes cytokine microenvironment and promotes oncogenesis. Further analysis 
in our study also depicts TGF-β1 derived from IDH1/2 wild-type glioblastoma cells 
with SETD2-deficiency is required for high-grade glioma associated microglia 
activation.

Previous studies on the differences between brain-resident microglia and blood-
derived macrophages have been confounded by a lack of specific markers. Recently, 
the scRNA-seq study has suggested that CD11b+/CX3CR1+/P2RY12+ population 
should be the murine microglia[68]. Based on this finding, we are purifying microglia 
from gliomas by utilizing CD11b and CX3CR1 markers in the scRNA-seq or 
fluorescent-activated cell sorting experiments. However, the expression of P2RY12 is 
dramatically compromised in microglia derived from glioblastoma, indicating the 
specific microglia activation driven by IDH1/2 wild-type cancer cells. Although much 
evidence supports that microglia/macrophage activation is classified into M1 and M2 
state, recent scRNA-seq analysis indicates that macrophages simultaneously express 
gene profiles of both M1 and M2 phenotypes in an injury mouse model, raising the 
concern that this classification may not accurately reflect the microglia activation 
features[60]. Consistent with this finding, Keren-Shaul et al[69] described a novel 
microglia type associated with neurodegenerative diseases by using single-cell 
transcripts. Similarly, we established an experimental paradigm by analyzing the 
scRNA-seq data and histopathological staining to identify a special cohort of microglia 
associated with high grade glioma. We discovered the genetic program encoding a 
large number of risk factors, corresponding to the need for proinflammatory response 
and self-proliferation.

Lymphocytes: Lymphocytes consist of T cells, B cells, and natural killer cells. Mature T 
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cells are released to peripheral lymphoid organs where they can be primed by 
engaging with antigen presenting cells[70]. In patients, whether further adaptation to 
specific microenvironment occurs during anti-tumor immunity remains poorly 
understood. Glioblastoma is a highly immunosuppressive brain tumor because of their 
T cell paucity[71,72]. Recently, Garris et al[70] revealed a specific mechanism regarding 
escaping immunosurveillance in brain tumors by trapping T cells in bone marrows via 
the deficiency of S1P receptor on T cells. The interaction between different cell types 
within TME also produces obvious effects on immunosuppression. The brain-
dependent immune suppression is apparently mediated by microglial cells through 
TGF-β1/TβRI signaling. Pharmacological obligation of TGF-β1/TβRI signaling can 
partially reverse the immune suppression but cannot contribute to prolonging the 
survival of mice, which is due to the lack of sufficient T cells in brain tumors[73]. 
Additionally, tumor associated CD8+ T cells exhibit proliferation and differentiation 
potential within the brain, leading to enhanced retention[74]. The researchers have 
detected that cooperation with brain TME reduced the population of CD8+ T cells in 
human glioma samples. CD8+ T cells in TME consist of two distinct populations of 
stem-like and terminally differentiated ones. The stem-like subset gives rise to more 
terminally differentiated, effector-expressing daughter cells. Similar to this finding, we 
are also interested in a subpopulation of microglia associated with high-grade glioma, 
which presents the stem-like property after phagocytosing the oligodendrocyte 
precursor cell (OPC)-like malignant cells[75]. Therefore, these studies critically suggest 
that the local microenvironment can modify T cell effector functions during anti-tumor 
immunity[76]. It is currently under clinical investigation that enhancing T cell activation 
is induced by co-stimulations through the usage of checkpoint inhibitors among the 
patients with brain primary or metastatic tumors. In mouse glioma models, inhibition 
of CTLA-4, a checkpoint molecule, leads to a prolonged survival and activity 
enhancement of CD4+ helper T cell[77,78]. The standard care treatment is recommended 
to combine with these advanced clinical studies in recurrent stages. For instance, 
combination of temozolomide with this treatment regimen reveals an even more 
pronounced effect on prognosis[79].

