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Abstract
Mounting evidence has emphasized the potential of cell therapies in treating 
various diseases by restoring damaged tissues or replacing defective cells in the 
body. Cell therapies have become a strong therapeutic modality by applying 
noninvasive in vivo molecular imaging for examining complex cellular processes, 
understanding pathophysiological mechanisms of diseases, and evaluating the 
kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) 
have shown promise in recent years as drug carriers for cancer treatment. They 
can also be labeled with different probes and tracked in vivo to assess the in vivo 
effect of administered cells, and to optimize therapy. The exact role of MSCs in 
oncologic diseases is not clear as MSCs have been shown to be involved in tumor 
progression and inhibition, and the exact interactions between MSCs and specific 
cancer microenvironments are not clear. In this review, a multitude of labeling 
approaches, imaging modalities, and the merits/demerits of each strategy are 
outlined. In addition, specific examples of the use of MSCs and in vivo imaging in 
cancer therapy are provided. Finally, present limitations and future outlooks in 
terms of the translation of different imaging approaches in clinics are discussed.
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Core Tip: There is substantial evidence of the potential of cell therapies in treating 
various diseases including cancers. Molecular imaging has been actively used for 
decades to assess cellular processes, evaluate the properties of certain drugs, screen 
compound libraries, and visualize the fate of cells. This review aimed to confirm 
whether noninvasive in vivo cell tracking in combination with molecular imaging could 
be used as a tool for the development of mesenchymal stem cell-based cancer 
treatment. To that end, the following aspects are outlined in the text: labeling 
approaches, imaging modalities, advantages and disadvantages of each strategy, and 
scope and limitations of the various imaging approaches. In conclusion, together with 
long-term monitoring, a lot can be learned with regard to the hidden potential of MSCs 
as well as their variable fate in humans.

Citation: Rajendran RL, Jogalekar MP, Gangadaran P, Ahn BC. Noninvasive in vivo cell 
tracking using molecular imaging: A useful tool for developing mesenchymal stem cell-based 
cancer treatment. World J Stem Cells 2020; 12(12): 1492-1510
URL: https://www.wjgnet.com/1948-0210/full/v12/i12/1492.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i12.1492

INTRODUCTION
Cell-based therapy and in vivo imaging
Cell therapies are becoming increasingly popular because of their ability to restore or 
replace damaged tissues, thereby directly impacting disease progression. Cell-based 
therapies can be developed with the use of any cell type including primary, stem, 
immune, or progenitor cells. Various cell-based therapies are presently being tested at 
the preclinical level. Some of them have even reached clinics (e.g., hematopoietic stem 
cell transplantation for blood disorders[1]) and are awaiting approvals[2]. The translation 
of cell therapies holds great promise for promotion in the field of regenerative 
medicine.

Mesenchymal stem cell (MSC) therapy has been particularly successful in preclinical 
models. The timing of MSC administration has been found to be among the key factors 
in the determination of the efficacy of cell-based therapies[3]. Evidence proposes that 
even though MSCs are retained in certain sites, such as the lungs, intestine, and lymph 
nodes[4], they have a role in macrophage recruitment to the sites of injury and 
enhancing wound healing through paracrine effects[5]. As with numerous other 
diseases, MSC therapy has the potential to treat cancerous diseases through migration 
to the tumor microenvironment. While several studies have exhibited an inhibitory 
effect of MSCs on full-grown tumors[6,7], MSCs are also involved in the progression of 
some cancers[8,9]. The exact function of MSCs in cancerous diseases is controversial and 
warrants further investigation.

A combination of cell-based therapies and imaging has revolutionized the field of 
medicine over the last two decades. Better efficacy of cell-based therapies can be 
achieved through noninvasive monitoring of transplanted cells with the help of 
molecular imaging tools. In particular, in vivo imaging has become an essential tool for 
monitoring disease status in longitudinal studies[10]. It is exhaustively utilized to study 
cancerous diseases, autoimmune disorders, neurological diseases, and cardiovascular 
diseases. With the use of in vivo three-dimensional (3D) imaging, different biological 
processes including gene expression, protein trafficking, and cell migration/ 
homing/tumor infiltration can be visualized using high resolution[11]. For studies 
involving animal models, readouts can be acquired with the use of the same animal 
over time, thereby reducing the sample size and discrepancies in measurements[12]. 
Implementing in vivo imaging at the preclinical level can save a lot of time, money, and 
resources, which can then be invested in clinical studies. Also, based on preclinical 
outcomes, scientists and physicians can make informed decisions with regard to the 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-0210/full/v12/i12/1492.htm
https://dx.doi.org/10.4252/wjsc.v12.i12.1492


Rajendran RL et al. Tracking for MSC-based cancer treatment

WJSC https://www.wjgnet.com 1494 December 26, 2020 Volume 12 Issue 12

rapid translation of these approaches to the clinical level[13,14].
For a particular study, it is essential to consider whether in vivo imaging would be 

superior to other approaches including conventional histopathology, which might be 
the gold standard for animal studies. Nonetheless, histopathology is a time-consuming 
and labor-intensive process. Errors can occur during the sampling of tissue and 
subsequent processing, thereby presenting a bias in studies[15]. Small animals utilized 
for in vivo preclinical imaging can also pose some challenges in terms of handling, 
maintaining their physiological balance, administering an appropriate dose of 
anesthetic, and protecting them from radiation[15]. Overall, in vivo imaging is much 
faster and is better equipped to capture dynamic interactions between administered 
cells and its targets without having to sacrifice the animal. On the other hand, 
histopathological analyses can uncover unique information that imaging platforms 
may overlook. In most cases, a combination of these two approaches is utilized to 
confirm the findings and overcome the flaws correlated with each modality.

