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Abstract
Stem cells play a key role in tissue regeneration due to their self-renewal and 
multidirectional differentiation, which are continuously regulated by signals from 
the extracellular matrix (ECM) microenvironment. Therefore, the unique 
biological and physical characteristics of the ECM are important determinants of 
stem cell behavior. Although the acellular ECM of specific tissues and organs 
(such as the skin, heart, cartilage, and lung) can mimic the natural 
microenvironment required for stem cell differentiation, the lack of donor sources 
restricts their development. With the rapid development of adipose tissue 
engineering, decellularized adipose matrix (DAM) has attracted much attention 
due to its wide range of sources and good regeneration capacity. Protocols for 
DAM preparation involve various physical, chemical, and biological methods. 
Different combinations of these methods may have different impacts on the 
structure and composition of DAM, which in turn interfere with the growth and 
differentiation of stem cells. This is a narrative review about DAM. We 
summarize the methods for decellularizing and sterilizing adipose tissue, and the 
impact of these methods on the biological and physical properties of DAM. In 
addition, we also analyze the application of different forms of DAM with or 
without stem cells in tissue regeneration (such as adipose tissue), repair (such as 
wounds, cartilage, bone, and nerves), in vitro bionic systems, clinical trials, and 
other disease research.

Key words: Extracellular matrix; Decellularized adipose matrix; Decellularized adipose 
tissue; Adipose-derived extracellular matrix; Adipose tissue extracellular matrix; Adipose 
matrix; Stem cells; Soft tissue regeneration; Decellularization methods
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Core tip: Decellularized adipose matrix (DAM) is widely used in soft tissue regeneration 
because it has unique biological and physical properties and can provide a natural 
microenvironment for the growth and differentiation of stem cells. There have been many 
studies on DAM, and our objective is to comprehensively describe the preparation, 
characterization and application of DAM from the perspective of stem cells. We also 
describe the problems that still need to be solved in DAM research and possible future 
developments.

Citation: Yang JZ, Qiu LH, Xiong SH, Dang JL, Rong XK, Hou MM, Wang K, Yu Z, Yi CG. 
Decellularized adipose matrix provides an inductive microenvironment for stem cells in tissue 
regeneration. World J Stem Cells 2020; 12(7): 585-603
URL: https://www.wjgnet.com/1948-0210/full/v12/i7/585.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i7.585

INTRODUCTION
Soft tissue defects caused by trauma, tumors, and aging are often seen in clinical work, 
and tissue regeneration is undoubtedly one of the biggest challenges. Stem cell therapy 
has always played an important role in the field of regenerative medicine[1-3]. Stem cells 
achieve tissue metabolism and regeneration of post-traumatic defects through two 
unique attributes: (1) The ability to self-renew in the process of symmetric division; 
and (2) The ability to multidirectionally differentiate in the process of asymmetric 
division[4]. Although stem cells play an important role in soft tissue regeneration, risks 
and challenges also exist. Stem cells often require extensive expansion in vitro, which 
increases the risk of shortened telomeres, impaired function, and contamination[5]. It is 
common for stem cells to fail to stabilize in the recipient region after implantation, 
leading to a poor survival.

Therefore, from the application perspective of tissue regeneration, what stem cells 
need more is a natural biomaterial scaffold. It can provide stem cells with a 
microenvironment for growth and support for their colonization, adhesion, 
proliferation, and differentiation[6-10]. The dynamic and specific microenvironment of 
stem cell proliferation and differentiation is called a niche. The main component of the 
niche is the extracellular matrix (ECM), which can dynamically regulate the behavior 
of stem cells and provide extracellular clues for stem cell recognition[6,11]. The ECM is 
composed of various collagens, glycoproteins, and growth factors and seems to be a 
static network structure, but it is actually in a process of continuous remodeling with 
dynamic interaction with stem cells[12,13]. Generally, stem cell proliferation and 
differentiation are accompanied by changes in the ECM structure. For example, stem 
cells bind to matrix protein residues to change local conformation[14,15], or stem cell 
remodeling reveals hidden binding sites of the ECM to promote self-adhesion and 
proliferation[16,17].