TAAs
Astrocytes as the specialized glial cells distribute ubiquitously throughout the CNS, 
which play critical roles in providing neurotransmitters and cholesterol, constructing 
microcirculation, producing energy metabolites, and maintaining homeostasis[52]. 
Antibodies against glial fibrillary acidic protein (GFAP), S100β, astrocyte cell surface 
antigen 2, and brain lipid binding protein are often used to detect astrocytes in 
immunohistochemistry assays[80,81]. Specifically, astrocytes in the cerebellum are 
identified as Bergmann glial cells supporting proliferation and migration of granular 
neuronal precursors. In pathological status, such as trauma or tumor growth, 
astrocytes are activated with upregulated expression levels of GFAP and S100β and 
enhanced proliferative capability. TAAs release many cytokines to potentially develop 
a supportive TME for tumor growth and aggressiveness[20]. This program is linked to 
the significantly elevated expression of malignancy associated genes in cancer cells, 
which have been proposed to protect against chemoradiotherapy. In a previous study, 
reactive astrocytes have been reported to mediate glioblastoma invasion through 
hyperactivation of matrix metalloproteinase 2[82]. Another study has demonstrated that 
reactive astrocytes expressing SHH were highly concentrated in the perivascular 
regions of glioblastoma[83]. Consistent with this finding, our work discovered that 
TAAs, enriched in medulloblastoma, expressed and secreted SHH to promote 
medulloblastoma cell proliferation. Genetic ablation of TAAs dramatically inhibited 
nestin expression in medulloblastoma cells, resulting in reduced tumor growth[20]. 
Furthermore, we found a higher proportion of TAAs in recurrent or disseminated 
medulloblastoma and TAAs within recurrent TME underwent necroptosis, releasing 
CCL2 to interplay with MBSCs[53]. The fact that the CSCs are enriched more 
dramatically in relapsed tumors can be attributed to the dynamic variation of 
microenvironmental components.

CAFs
Fibrosis is a common pathophysiological response to chronic injury in many tissues. 
The processes of wound healing and tissue remodeling are protective mechanisms 
activated in response to stress and injury with the goal of maintaining functional 
integrity of systems[84]. Additionally, fibrosis is the marker of chronic inflammation, 
which results from deregulation of normal healing and exposure to chronic injury. 
Chronic inflammation has been identified within TME, especially after receiving 
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chemoradiotherapy[85]. Stromal fibroblasts activated by tumor cells in TME have been 
reported to function in angiogenesis development and metastasis formation. 
Fibroblasts can be activated at all stages of tumor progression and their structural and 
functional influences on the process work through cytokine secretion[33]. The growth 
factors, chemokines and extracellular matrix derived from CAFs facilitate the 
angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a 
key determinant in malignancy progression and represent an important target for 
cancer therapies. It is hypothesized that both CSCs and CAFs cooperate with and 
support each other relying on the communicating messenger or reside preferentially at 
the tumor–stroma interfaces[86]. To develop the favorable niche for CSC self-
proliferation, CAFs can also interact with other cells in TME, such as immune and 
endothelial cells[87]. Choi et al[88] reported that CAFs promoted cell adhesion to human 
brain microvascular endothelial cells via upregulating expression of integrin α5β1 and 
αvβ3, c-MET, and α2,6-siayltransferase. A similar role of CAFs within brain tumors 
has also been suggested. When coculturing human brain-derived fibroblasts and 
glioblastoma cells, the production and hyperactivation of matrix metalloproteinase 
2/9 have been shown to be involved in tumor migration[89].