It is crucial to choose the optimal strategy for in vivo imaging, depending upon the 
research question you are trying to answer. Some imaging modalities offer high 
resolution and others provide high sensitivity. The cost should also be taken into 
account because imaging platforms can be very expensive to set up. The strategy 
should be selected carefully to avoid possible interference with the animal’s 
physiology to acquire accurate as well as reproducible results. Some frequently 
utilized approaches including nuclear imaging, optical imaging, and magnetic 
resonance imaging are discussed later in this review along with their advantages and 
disadvantages. Preferably, an imaging tool should be highly specific and sensitive in 
tracking cell viability, cause minimal or no toxicity to cells, and allow long-term 
monitoring, the characteristics that are impossible to be achieved through the use of a 
single approach[16]. Thus, multimodal imaging approaches, where two or more 
imaging modalities are combined to achieve the best results, are widely utilized[17].

LABELING OF MSCS WITH IMAGING REPORTERS
MSCs are inhomogenous adult stem cells and have the ability to differentiate into any 
cell type with a mesodermal origin[18,19]. MSCs account for 0.01% of the total 
mononuclear cells found in the bone marrow[20]. Major sources of MSCs are bone 
marrow, fat, cord blood, and dental pulp[21]. Cells are first isolated from these sources 
and then expanded in vitro prior to administration to a patient. MSCs are also often 
manipulated with the use of ex vivo viral-vector-mediated gene modifications[22]. The 
advantage of working with MSCs is their low immunogenicity[23], thereby suppressing 
rejection by the host immune system. The efficacy of MSC therapy can be improved by 
reprogramming or manipulating the cells to overexpress the gene of interest and 
utilize them for the targeted delivery of therapeutic proteins to the desired area[24].

Labeling MSCs and tracking them in vivo with the use of noninvasive imaging tools 
have proven to be a powerful strategy in the last few decades. This approach can yield 
a lot of useful information relating to the overall stem cell behaviors such as migration 
pattern, retention capacity, and immune clearance of cells[16]. MSCs can be labeled 
either directly through their conjugation with probes or indirectly through the 
introduction of exogenous reporter genes. Labeled cells can then be visualized with 
the use of imaging modalities including optically charged coupled devices, positron-
emission tomography (PET), magnetic resonance imaging (MRI), and single-photon 
emission computed tomography (SPECT).

Direct labeling
In the direct labeling approach, different labeling agents including quantum dots 
(QDs)[25], fluorophores[26], radionuclides[27], and superparamagnetic iron oxide particles 
(SPIO)[28] can be utilized to tag MSCs, which can then be imaged after their 
transplantation into living organisms. In this strategy, labeling agents serve as 
surrogate markers for the number of stem cells (Figures 1, 2A and 3).

Fluorophores, especially QDs, are widely utilized for in vivo tracking of MSCs in 
longitudinal studies. QDs emit fluorescence upon excitation, which can be achieved 
with a range of different wavelengths. Some of the merits of labeling cells with QDs 
include high sensitivity and excellent resolution[29]. QDs have been utilized to label and 
monitor MSCs[30,31]  either through passive incubation or targeting peptide-mediated 
delivery, such as the one used with the Qtracker labeling kit[25,32]. QDs have been found 
to be biocompatible in studies performed with the use of in vitro models, and QD-
labeled MSCs were integrated successfully in co-culture systems[32]. Besides QDs, 
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Figure 1 Schematic illustration of labeling mesenchymal stem cells for in vivo non-invasive imaging. SPIO: Small superparamagnetic iron oxide; 
NIS: Sodium iodide symporter; HSV-TK: Herpes simplex virus-thymidine kinase; EGFP: Enhanced green fluorescent protein; [18F]FHBG: 9-(4-[F]fluoro-3-
hydroxymethylbutyl) guanine.

lipophilic fluorescent tracer dye such as DiD is another molecule that causes low 
cytotoxicity to MSCs and can give better contrast[33]. In recent years, near-infrared 
(NIR; 700-1000 nm wavelength) fluorophores have been utilized in the clinical setting 
due to their ability to penetrate deeply located tissues (penetration depth: 
approximately 4-10 cm), although cardiac imaging is still a challenge. In a previous 
study, the authors labeled MSCs with the NIR fluorophore IR-786 and delivered them 
to the coronary artery in a swine model of myocardial infarction. MSC behavior was 
then successfully monitored 90 min post-injection[34].

Radionuclides can also be utilized to label cells prior to transplanting them into 
living subjects. Some examples of radioisotopes are Technetium-99m (99mTc; half-life 6 
h), Indium-111 (111In; half-life 2.8 d), Fluorine-18 (18F; half-life 109 min), and Copper-64 
(64Cu; half-life 12 h). Depending on their physical half-lives, cells labeled with these 
isotopes can be tracked using imaging tools over a timeframe, ranging from hours to 
days. Zirconium-89 (89Zr; half-life 3.3 d) is becoming popular because of its long half-
life, thereby allowing long-term monitoring of MSCs with PET imaging[35]. The 
biological half-life of radioisotopes should also be taken into account while choosing a 
suitable radiotracer for the study[36]. Several studies have reported labeling of MSCs 
with isotopes including 111In, 18F-fluoro-deoxyglucose (18F-FDG), 2′-18F-fluoro-5-ethyl-1-
beta-D-arabinofuranosyluracil (18F-FEAU), 1 3 1I-2′-fluoro-2′-deoxy-1-beta-D-
arabinofuranosyl-5-iodouracil  (131I-FIAU) and 9 9 mTc-D,L-hexamethylene-
propyleneamine oxime (99mTc-HMPAO), and subsequent monitoring of cells using 
imaging strategies including SPECT or PET[37-40]. Interestingly, previous reports have 
shown long-term monitoring of MSCs in vivo up to 10-14 d when the cells were labeled 
with 111In[41,42].