Despite the advances in bionic technology and the rapid development of polymer 
materials science, there is still a huge challenge to fully simulate the biological 
properties of the ECM. Most artificial scaffolds fail to meet the requirements of 
biologically active vectors due to their lack of the ability to induce stem cell 
differentiation and the potential for dynamic interaction with cells[18-20]. Therefore, the 
acellular matrix of the target tissue/organ is an ideal bioactive scaffold. A cell-free, 
natural ECM scaffold can be obtained through a previously developed protocol. It is 
characterized by a rich biomolecular and unique three-dimensional (3D) structure that 
can play a key role even if the acellular matrix differs from the anatomical region of 
the donor site[21].

At present, there are many studies on the use of xenogeneic and allogeneic acellular 
matrix for different hosts[22,23]. The risk of immunogenic residues limits the application 
of xenogeneic tissues[24,25]. Human allogeneic tissues may be the most desirable source 
of the ECM. Adipose tissue comes from a wide variety of sources, and lipoaspirate is 
largely discarded every year as medical waste. With the rapid development of adipose 
tissue engineering, many researchers have tried to develop better acellular solutions to 
obtain decellularized adipose matrix (DAM)[26-28]. DAM continues to integrate with 
surrounding soft tissues and plays an important role in the entire regeneration process 
of the recipient area[29].

Currently, there are many protocols for the preparation of DAM. Different 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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preparation methods have different effects on key components of DAM, and further 
affect the growth of stem cells and regeneration of soft tissues[30-34]. This review outlines 
the importance of DAM to provide an inductive microenvironment for stem cells in 
tissue regeneration. In particular, considering the DAM for tissue engineering 
purposes, the different decellularization methods used are fully described (Figure 1). 
In addition, the problems that still need to be addressed with regard to DAM are also 
described, as well as possible future developments of these emerging bioscaffold 
materials.

LITERATURE SEARCH
A literature search was conducted using the PubMed Advanced Search Builder. An 
advanced search was performed using “decellularized adipose tissue OR adipose-
derived matrix OR acellular adipose matrix OR decellularized adipose matrix” as the 
title elements, and identified 236 studies. After further analysis and evaluation on 
whether the title and abstract involve fat-derived ECM and whether the article is 
written in English, a total of 75 studies were included.

OVERVIEW OF ECM/DAM
The ECM is a 3D complex network structure composed of various collagens and 
glycosaminoglycans (GAGs), and provides effective biological information for the 
growth and differentiation of stem cells, and enables cell-cell and cell-ECM dynamic 
interaction through the establishment of a natural ecological microenvironment[35]. 
Stem cells continue to reshape the microenvironment created by the ECM, while the 
reshaped the ECM also constantly changes the behavior of stem cells[13]. This can keep 
the growth of stem cells in equilibrium with the degradation of the ECM and play a 
continuous and stable role in the entire tissue regeneration process[36]. At present, the 
ECM of various tissues including the skin[37], cartilage[38], bone[39], tendon[40,41], skeletal 
muscle[42,43], blood vessels[44,45], nerves[35,46], cornea[47], heart valves[48,49], myocardium[50,51], 
lung[52,53], liver[54,55], kidney[56,57], small intestine[58], and bladder[59] has been widely used 
in clinical or preclinical research in various fields.

In recent decades, the DAM extracted from a large amount of waste adipose tissue 
has aroused interest among researchers because of its abundant sources and excellent 
potential in soft tissue regeneration[60]. A large amount of adipose tissue can be 
obtained by using the developed method of degreasing and decellularization[26]. The 
DAM, which provides a natural microenvironment for the growth of stem cells 
[especially adipose-derived stem cells (ASCs)], has the following characteristics. First, 
the complex structure is composed of collagens I[22,61,62], IV[26,61,63,64], and VI[65], 
laminin[22,26,61,62,66,67], fibronectin[34,68], elastin[28], GAGs[22,28,62,63,69], and other biologically 
active macromolecules. Fibrillar collagen and glycoproteins provide structural stretch 
resistance and resilience[70], and play an important role in the entire dynamic 
remodeling process of stem cells. Second, the structure contains growth factors such as 
vascular endothelial growth factor (VEGF)[22,63,69,71], basic fibroblast growth factor 
(bFGF)[22,63,71], and transforming growth factor (TGF)-β[23], which are associated with 
specific ECM domains or proteins and play an irreplaceable role in the entire process 
of soft tissue regeneration[72,73].