Neurons
In addition to glial cells, neurons as a key regulator of CNS development and plasticity 
are the highly specialized cells contributing to tumor initiation and progression. 
Recently, accumulated research suggests that glioma arises from neural 
stem/precursor cells, specifically oligodendrocyte precursor cells (OPCs), pre-OPCs, 
or earlier neural precursor cells[90]. It is known that the proliferation of neuronal cells 
and OPCs is stimulated by neurons via the mitogenic signals, which recalls our 
understanding of neuronal activity as important components of TME. The active 
neurons influence the proliferation, differentiation, and invasion of glioma cells[91]. A 
previous study has reported that upregulation of neuroligin-3 in post-synaptic 
neurons promoted proliferation of cancer cells of patient-derived xenograft 
glioblastoma models. The mechanism involved PI3K/Akt signaling activation induced 
by neuronal upregulation of neuroligin-3, which subsequently elevated the expression 
of FOS and feedforward-upregulation of neuroligin-3 gene expression to enhance the 
cancerous proliferative activity[92]. In addition to proliferation, the neuron activity 
affords convenient condition to malignant cell spreading. Wang et al[93] demonstrated 
that CSCs were preferentially located along neuronal white matter tracts presenting a 
demyelinated phenotype at the invasive frontiers of glioblastoma. The Notch-induced 
Sox9 promoted the elevated expression of Sox2 and the methylation level of the Notch1 
promoter was attenuated by the upregulation of Sox2 to reinforce Notch1 expression 
in CD133+/Notch1+ CSCs. Inhibition of Notch signaling attenuated the white-matter-
tract tropism of CSCs. For the metastases, the neoplasms could mimic neurons by 
activating neurotransmitter signaling via the critical elements, for example, 
upregulating the expression of GABA receptors and transporters[91]. Collectively, these 
studies suggest that neuronal-specific processes regarding the synaptic transmission 
can promote brain tumor progression, which warrants further investigation to 
generate the indispensable roles of neurons within TME.

COMMUNICATIONS
Communication between cancer cells and non-malignant cells within TME is a two-
way process involving a wide variety of stroma cells and a diverse range of 
mechanisms. Cells communicate in the direct and indirect manners[94]. The essential 
components of cell-cell communication include the cellular junctions (chemical 
synapses, pannexins, connexins, and ion channels), anchoring junctions (adherence, 
focal adhesions, and desmosomes), and tight junctions, as well as cytokines 
(inflammatory factors and growth factors), exosomes, extracellular matrix, 
extracellular microRNAs, and different transmembrane adhesion proteins (cadherins 
and integrins)[94-96]. Sharing information via cellular communication is mediated by 
different mechanisms: The direct cell-cell communication involves intracrine 
/autocrine and adjacent communication with nearby cells, which themselves are also 
regulated by other distinct patterns; and the indirect intercellular communication 
involves local communication over short distances (paracrine and synaptic signaling) 
and long distances via hormones (endocrine)[97]. Here, we give some examples 
including cytokines, exosomes, and matrix.
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Cytokines
The function of inflammation in cancer development has been established well. 
Cytokines, low-molecular-weight proteins mainly derived from immune and stromal 
cells, regulate proliferation, differentiation, migration, activation, and death[98]. Within 
the chronic inflammatory TME, they induce malignancy transformation and affect 
immunotherapy based on the balance of pro- and anti-inflammatory process, relative 
concentrations, associated receptor expression, and surrounding cell conditions[99]. 
Targeting the cytokines have delivered promising prospects on cancer therapy. Our 
study has revealed that inhibition of CCL2/CCR2 blocked the communication 
between MBSCs and TAAs and compromised the disseminated medulloblastoma 
stemness[53].

Exosomes
Exosomes, transporting all the main biomolecules, perform intercellular transfer of 
components locally and systemically[100]. Exosomes have emerged as new influencers 
in tumor progression by acting both tumor cells and tumor-associated cells. Exosomes 
derived from glioblastoma have been reported to induce the tumor-promoting 
transformation of NSCs[101].

Matrix
Brain extracellular matrix constituents of the normal brain parenchyma, such as 
heparan sulfate proteoglycans and hyaluronic acid, are mainly concentrated in neural 
stem cell niches, modifying normal stem cell homeostasis[102]. Dramatically increased 
production of heparan sulfate proteoglycans in gliomas has been identified as a 
reservoir for heparin-binding angiogenic growth factors[103].