Labeling of MSCs with SPIO enables in vivo tracking of cells by modifying T2 
relaxivity[43,44]. Approaches including electroporation or liposome-mediated delivery 
can be utilized to introduce SPIOs into cells, which can then be transplanted into the 
living organism and imaged using high-resolution MRI[45]. Earlier studies showed the 
usefulness of this approach in the in vivo visualization of MSCs in real time and 
functional studies involving internal organs[45,46]. Increased cellular uptake of SPIOs 
and marginal cytotoxicity was noted with the incorporation of a transfection agent at 
an optimal concentration[47]. Alternatively, magneto-electroporation, a new technique 
that stimulates SPIO endocytosis, can be utilized to quickly label MSCs without 
transfection agents. This technique has previously been utilized to track MSCs in a 
peripheral arterial disease rabbit model[48]. Another study imaged SPIO-labeled MSCs 
in rats and indicated that these cells may promote the healing of the tendon-to-bone 
tunnel 4-8 wk post-surgery[49]. In a brain injury rat model, it was shown that MSCs 
remain at the lesion site for more than 30 d, as visualized by SPIO labeling and MRI, 
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Figure 2 Schematic illustration of the labeling strategy for in vivo tracking of mesenchymal stem cells by optical imaging. A: After 
fluorescent protein (enhanced green fluorescent protein) transduction into mesenchymal stem cells (MSCs) or binding of lipophilic labeling agents (e.g., fluorescent 
nanoparticles and VivoTrack 680) to the membrane of MSCs, cells are injected into the tumor-bearing mice, and their migration is visualized with the use of in vivo 
fluorescent imaging; B: After the bioluminescent protein (Firefly or Renilla luciferase) transduction into MSCs, cells are injected into the tumor-bearing mice. The light 
emitted due to the interaction between luciferase and its substrates (D-luciferin or coelenterazine) is captured by in vivo bioluminescent imaging. MSCs: 
Mesenchymal stem cells; EGFP: Enhanced green fluorescent protein; Fluc: Firefly luciferase; Rluc: Renilla luciferase.

and improve survival[50]. A previous report indicated the use of ferumoxytol, an ultra-
small SPIO nanoparticle (USPION), to monitor MSCs by MRI[51]. USPIONs are a class 
of coated nanoparticles with various applications. Ferumoxytol, a Food and Drug 
Administration (FDA)-approved molecule, has shown promising results for imaging 
MSCs in mouse models, showing its potential use in future clinical trials.

The direct labeling approach can also be utilized with multimodal imaging. A 
previous study utilized mesoporous silica nanoparticles to label MSCs, which were 
delivered to an orthotopic U87MG glioblastoma model, and tracked the labeled MSCs 
with the use of a multimodal approach through the combinatorial imaging of MRI, 
fluorescence, and PET[52]. USPION labeling did not modify the differentiation potential 
or protein content of MSCs[53]. Imaging indicated that particles loaded into MSCs were 
quickly taken up by tumor cells and had long retention time in comparison with those 
used alone[52].

Indirect labeling
Cells can be labeled indirectly through the stable or transient expression of exogenous 
reporter genes. This approach improves our understanding of stem cell biology and 
associated mechanisms by allowing us to study the stem cell behavior over time 
following transplantation in living subjects (animal models of different diseases or 
humans)[54,55]. Incorporated reporter genes are transcribed and translated in viable cells, 
resulting in the expression of proteins, which interact with suitable substrates to 
generate a signal that can then be captured using different imaging modalities 
(Figure 2B and 3A).

Reporter genes including Firefly luciferase (Fluc) and Renilla luciferase (Rluc) in 
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Figure 3 Schematic illustration of the labeling strategy for in vivo tracking of mesenchymal stem cells by nuclear and magnetic 
resonance imaging. A: Gene transduction of sodium iodide symporter (NIS) or herpes simplex virus-thymidine kinase (HSV-TK) into mesenchymal stem cells 
(MSCs) can aid radiotracers (123I, 124I and 99mTc) in entering MSCs. MSCs-NIS are injected into tumor-bearing mice followed by the injection of radiotracers. In vivo 
nuclear imaging (positron-emission tomography, camera imaging, and single-photon emission computed tomography) can visualize migration of the MSCs; B: MSCs 
can be incubated with molecules including small superparamagnetic iron oxide (SPIO) or SPIO coated with gold-nanoparticles (SPIO@Au-NPs). SPIO-labeled MSCs 
are injected into tumor-bearing mice, and in vivo magnetic resonance imaging can visualize migration of the MSCs. MSCs: Mesenchymal stem cells; NIS: Sodium 
iodide symporter; HSV-TK: Herpes simplex virus-thymidine kinase; 99mTc: Technetium-99m; [18F]FHBG: 9-(4-[F]fluoro-3-hydroxymethylbutyl) guanine; SPIO: 
Superparamagnetic iron oxide.

combination with bioluminescence imaging (BLI) are widely utilized for the tracking 
of stem cell viability post-transplantation in living subjects. A light is emitted when 
Fluc interacts with the substrate D-luciferin; it can be captured by a light-sensitive 
imaging apparatus including BLI. In a myocardial infarction murine model, BLI 
revealed the death of MSCs at 3 wk post-transplantation, showing the possible 
association between survival of the cell and cardiac function[56]. Another BLI study 
revealed the death of in vivo administered MSCs in a mouse model of peripheral 
vascular disease[57]. A previous study utilized the BLI approach to evaluate the 
mitochondrial function of implanted MSCs using Fluc driven by the NQO1 enzyme 
promoter in a murine myocardial ischemia/reperfusion (IR) model, which revealed an 
inverse relationship between the promoter activity and mitochondrial function[58]. 
Another study performed by Psaltis et al[59] showed higher oxidative stress in MSCs 
transplanted in a myocardial IR rat model using rat MSCs expressing Fluc driven by 
the NAD(P)H p67phox promoter, in comparison with the cells in sham controls.