In addition, there are different names about DAM, including decellularized adipose 
tissue[26,74-77], adipose-derived matrix[23,24], and acellular adipose matrix[78]. For the 
convenience of explanation, this article collectively names DAM from adipose tissue of 
different sources (including human, pig, mouse, etc.).

DIFFERENT PREPARATIONS OF DAM
There have been many studies on DAM (Table 1). Different preparation methods 
result in the retention or loss of DAM key components to varying degrees, and affect 
the growth of stem cells and regeneration status of soft tissues[65,79]. The goal of DAM 
preparation is to remove all immunogenic components (such as nucleic acids and 
fragments) from all cells, while retaining the biologically active components of the 
ECM (including collagens, proteins, growth factors, and GAGs) and suitable 3D 
structure and mechanical properties, to provide host stem cell growth and 
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Table 1 Different studies of decellularization and sterilization methods for preparation of DAM

Decellularization methods

Physical treatments Chemical treatments Biological treatments
Sterilization methods Refs.

0.25% trypsin/0.1% EDTA 15000 U DNase, 12.5 mg RNase, 2000 U 
lipase

70% ethanol/1% penicillin and 
streptomycin/UV light/1% 
antibiotic/antimycotic

[26,30,74,75,83,
84,96,101,102]

0.05% trypsin-EDTA     100 U/mL benzonase 70% ethanol/1% penicillin and streptomycin [63,66]

99.9% isopropanol

0.05% trypsin      500 U/mL benzonase 0.1% peracetic acid in 4% ethanol [61]

99.9% isopropanol    1 mol/L NaCl 1 mmol/L EDTA + Lysis buffer (1% tergitol type NP-40, 0.1% SDS, 5 
mmol/L EDTA, 0.4 mol/L NaCl, 50 mmol/L Tris-HCl pH 8, 1 
mmol/L PMSF)

70% ethanol/1% penicillin and streptomycin [65]

100% isopropanol 0.25% trypsin-EDTA; 1 mL DNase + 1 mL RNase + 2 mL lipase 70% ethanol/1% penicillin and streptomycin [135]

Freeze–thaw, 3 cycles (-80 °C to 37 °C)

0.5 mol/L NaCl/1 mol/L NaCl/isopropanol/Triton X-
100

0.25% trypsinEDTA 1% penicillin and streptomycin [69,71,93]

Freeze-thaw, 3 cycles (-80 °C to 37 °C) + 
ultrasonic

0.5% SDS + 100% ethanol — 100% ethanol [25]

Freeze-thaw, 35 cycles (-80 °C to 37 °C) + 
homogenization, 5 min (12000 r/min)

1% Triton X100 + 100% isopropanol + 1 mol/L NaCl 100 U/mL DNase     100 μg/mL RNase — [68]

Freezethaw, 4 cycles (-80 °C to 37 °C) + 
ultrasonic

96% ethanol     0.5% SDS 0.05% trypsin/0.05 mmol/L EDTA + DNase — [87]

Freezethaw, 5 cycles (-80 °C to 37 °C) Isopropanol 0.25% trypsin/0.1% EDTA   DNase I + RNase A Ethylene oxide [136]

Freeze-thaw, 5 cycles (liquid nitrogen to 37 
°C)

99.9% isopropanol 0.05% trypsin-EDTA     20 ng/mL DNase I + 20 ng/mL RNase 1% penicillin and streptomycin [67]

Freezethaw, 4 or 5 cycles (liquid nitrogen to 
Room temperature)

0.5 mol/L acetic acid — — [88]

Freezethaw, 35 cycles (liquid nitrogen to 
Room temperature)

0.1% SDS 0.05% trypsin + 0.05% EDTA + 20 ng/mL DNase I + 20 ng/mL RNase 1% penicillin and streptomycin [89]

0.1% sodium azide + 1 mol/L NaCl + 4% sodium 
deoxycholate

2000 K units DNaseFreezethaw, 618 cycles (liquid nitrogen to 
room temperature)

1% Triton X-100 2000 K units DNase

— [78]

1 mol/L NaCl/0.5% SDS 0.2% DNase + 200 μg/mL RNase — [27,28,81]

— — — [104,137]

Homogenization, 5 min (12000 rpm)