CLINICAL APPLICATION
An understanding of the contribution of TME will allow us to truly tailor therapeutic 
strategy for each patient. Current standard treatment for glioblastoma, for example, is 
resection followed by radiation and temozolomide chemotherapy[104] as well as 
ifosfamide, carboplatin, vincristine, and teniposide chemotherapy for medu-
lloblastoma[105]. Adverse effects range in severity between individuals, such as the loss 
of blood-brain barrier integrity, cytokine deregulation, cognitive dysfunction, and 
changes in neuronal integrity. Clinical evaluation of benefit vs risk in a quantifiable 
manner should be considered to minimize additional unnecessary harm. Recently, 
several approaches to target the TME of brain tumors are ongoing in preclinical and 
clinical studies. Among them, targeting the vasculature through anti-angiogenic 
reagents, such as bevacizumab and apatinib, is relatively successful in glioblastoma 
patients because of highly distributed vessels[106,107]. We have also found that apatinib 
exhibits efficient effects on the glioblastoma resistant to temozolomide (Figure 3). 
Immune checkpoint inhibitors are popular with treatment of both primary and 
metastatic brain tumors, such as nivolumab and/or ipilimumab vs bevacizumab in 
glioblastoma (NCT02017717)[108] and ipilimumab with nivolumab/fotemustine in brain 
metastasis (NCT02460068)[109]. The success of immune checkpoint inhibitors utilized in 
various kinds of cancers is an excellent example of addressing a TME-mediated 
resistance mechanism to obtain prognostic benefits. Another promising 
immunotherapy involves the development of T cells engineered to target proteins on 
the surfaces of cancer cells[110]. Chimeric antigen receptor T-cells are constructed to 
target a number of different tumorous antigens. As TME provides a safe haven for 
cancer cells, strategies to mobilize cells from tumor niche will render the malignant 
cells more sensitive to therapy. However, as the engineered T cells remain to be subject 
to suppression by microenvironmental factors, it is necessary to illustrate the 
mechanisms regarding the efficacy of novel agents. In addition to targeting the TME 
components, oncologists should pay more attention to CSCs that have been identified 
as the root of tumor recurrence. Some agents targeting stemness associated genes, such 
as the Notch, Hedgehog, and WNT signaling, are underway in many cancers[111]. We 
are now trying to treat medulloblastoma using LY3039478, an oral Notch inhibitor[112], 
indicating a promising prospect (Figure 3).
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Figure 3 Targeting the vasculature presents promising effects on brain tumor therapy. Case 1 is a 29-year-old female patient who was diagnosed 
with IDH1/2 wild-type glioblastoma and received treatment of temozolomide combined with apatinib. Case 2 is a 31-year-old female patient who was diagnosed with 
recurrent medulloblastoma (local recurrence and dissemination) and received temozolomide + irinotecan + bevacizumab. A: Axial enhanced magnetic resonance 
imaging (MRI) showing a mass located at the left thalamus; B: Axial enhanced MRI showing that the lesion significantly progressed after 1-mo treatment of 
temozolomide; C: Axial enhanced MRI showing that the lesion was dramatically reduced after 1-mo treatment of combination of temozolomide and apatinib; D and E: 
Enhanced cerebrospinal MRI showing the local recurrent medulloblastoma and disseminated lesions along the spinal cord; F and G: Enhanced cerebrospinal MRI 
showing that the recurrent and disseminated lesions were significantly reduced after one cycle of chemotherapy.

CONCLUSION
Accumulating laboratory works support the thrilling concept that brain tumors rely on 
the interplay between CSCs and TME during progression. CSCs govern the 
surrounding components to maintain stem-like properties and other cells create a 
more permissive niche via production of extracellular substrates facilitating tumor 
growth and invasion. Identifying the cellular and extracellular dependent 
relationships unique to TME can provide exceptional opportunities to develop 
effective treatments targeting these symbiotic associations that support brain tumor 
progression.
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