MSCs can also be labeled with nuclear medicine reporter genes and imaged with 
PET or SPECT. In this approach, a reporter gene encoding a specific protein or enzyme 
(including herpes simplex virus type 1 thymidine kinase; HSV1-tk) is presented into 
the cells. MSCs expressing the construct induce a strong signal because of intracellular 
retention of suitable probes through their phosphorylation by the action of the reporter 
proteins, whereas normal cells without the construct exhibited a trivial signal because 
of the minimal phosphorylation of the probes which go in and out of cells, when PET 
imaging of tumor models was performed[60]. HSV1-tk, being a viral protein, is 
immunogenic; therefore, it is the target of the host immune system, leading to further 
reduction in sensitivity of the reporter protein. Proteins of mammalian origin 
including dopamine receptor and mitochondrial tk have been developed as nuclear 
medicine reporter genes to avoid this issue[61]. Probes [e.g., 3-N-(2’-[18F]-fluoroethyl)-
spiperone ([18F]FESP)] for a reporter gene of dopamine receptor are supposed to bind 
specifically to the membrane protein and be captured with PET. The use of mutant 
dopamine receptor rather than the wild-type protein is suggested for the prevention of 
the subsequent biological response, but it will still be able to bind to the probe. The 
drawback of this strategy is that it produces a limited signal because of the interaction 
of the receptor with only one ligand molecule[61]. In one study, authors transplanted 
human MSCs, expressing a mutated version of the dopamine type 2 receptor into 
athymic rats. PET imaging using 18F-fallypride showed a strong signal in vivo up to 7 d 
post-transplantation[62]. Aside from the dopamine receptor and HSV-tk1, the sodium-
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iodide symporter (NIS) has also been utilized as a nuclear medicine reporter gene to 
monitor MSC differentiation[63]  and visualize migration of the MSCs to breast 
cancer[64]. NIS gene encodes a transmembrane protein, which is responsible for the 
influx of iodine into the cells. A previous study derived MSCs from the bone marrow 
of transgenic mice, expressing NIS and tracking their differentiation into 
cardiomyocytes in vitro after all-trans retinoic acid treatment. The study showed an 
increased uptake of 125I by treated cells, showing a higher reporter gene activity than 
the untreated cells[63]. Another study assessed the potential of NIS-expressing MSCs to 
treat breast cancer in vivo. SPECT imaging with 99mTc indicated the localization of the 
MSCs to the tumor tissue 14 d after implantation of the cells. The reporter gene of NIS 
can also be utilized as a therapeutic gene. Following the administration of another NIS 
probe, 131I, which emits cytotoxic beta rays, the tumor regressed[64]. Other examples of 
nuclear medicine reporter genes utilized with PET and SPECT imaging include the 
neurotensin receptor subtypes, the somatostatin receptor, and cytosine deaminase[61]. 
The use of hybrid reporter genes enables in vivo imaging of MSCs with multimodal 
approaches[65]. MSCs derived from porcine bone marrow were engineered to express a 
trifusion protein comprising renilla luciferase, red fluorescent protein, and herpes 
simplex truncated tk through lentivirus-mediated transfection and injected into a 
myocardial infarction pig model. Cell monitoring with [18F]-FHBG PET showed the 
retention of MSCs in the myocardium 10 d post-injection as well as a smaller infarct 
size in MSC-treated animals than that in control animals[66].

Advantages and disadvantages of each labeling approach
Direct labeling: Direct labeling techniques are quick and easy to perform. The 
concentration of labeling agents can be precisely controlled. Despite these advantages, 
direct labeling with fluorescent probes and subsequent optical imaging do not always 
yield the best results due to the decline in concentration and signal attenuation in the 
tissue over time. As a result, optical imaging is not appropriate for tissues that are 
located deep inside the body and for long-term monitoring of cells. The development 
of new probes with better penetration ability may settle the issue of tissue depth.

Radionuclide labeling coupled with PET imaging is a highly sensitive technique 
since it enables the detection of even a small number of MSCs (6250-25000 cells)[41,67,68]. 
Even though some cell types are sensitive to radionuclide labeling, MSCs are relatively 
tolerant to radiation exposure[68]. There is also an indication that cytotoxicity may be a 
function of time instead of being dose-dependent. In that case, it is easy to misinterpret 
the situations where cell viability looks intact immediately following labeling[69]. Also, 
it is impossible to acquire key data relating to cell viability and proliferation with 
direct labeling techniques. The signal can be acquired regardless of whether the cell is 
dead or alive and even when the label is not correlated with cells, thereby increasing 
the probability of obtaining false-positive results. Radionuclides, being high-energy 
particles, are less prone to tissue attenuation and are thus frequently utilized in a 
clinical setting.

The advantage of MRI is that it allows us to visualize MSC behavior immediately 
post-transplantation[70]. An FDA-approved T1 contrast agent such as gadopentetate 
dimeglumine (Gd-DTPA; Magnevist) was utilized by Liu et al[71] to track MSCs in 
animal models of hemorrhagic spinal cord injury.

SPIO labeling may impact the proliferation, metabolic activity, viability, and overall 
morphology of MSCs, limiting their use[43]. Interestingly, Feridex (SPIO), a commercial 
paramagnetic material, demonstrated no effect on the physiological properties of 
MSCs, proposing their possible usefulness in the clinical setting[72]. Overall, SPIO 
labeling has low sensitivity and cannot detect the presence of a small number of 
cells[68]. Cellular quantification is challenging with SPIO because of the decline in the 
label concentration and changes in spatial distribution during cell division and 
migration, respectively.

Other direct labeling agents such as nanoparticles may interfere with the cellular 
function. In a previous study, gold nanorods were utilized as contrast agents to image 
MSCs in mice. The results show that even though these agents did not cause any 
toxicity or impact cell proliferation, the expression of 1 out of 26 cytokines (interleukin-
6) was modified[73]. Similarly, commonly used radioisotopes for nuclear imaging may 
impact the proliferation of MSCs at high doses, likely because of underlying DNA 
damage[74]. The choice of labeling agent should be carefully weighed depending upon 
the cell type and application of interest.

In conclusion, direct labeling methods might be ideal for short-term monitoring of 
cells, to ensure that cells are actually being delivered to the tissue of interest. Other 
labeling approaches should be considered for investigating the functional attributes of 
stem cells over a longer period of time.
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Indirect labeling: Indirect labeling approaches enable long-term monitoring of cell 
viability through the utilization of constitutive-promoter-driven reporter gene 
transfection. Under the cytomegalovirus (CMV) promoter, reporter genes are always 
transcribed and translated into proteins if the cell is viable; however, gene silencing of 
CMV promoter over time[75]  reduces the signal, thereby leading to diminished 
production of reporter proteins. This phenomenon could be misinterpreted as a 
decline in cell viability. Nowadays, constitutive promoters of mammalian origin 
including ubiquitin and β-actin are being utilized because they are less prone to gene 
silencing and may be better for determining cell survival. A previous report showed 
little or no change in phenotype and differentiation capacity of MSCs following the 
incorporation of reporter genes[76].