0.5% SDS + 100% isopropanol — — [138]
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Homogenization, 5 min + ultrasonic — 0.25% Pancreatin Ethylene oxide [79]

SDS — — [90]Homogenization, 3 min (12000 r/min)

4 mol/L urea 4 mol/L Gu Ethylene oxide [100,139]

Homogenization (twice) 2 mol/L urea+70% ethanol 2 U/mL dispase II + 4 mol/L GuHCl Dialysis against chloroform [23,24]

Homogenization 2 mol/L urea buffer — 70% ethanol/1% antibiotic/antimycotic 
solution

[65]

Constant stirring 1% SDS or 2.5 mmol/L sodium deoxycholate 2.5 mmol/L sodium deoxycholate + 500 U porcine lipase + 500 U 
porcine colipase

365 nm UV light [62,85]

Constant stirring 1% SDS 2.5 mmol/L sodium deoxycholate + 100 μg/mL lipase + 50 ng/mL 
colipase; 50 μg/mL DNase + 50 μg/mL RNase

Ethylene oxide [86]

0.1%, 1%, 3%, or 5% Peracetic acid + 1% Triton X-100 600 U DNase — [31,94]Mechanical processing

3% Triton X100 + 4% sodium deoxycholate + 4% 
ethanol/0.1% peracetic acid + 100% n-propanol

0.02% trypsin + 0.05% EDTA 4% ethanol + 0.1% peracetic acid [22]

SCCO2 (180 bar) Ethanol — SC-CO2
[91]

1% sodium dodecylsulfate + 100% isopropanol 2.5 mmol/L sodium deoxycholate + 500 U lipase + 500 U colipase 5000 IU penicillin and 5 mg/mL streptomycin [32]

0.5% SDS + isopropanol + 0.1% peracetic acid + 4% 
ethanol

— 0.1% peracetic acid+4% ethanol [92,103]

1% Triton X-100 10, 20 and 100 IU/mL DNase I — [82]

1-propanol Sodium deoxycholate Peracetic acid [33]

—

Organic solvent + surfactant/ethanol-based solution — Peracetic acid [34,64]

SDS: Sodium dodecyl sulfate; EDTA: Ethylenediaminetetraacetic acid; SC-CO2: Supercritical carbon dioxide; Gu: guanidine.

differentiation microenvironment after transplantation[80]. However, all current 
decellularization schemes will inevitably cause different degrees of damage to the 
structure and composition of DAM[60].

The current effective decellularization protocol is achieved by a combination of 
physical, chemical, and enzymatic methods (Table 2). Usually, the first step is to 
destroy the cell membrane components by physical means (freezethaw cycle[26] and 
homogenization[28,81]). Second, chemical methods include the use of detergents[33]

/nondetergents[82] to dissolve cytoplasmic and nuclear components and alcohols (such 
as isopropanol[26,83,84]) to remove lipid residues. Finally, cell residues and degraded 
nucleic acid fragments are removed by enzymatic methods[28,68,81] (including DNase and 
RNase). The above steps can be combined with continuous mechanical stirring and 
shaking, to shorten the action time of reagents, improve efficiency, and reduce 
structural damage[62,85,86]. In addition, in order to avoid the immune response caused by 
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Table 2 Comparison of each physical, chemical, and biological treatments in the adipose tissue decellularization protocols

Agent/method Function or advantages Impact or disadvantages

Physical

Ice crystals destroy cell membranes Ice crystals also destroy the continuity of

Preserve component integrity DAM composition and microstructure

Freezing thawing

Reduce immune response

Homogenization Fully destroy the cell membrane structure and promote dissociation 
from basement membrane

Mechanical shear forces break the microstructure and 
component continuity

Cleave the cell membrane Stirring forces destroy microstructureConstant stirring

Full exposure accelerates the effect of chemical agents Mechanical properties are affected

Mechanical processing Promote cell membrane rupture and release from the basement 
membrane

Pressure directly destroys microstructure; 
ultrastructure and basement membrane integrity are 
destroyed

SC-CO2 treatment Supercritical inert gas penetrates tissues to remove cell 
residues/sterilization

Entrainer may reduce structural composition; 
supercritical pressure may destroy the structure

Ultrasonic Ultrasonically break cell membrane -

Chemical

Hypotonic/hypertonic 
solutions

Dissociate DNA from proteins; Osmotic pressure ruptures cell 
membranes

Little influence on the structure and composition of 
DAM

Alcohols

Isopropanol Cell dehydration, cell membrane lysis

Ethanol Effectively remove lipid residue

DAM protein components are precipitated; destruction 
of ultrastructure; degreasing alone has poor effect

Acids and bases

Acetic acid Hydrolyze biomolecules to remove residual nucleic acids; little effect 
on the structure; better retention of GAGs components

Some collagen components are destroyed and removed; 
reduced strength of DAM; collagen, growth factors, 
and GAGs are damaged

Peracetic acid Little effect on the structure and composition of DAM

Nonionic detergents

Triton X-100 Disturbing DNA–protein, lipid–lipid, and lipid–protein associations; 
moderate effect/stable in solution

Destruction of ultrastructure; remove GAGs

Agent/ Methods Function or advantage Impact or disadvantage

Ionic detergents

SDS

Sodium deoxycholate

Triton X-200

Effectively remove cellular nucleic acid components/destruction of 
cell membrane phospholipids and lipoproteins/dissolving antigen 
and eliminating immune complexes

Disturbing protein–protein association; growth factor 
removal; destroy ultrastructure, GAGs ingredients; 
residue of the reagent causes cytotoxicity

Biologics

Trypsin Cleavage of the C-side peptide bond of Arg and Lys Remove fibronectin, elastin, and GAGs components; 
damage degree of DAM composition and 
microstructure is highly time-dependent

Nucleases (DNase, 
RNase)

Cleavage nucleotides sequence Difficult to remove residue from DAM; residual effects 
on host recellarization; causes host immune response

Lipase and colipase Remove residual lipids Destruction of ultrastructure; removes GAGs; efficiency 
of lipid removal is low

EDTA Dissociation of metal ions plays a supporting role in tissue 
decellularization

Destruction of protein–protein linkages; poor 
application alone

SDS: Sodium dodecyl sulfate; EDTA: Ethylenediaminetetraacetic acid; SC-CO2: Supercritical carbon dioxide.

the residues of chemical and enzymatic substances, thorough washing at each step is 
essential[26]. Flynn et al[26] was the first to prepare complete DAM through the above-
mentioned comprehensive method. After 5 d of nondetergent solution, DAM was 
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Figure 1  Preparation, characterization, different forms, and applications of decellularized adipose matrix. DAM: Decellularized adipose matrix.

finally obtained with a high retention rate (30%-45% of the original amount). After a 
series of characterizations, components such as collagens I and IV and laminin of 
DAM, which are important for adipogenesis and stem cell proliferation, are 
retained[26]. This method has been widely used and improved by many researchers 
subsequently.

Physical treatment
The physical treatment method has had the following improvements. First, the 
number of cycles is increased based on three freezethaw cycles[67,68,78,87-89] or the freezing 
temperature is reduced from -80 to -196 °C (liquid nitrogen)[67,78,88,89] or adding 
ultrasonic treatment[25,87] during the freeze-thaw process. According to the research, 
within a certain range (1-5 times), increasing the number of freezethaw cycles will not 
have much effect on the microstructure of DAM, and cell debris and residues cannot 
be removed only by freezethaw treatment. With the increase in the number of freeze-
thaw cycles (6-18 times), the microstructure of DAM is damaged[78]. Second, Choi 
et al[28,81] changed the freezethaw treatment to homogenization. The homogenization 
can quickly and fully damage the cell membrane structure, but the longterm effect of 
mechanical shear force destroys the microstructure of DAM and results in the loss of 
specific components (such as laminin)[28,81]. Subsequently, Kim et al[90] reduced the time 
of homogenization, to protect the integrity of DAM structure and composition[23,24]. 
Third, Young et al[62] replaced freezethaw and homogenization with continuous stirring 
or mechanical pressing, with the aim of accelerating chemical and enzymatic surface 
contact in the later stages to shorten reaction time[31,86]. Fourth, Wang et al[91] tried to use 
the advanced technology of supercritical carbon dioxide (SC-CO2), and only used 
ethanol as an entrainer to decellularize and degrease adipose tissue to obtain DAM. 
Finally, Pati et al[92] abandoned the physical processing steps and directly used 
chemical and enzymatic methods to obtain DAM[33,34,64].