While a reporter protein of green fluorescent protein gives rise to a strong signal, 
the signal is reduced during tissue penetration due to absorption and refraction, 
thereby limiting its use to label tissues that are only up to 2 mm deep in the animal 
body[77]. Thus, this strategy is more useful for cell sorting during in vitro or ex vivo 
analysis of cells.

Reporter genes utilized for PET and SPECT, including HSV-tk1 and NIS, can aid in 
the identification of live cells in vivo. Earlier studies have reported an effective use of 
NIS for in vivo imaging of MSCs in an animal breast cancer model[64].

Finally, there are concerns that reporter genes may integrate at random sites, 
possibly resulting in a change of characteristics in the transfected MSCs from their 
parent cells. Present advances in gene editing technologies have made site-specific 
DNA integration possible, thereby alleviating the concern[78]. Many research groups 
are already developing new probes to meet the criteria set forth by the FDA and other 
regulatory bodies.

APPLICATION OF NONINVASIVE IN VIVO IMAGING OF MSCS IN 
TREATMENT AND DRUG DELIVERY FOR CANCER
Different attempts have been made to develop cell-based therapies and cell-based 
drug delivery systems for cancerous diseases[21,79,80]. Researchers and clinicians are 
excited about the possibility for MSC-based therapies to treat different tumors and 
utilize MSCs as a drug delivery vehicle by bioengineering the cells. Recent 
developments in in vivo molecular imaging modalities allow us to understand the fate 
of MSCs in living subjects. The in vivo molecular imaging for visualizing homing of 
MSCs to target lesions, evaluating their therapeutics effects and proving drug delivery 
capabilities of MSCs to tumors are discussed with examples below (Table 1).

Optical imaging
Fluorescent imaging: In vivo visualization as well as therapeutic effects of tetra-
sulfonated aluminum phthalocyanine @ fluorescent nanoparticles-MSC (AlPcS4

@FNPs-MSC) cells have been described previously using human osteosarcoma (Saos-
2) tumor-bearing mice. First, the AlPcS4@FNPs were generated by mixing tetra-
sulfonated aluminum phthalocyanine (AlPcS4; photosensitizer) and poly-methyl 
methacrylate core-shell fluorescent nanoparticles (FNPs). MSCs were labeled with 
AlPcS4@FNPs by incubating them for 1 h in a complete medium. AlPcS4, AlPcS4@FNPs, 
and AlPcS4@FNPs-MSC were intratumorally injected in tumor-bearing mice, 
fluorescent imaging was conducted immediately, and AlPcS4@FNPs-MSC was 
retained in the tumors following intratumor injection, while AlPcS4 and AlPcS4@FNPs 
migrated to the non-target area of mice. Following imaging, they conducted in vivo 
photodynamic therapy (near-infrared light with an LED source). The concentrated 
localization of AlPcS4@FNPs-MSC in the tumor enabled a greater reduction in tumor 
size following photodynamic therapy than other groups[81].

Migration and therapeutic effects of MSCs transduced with TRAIL (Tumor necrosis 
factor-related apoptosis-inducing ligand) (TRAIL-MSCs) were studied in a murine 
colon cancer (HT29) using macroscopic fluorescence imaging. MSCs were transduced 
with enhanced green fluorescent protein (EGFP) and TRAIL. PBS, MSC, and TRAIL-
MSC were intravenously injected to colon tumor-bearing mice, and fluorescence 
imaging revealed that TRAIL-MSCs migrated to the tumor at day 10. TRAIL-MSC 
migration to the tumor impeded tumor growth more than the other groups[82].

Tumoral migration of MSCs was demonstrated with the use of a NIR lipophilic dye 
(VivoTrack 680) in a human breast cancer (MDA-MB-231) xenograft mouse model. The 
MSCs were labeled using the dye, and fluorescence imaging disclosed that 
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Table 1 Noninvasive in vivo imaging of mesenchymal stem cells in treatment and drug delivery for cancer

Imaging Imaging 
modality Labelingmethod/agent Cell 

type Naïve/modified Cell 
origin Subject Route of 

injection Duration Tumor Outcome Clinical 
translation Ref.

FNPs BM-
MSCs

AlPcS4@FNPs@MSCs Human Mice Intratumor Immediately Human 
osteosarcoma 

Inhibition of tumor Limited Lenna et al[81]

EGFP BM-
MSCs

TRAIL-MSCs Mouse Mice Intravenous 1-10 d Mouse colon 
cancer 

Inhibition of tumor Limited Zhang et al[82]

Fluorescent

VivoTrack 680 BM-
MSCs

MSCs Human Mice Intravenous 2-24 h Breast cancer Inhibition of tumor 
metastasis

Limited Camorani 
et al[83]

Rluc UC-
MSCs

HSV-ttk-MSCs Human Mice Intratumor 1-4 d Breast cancer Inhibition of tumor Limited Leng et al[84]

Fluc BM-
MSCs

MSC-Tet-TK/ MSC-TK Mouse Mice Intratumor 1 and 5 d Mouse colon 
cancer 

Inhibition of tumor Limited Kalimuthu 
et al[85]

Fluc BM-
MSCs

MSC-CXCR4 Mouse Mice Intravenous 1 and 24 h Breast cancer Homing of 
genetically modified 
MSCs to tumor

Limited Kalimuthu 
et al[86]

Fluc BM-
MSCs

Naïve Human Mice Intravenous 5 to 8 wk Breast cancer Homing of MSCs to 
lung metastatic tumor

Limited Meleshina et al
[87]