Chemical treatment
Chemical methods also have different application modifications. Alcohol, acid/base, 
or ionic/nonionic detergents affect the structure and composition of DAM to varying 
degrees. Hypertonic saline dissociates DNA from proteins in a gentle way to achieve 
decellularization and has little effect on the microstructure and composition of 
DAM[69,71,89,93]. Although the types and concentrations of alcohols are not the same, there 
seems to be no significant difference in lipid removal[25]. Alcohols such as isopropanol, 
n-propanol, and ethanol are superior to lipase in removing lipids from tissues. They 
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can remove lipids in a short period of time, but at the same time, they can also 
denature the protein components of DAM (such as collagen and LN) and destroy the 
ultrastructure[22]. Therefore, caution should be exercised when using them. Acidic 
reagents can hydrolyze the biomolecules of tissues, acetic acid may cause damage to 
certain collagen components and reduce the structural stability of DAM[88], while 
peracetic acid is a commonly used disinfectant and can also be used as a 
decellularizing agent because it can gently remove residual nucleic acids. It has little 
effect on the composition and structure of DAM[22,31,92,94]. In general, ionic detergents 
(including SDS and sodium deoxycholate) are more effective in removing cellular 
components than nonionic detergents (such as Triton X-100), but they also damage the 
ultrastructure of DAM, and more GAGs and growth factor components are also 
removed[95]. The comprehensive application of multiple chemical agents may 
aggravate the loss of DAM components (such as GAGs and collagen) and destruction 
of the structure (including mechanical properties)[60].

Biological treatment
Nuclease, trypsin, lipase, and EDTA are widely used as biological reagents. The 
removal of cell debris and residual lipids or degradation of nucleic acid fragments is 
their main functions. It is also difficult to use enzymes alone to completely remove cell 
residues. In addition, the residues of enzyme reagents may further affect the growth 
and differentiation of stem cells, and even cause an adverse immune response in the 
host. Nucleases (DNase, RNase, etc.) cleave nucleotide sequences after cell membrane 
rupture and help remove nucleic acid residues[83,84,96-99]. Trypsin and a chelator (such as 
EDTA) are often used in combination. Trypsin can efficiently remove cell residues and 
destroy collagen, elastin, GAGs, and other components, and the damage to the 
structure and components of DAM also increases with the time of action (time 
dependent)[83,84,93,96-99]; EDTA helps DAM proteins dissociate from cells. These two 
reagents have a poor effect when used alone, and only when combined can they play a 
synergistic role, and EDTA can reduce trypsin digestion time and reduce tissue 
damage[22,67,89]. Lipase and co-lipase are often used in combination to remove residual 
lipids[32,62,85]. In addition, Poon et al[23] used guanidine alone or combined with 
hydrochloric acid to remove lipid residues, and the growth factors detected in DAM 
were well retained[24,100].

Different sterilizations of DAM
After preliminary preparation, it is important to sterilize the prepared DAM when 
conducting in vivo or in vitro experiments. This mainly removes bacteria and viruses. 
At present, the methods for sterilizing biological scaffolds mainly include alcohols, 
acids, ethylene oxide, UV irradiation, and SC-CO2. The prepared DAM is usually 
stored in a 1% penicillin and streptomycin solution at 4°C[96-98,101,102], and then sterilized 
with 70% ethanol solution. Some researchers use 100% ethanol alone to sterilize 
biological scaffolds[25]. Four percent ethanol solution and 0.1% peracetic acid are often 
used in combination for sterilization, with significant effect[61,92,103], and they also have 
little effect on the structure and composition of DAM. Wang et al[79] used ethylene 
oxide for sterilization, but the effect on the microstructure of DAM is unclear. 
However, there is no doubt that residual reagents after ethylene oxide treatment may 
cause adverse host reactions and affect the function of the biological scaffold after 
implantation. In addition, Young et al[62,85] used UV radiation for sterilization. During 
the sterilization process, the collagen component of DAM may be partially denatured, 
which may accelerate degradation of the stent material in the body[62,85]. More research 
is needed. As an innovative method, SC-CO2 is applied to the decellularization of 
adipose tissue, and it sterilizes biological materials[91]. The specific impact on biological 
materials needs further comparative research.