Fluc BM-
MSCs

Naïve Human Mice Intravenous 1 and 24 h Thyroid and 
breast cancer 

In vitro Dox 
delivery/homing of 
MSCs to tumor

Limited Kalimuthu 
et al[88]

Fluc BM-
MSCs

Naïve Mouse Mice Intravenous 1-11 d Murine breast 
cancer 

Homing and 
differentiation of 
MSCs to tumor

Limited Wang et al[89]

Fluc BM-
MSCs

MSCs-oncolytic 
adenovirus

Human Mice Intravenous 15 min to 10 d Murine large cell 
lung carcinoma 

Homing of MSCs to 
tumor

Limited Hakkarainen 
et al[90]

Optical

Bioluminescent

Rluc BM-
MSCs

MSC-e23sFv-Fdt-tBid Mouse Mice Intravenous 24 h Breast cancer and 
gastric cancer

Inhibition of tumor Limited Cai et al[91]

[18F]-FHBG BM-
MSCs

MSC-HSV1-TK Human Mice Subcutaneous 4 wk Murine colon 
carcinoma 

MSCs stably stay in 
tumor

Yes Hung et al[60]

124I BM-
MSCs

MSC-hNIS Human Mice Intravenous 72 h Human 
hepatocellular 
carcinoma

Inhibition of tumor Yes Knoop et al[92]

PET

124I BM-
MSCs

MSC-hNIS Mouse Mice Intravenous 72 h Mouse pancreatic 
tumor

Inhibition of tumor Yes Schug et al[93]

123I BM-
MSCs

MSC-hNIS Human Mice Intravenous 72 h Human 
hepatocellular 
carcinoma

Inhibition of tumor Yes Knoop et al[92]

Nuclear 

γ-camera
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123I BM-
MSCs

HSP70B-NIS-MSC Human Mice Intravenous 0-72 h Human 
hepatocellular 
carcinoma

Inhibition of tumor Yes Tutter et al[94]

123I BM-
MSCs

MSC-hNIS Mouse Mice Intravenous 72 h Mouse pancreatic 
tumor

Inhibition of tumor Yes Schug et al[93]

123I BM-
MSCs

MSC-hNIS Human Mice Intravenous 72 h Human 
hepatocellular 
carcinoma

Inhibition of tumor Yes Schug et al[95]

99mTc BM-
MSCs

MSC-hNIS Human Mice Intravenous 3-14 d Breast cancer Inhibition of tumor Yes Dwyer et al[64]

99mTc BM-
MSCs

MSC-hNIS Human Mice Intravenous 3-24 d Human cervical 
cancer

Inhibition of tumor Yes Belmar-Lopez 
et al[96]

SPIO BM-
MSCs

MSC-hNIS Human Mice Intravenous 3-24 d Human cervical 
cancer

Inhibition of tumor Yes Belmar-Lopez 
et al[96]

MR MRI

SPIO@Au-NPs BM-
MSCs

MSC Human Mice Intravenous 0-72 h Human glioma Homing of MSC to 
tumor

Yes Qiao et al[97]

FLI: Fluorescence imaging; BLI: Bioluminescence imaging; MRI: Magnetic resonance imaging; PET: Positron-emission tomography; γ-camera: Gamma camera imaging; FNPs: Fluorescent nanoparticles; EGFP: Enhanced green fluorescent 
protein; Fluc: Firefly luciferase; Rluc: Renilla luciferase; SPIO: Superparamagnetic iron oxide; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand; HSV1-tk: Herpes simplex virus type 1 thymidine kinase; hNIS: Human sodium 
iodide symporter; Au-NPs: Gold nanoparticles; HSP70B: Heat-inducible promoter; PDGFRβ: Platelet-derived growth factor receptor β; CXCR4: CXC chemokine receptor type 4.

intravenously injected MSCs migrated to breast cancer and targeting was counteracted 
by anti-platelet-derived growth factor receptor β (PDGFRβ) aptamer (Gint4.T) 
treatment[83].

Bioluminescent imaging: A triple fusion gene containing Renilla luciferase (Rluc), red 
fluorescent protein, and herpes simplex virus truncated thymidine kinase (HSV-ttk) 
was transduced into human umbilical cord-derived MSCs (Rluc-RFP-HSV-ttk/MSC) 
and bioluminescent imaging was conducted for visualization of subcutaneously 
injected Rluc-RFP-HSV-ttk/MSC in mouse models with or without ganciclovir (GCV) 
treatment. Bioluminescent imaging revealed the death of Rluc-RFP-HSV-ttk/MSC in 
mice treated with GCV. Moreover, in a breast cancer (MDA-MB-231) xenograft model, 
Rluc-RFP-HSV-ttk/MSC were injected into the breast cancer xenograft, and GCV 
treatment led to the death of Rluc-RFP-HSV-ttk/MSC and killed the cancer via 
bystander effects[84].

Murine MSC migration was observed with the use of Firefly luciferase (Fluc) in a 
murine colon cancer (CT26) xenograft mouse model. MSCs were transduced with 
RetroX-TRE (tetracycline response element), expressing a truncated herpes simplex 
virus thymidine kinase (HSV1-sr39tk) and Fluc2 gene with Tet-On (MSC-Tet-
TK/Fluc2) or without (MSC-TK/Fluc2). MSC-Tet-TK/Fluc2 and MSC-TK/Fluc2 cells 
were intratumorally injected in a mouse colon cancer model. Bioluminescent imaging 
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revealed that both showed increased cell death in mice treated with GCV in both 
MSCs with or without Tet-On system. Moreover, in a colon cancer xenograft model, 
MSC-TK/Fluc2 or MSC-Tet-TK/Fluc2 was co-injected with cancer cells, and GCV 
treatment led to the mortality of both MSC cancer cells[85].

Migration of MSCs transduced with or without CXCR4 (CXC chemokine receptor 4) 
and Fluc2 (MSC-Fluc2 or MSC-CXCR4-Fluc2) toward human breast cancer (MDA-MB-
231) was observed with the use of bioluminescent imaging. MSC-Fluc2 and MSC-
CXCR4-Fluc2 were intravenously injected to breast cancer-bearing mice, and 
bioluminescent imaging revealed that MSC-CXCR4-Fluc2 migrated to the tumor at 24 
h, but MSC-Fluc2 did not migrate to the tumor. The bioluminescent imaging of the 
study revealed that the expression of CXCR4 can enhance the migration of MSCs to 
the tumor in vivo[86].

In vivo homing of human MSCs transduced with luc2 gene (MSCs-luc2) to lung 
metastasis of human breast cancer (MDA-MB-231) tumor-bearing mice was observed 
using bioluminescent imaging. MSCs-luc2 was intravenously injected to the tumor-
bearing mice and imaged 5 h to 8 wk after administration. Bioluminescent imaging 
demonstrated that MSCs-luc2 migrated to lung metastasis of human breast cancer in 
the mice, and the signals were concentrated on the tumor, successfully showing the 
homing of MSCs to lung metastasis[87].

A previous study reported in vivo homing of human MSCs transduced with Fluc2 
using human thyroid cancer (Cal62)- or human breast cancer (MDA-MB-231)-bearing 
mice. MSC/Fluc2 was intravenously injected into thyroid or breast cancer-bearing 
mice. Bioluminescent imaging were conducted 1 and 24 h following administration; at 
24 h imaging showed that MSC/Fluc2 cells migrated to both thyroid and breast cancer 
in xenograft mouse models[88].

Migration of murine MSCs to murine breast cancer (4T1)-bearing mice was 
observed using bioluminescent imaging. First, the MSCs were transduced with Fluc 
gene and MSC-Fluc, and breast cancer cells were co-injected intravenously into mice to 
create a lung metastatic model. In the xenograft model, tumors developed in mice, and 
then MSC-Fluc was intravenously injected into tumor-bearing mice. Bioluminescent 
imaging revealed that MSC-Fluc stayed in the lung with tumors cells (1 h and 1, 4, and 
6 d) and signals increased after 9 d and 11 d. In the xenograft model, intravenously 
injected cells migrated to tumors at day 1 and slowly decreased. Then, bioluminescent 
signals increased from day 8 to day 14[89].

A previous report described the transduction of Fluc gene and loading of oncolytic 
adenoviruses (Ad) into human MSCs (Ad-MSC/Fluc). The authors utilized 
bioluminescent imaging for visualization of subcutaneously injected Ad-MSC/Fluc or 
MSCs + non-replicating Ad in orthotopic murine lung and breast cancers. 
Bioluminescent imaging disclosed that the signal from Ad-MSC/Fluc was increased in 
the lungs at day 3. They concluded that MSCs can be a promising vehicle to deliver 
oncolytic adenoviruses to the tumors[90].

In vivo homing of murine MSCs transduced with Rluc and e23sFv-Fdt-tBid (HER2-
specific killing by the immunoapoptotin, called MSC-RT) was observed in orthotopic 
breast cancer (4T1) and orthotopic gastric tumors (SGC-7901) mouse models. MSC-RT 
was intravenously injected into tumor-bearing mice, and bioluminescent imaging at 24 
h showed migration of MSC-RT to both tumors, followed by inhibited growth[91].

Nuclear imaging
PET imaging: PET imaging was utilized to visualize HSV1-tk transduced MSCs (MSC-
HSV1-tk) migration to murine colon carcinoma (HT-29Inv2) in a mouse model. MSC- 
HSV1-tk were injected intravenously into the mice, and PET imaging 18F-labeled 9-(4-
fluoro-3-hydroxymethylbutyl)-guanine ([18F]-FHBG) revealed migration of the MSCs 
to the tumor[60].

In vivo homing and the therapeutic effects of labeled human MSCs transduced with 
NIS (NIS-MSCs) were demonstrated in hepatocellular carcinoma (Huh7) tumor-
bearing mice by PET imaging. NIS-MSCs were intravenously injected into tumor-
bearing mice and imaged 72 h following the administration of cells, 124I was then 
injected into the mice. PET imaging showed that NIS-MSCs migrated to the 
hepatocellular carcinoma. Moreover, they showed a reduction in tumor size and better 
survival following 131I therapy[92].

PET imaging was utilized to visualize migration of mouse MSCs to pancreatic 
tumor in a mouse model. MSCs were transduced with NIS (NIS-MSCs), and NIS-MSCs 
or MSCs were injected intravenously to tumor-bearing mice. PET imaging was carried 
out 3 h after 124I injection, and revealed the accumulation of 124I in the tumor of NIS-
MSC-injected mice, showing NIS-MSC migration to the tumor. Moreover, these 
findings indicated that 131I therapy reduced the tumor size and increased survival[93].
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Gamma camera imaging: In vivo homing and the therapeutic effects of human MSCs 
indirectly labeled with sodium-iodide symporter (NIS) (NIS-MSCs) were observed in 
hepatocellular carcinoma (Huh7) tumor-bearing mice by PET imaging. NIS-MSCs, 
NIS-MSCs+NaClO4, and MSCs were intravenously injected into tumor-bearing mice, 
and 123I was injected into mice at 72 h following the administration of the cells. Gamma 
imaging showed high signals in mouse tumors injected with NIS-MSCs, but no 
significant signals in MSCs+NaClO4 or naïve MSC-injected mice. These findings 
showed that NIS-MSCs successfully migrated to hepatocellular carcinoma. Moreover, 
they also showed that 131I therapy reduced the tumor size and increased survival[92].

As mentioned earlier, NIS-MSCs or MSCs were intravenously administered to 
tumor-bearing mice. Gamma camera imaging with 123I revealed tracer accumulation in 
tumors in NIS-MSCs-injected mice. Moreover, the authors showed that 131I therapy 
reduced the tumor size and increased survival[93].

A heat-inducible HSP70B promoter-driven NIS was transduced in MSCs (HSP70B-
NIS-MSCs) and showed the migration of MSCs to a hepatocellular carcinoma (Huh7) 
xenograft in a mouse model. HSP70B-NIS-MSCs were intravenously injected into mice 
followed by hyperthermia (41°C) and control (normothermia at 37°C) 3 d later. 
Gamma camera imaging with 123I revealed the migration of HSP70B-NIS-MSCs to 
tumors and induction of NIS expression by hyperthermia. Moreover, the hyperthermia 
and 131I treatment reduced the tumor size and increased survival[94].

In vivo homing of human MSCs transduced with NIS gene was observed in 
hepatocellular carcinoma (Huh7)-bearing mice by gamma camera imaging. NIS-MSCs 
were intravenously injected 24 h after tumor irradiation (0, 2, or 5 Gy) in an animal 
model. Gamma camera imaging with 123I revealed increased uptake of 123I by the 
tumor, which enhanced the migratory capacity of MSCs[95]. SPECT imaging was 
previously used to visualize the migration of NIS to transduced MSC (NIS-MSC) 
breast cancer (MDA-MB-231) in a mouse model. NIS-MSCs were injected 
intravenously into tumor-bearing mice. For SPECT imaging, 99mTc was injected into 
mice 3 d after the injection of cells. SPECT imaging revealed increased uptake of the 
tracer in tumors of NIS-MSCs injected mice, which shows the localization of MSCs in 
the tumor and expressed NIS in the MSCs. 131I therapy resulted in a reduction of tumor 
size[60].

In vivo homing of different MSCs acquired from various sources (bone marrow, 
adipose tissue, epithelial endometrium, stroma endometrium, and amniotic 
membrane) to cervical cancer (HeLa) was observed in an animal model. The NIS gene 
was transduced into MSCs (MSC-NIS) and the cells were imaged with SPECT/CT. 
MSCs were intravenously injected into tumor-bearing mice, and SPECT/CT imaging 
with 99mTc was carried out at 3, 10, 17, and 24 d after the injection of MSCs. The study 
showed the variable migration ability of MSCs due to their origins[96].

MRI
As mentioned earlier, in vivo tumoral homing of MSCs was observed by direct SPIO 
labeling in mice with cervical cancer (HeLa) by MRI. Following the intravenous 
injection of SPIO-labeled MSC-MRI, the recruitment of SPIO-labeled MSCs to tumors 
was observed[96].

Migration of MSCs to glioma was studied by labeling MSCs with nanoparticles 
containing SPIO coated with gold (SPIO@Au) and imaging with MRI. SPIO@Au-MSCs 
were injected via the intravenous route to mice bearing brain gliomas. MRI revealed 
migration of the MSCs to the tumor[97].

FUTURE OUTLOOKS
While studies in small animals can yield a lot of information related to the behavior of 
MSCs, it may not be relevant when it comes to delivering the cells to large animals or 
humans due to differences in their physiology. Since our ultimate goal is to utilize 
such groundbreaking MSC-based therapies for treating cancerous diseases in humans, 
a lot of factors including the origins of MSCs, types of reporter genes, routes of 
administration, and timing of cell delivery will need to be modified depending upon 
the type of model used. Large animals show the most similarity to humans in terms of 
size, disease progression, weight, and overall anatomy[98]. Thus, these animal models 
are widely utilized to test different imaging and therapeutic modalities.

Tracking of MSCs post-transplantation in large animals is practicable with the use of 
indirect labeling approaches[99]. There are some challenges associated with imaging 
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large animals, including low sensitivity and difficulty in quantifying cells. Also, 
several factors can impact the survival of transplanted cells including limited cell-to-
cell and cell-microenvironment contact, tissue hypoxia, and host immune response. 
Efforts should be made to increase cell viability at the desired site to acquire an 
optimal therapeutic benefit while minimizing toxicity.

The adaptation of in vivo imaging approaches to track MSCs in clinical trials will 
need careful assessment of pharmacokinetic information relating to cell therapies. If 
incorporated at an earlier phase of clinical trials, imaging approaches can give insights 
into optimal dosage, frequency of administration, and retention time for cells by 
helping to create dose-response curves. Also, imaging can yield key information 
relating to the in vivo functional properties of administered cells including viability, 
proliferation, and differentiation. A quick search on the clinicaltrials.gov site shows 
more than 400 ongoing trials exploring the potential of MSCs to treat different 
diseases[100]. It is essential to remember that each patient may respond differently to 
each therapy. Some patients may clear cells faster than others because of a strong 
immune reaction, leading to changing responses to certain cell therapies[101-103].

It is believed that in vivo imaging (especially PET/MRI due to their high sensitivity 
and ability to provide meticulous anatomical information) will serve as a powerful 
tool to evaluate in vivo therapeutic cells in the future. Presently, in vivo imaging 
modalities are utilized solely for short-term monitoring of administered cell survival. 
There are various regulatory obstacles in achieving long-term cell tracking with 
reporter genes in humans, the technique that could be useful for understanding the 
long-term therapeutic effects of MSC-based cancer therapy. One solution could be the 
utilization of endogenous reporter genes of human origin, which has been previously 
tested in preclinical models[104]. Finally, with long-term tracking, it is possible to 
determine the fate of MSCs and how they contribute to the eradication of cancerous 
diseases.

CONCLUSION
Recent progress in noninvasive imaging technologies has taken the field of cell 
therapies to the next level. In this review article, essential developments in labeling 
technologies, imaging modalities, and how they are able to contribute to the 
development of MSC-based cancer therapies have been exhaustively described. The 
exact roles of MSCs in cancerous diseases are unclear because they have been shown to 
promote and inhibit the growth of different tumors at the preclinical level. Presently, 
MSCs are being utilized for delivery of therapeutic agents in cancer models, thereby 
opening new avenues for personalized cancer therapies in the future. To improve the 
clinical utility of MSC-based therapies, it is crucial for us to understand how MSCs 
interact with cancer cells in vivo. The extracellular vesicles originating from MSCs can 
also be utilized for cancer treatment to escape safety issues relating to the 
administration of live MSCs. MSCs have given us a new hope to develop safe and 
effective intervention strategies against cancer. Combined with long-term monitoring, 
a lot can be learned regarding the hidden potentials of MSCs and their variable fate in 
humans.
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