CHARACTERIZATION OF DAM
Just as researchers have developed different preparation schemes, there is currently no 
uniform standard procedure for characterizing DAM materials. It is impractical to 
remove all cellular residues, but quantitative analysis of residual cellular components 
(such as phospholipids and double-stranded DNA) is possible. At present, 
characterization of DAM generally includes: Simple evaluation of the general effects of 
decellularization and degreasing of materials using simple histological staining and 
electron microscopy (EM); and DNA quantification, biochemical analysis, and 
mechanical stress testing to further evaluate various aspects of DAM. This section 
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provides a brief summary.

DAM biological characteristics test
For detection of cell residues, the first approach is histological staining and 
biochemical analysis. Simple histological staining including hematoxylin and eosin 
and oil red O staining to roughly check whether the nuclear and lipid components are 
removed[26,28,31,62,104]. Immunohistochemical staining includes DAPI and Hoechst 
staining to determine the presence of visible nucleic acid and cellular component 
residues. This is followed by further biochemical tests, including DNA quantification 
and reverse transcription-polymerase chain reaction analysis. Gilbert et al[105] have 
suggested the criteria for acellular matrix: DNA content < 50 ng/mg dry weight 
double-stranded DNA and DNA fragment length < 200 bp. This standard may be one 
of the most important for the application of biological materials, because hindering the 
further growth and differentiation of stem cells and causing adverse host reactions 
may be directly related to DNA residues.

DAM structure and physical property detection
In terms of detecting the structure and composition of DAM, the microstructure and 
structural stability of DAM are first detected by scanning electron microscopy (SEM) 
and mechanical stress testing[26,92]. As mentioned above, the effect of microstructure on 
stem cells may be crucial, where stiffness is a key indicator[106]. The process of stem 
cells responding to their environment after sensing external forces is called mechanical 
transduction. All types of stem cells have the ability to sense the structure and stiffness 
of DAM[11]. Cell morphology, skeleton, and migration can interact with DAM in the 
short term. The more important effects of proliferation and differentiation are long-
term[106]. The porosity and 3D microstructure of DAM were observed by SEM[26]. 
Mechanical stress tests include Young modulus, storage modulus, and loss modulus, 
which are used to comprehensively evaluate the mechanical integrity, elasticity and 
rheological properties of materials[103]. The compression mechanical test of DAM was 
carried out with a universal testing machine. The sample was compressed to 50% of 
the initial height at a low constant rate. The compressive modulus was calculated 
using a linear region of stress-strain curve[103]. Perea-Gil et al[107] used the atomic force 
microscopy to determine the mechanical properties of decellularized myocardium 
tissue samples, such as stiffness and Young's modulus. This is followed by further 
analysis of its composition by staining and biochemical analysis. Masson trichrome 
staining can quickly and easily detect gross collagen components. Immuno-
histochemical staining can detect components such as types I, IV, and VI collagen, 
laminin, fibronectin, and elastin in more detail[26,62]. However, there is currently no 
effective detection for the quality of these proteins in DAM. The specific contents of 
DAM (such as TGF-β and VEGF) and GAGs can be accurately detected and analyzed 
by ELISA[33].

DAM biocompatibility testing
In terms of biocompatibility, coculture of DAM with mesenchymal stem cells (mainly 
ASCs) to detect the adhesion and proliferation of stem cells on the material is 
required[30,69,82]. Flynn et al[26] verified the fat regeneration potential of the acellular 
matrix by detecting expression of adipogenic genes such as PPARγ and C/EBPα. They 
also found that the GAPDH activity of DAM differed when prepared from adipose 
tissue with different body mass index (BMI; BMI is inversely proportional to GAPDH 
activity)[26]. LIVE/DEAD analysis was performed by staining living and dead cells 
using a combination of Calcein and EthD-1[28,62]; Kokai et al[33] used calcein AM to 
further stain the cocultured material, and then used laser confocal imaging to show 
different colors to infer the depth of the stem cell infiltration of the scaffold material. 
SEM at different times shows the dynamic interaction process of stem cells and 
materials at the microscopic level. At the same time, the authors exposed ASCs to the 
adipose matrix for 21 d, and then used boron-dipyrromethene staining, followed by 
confocal imaging to observe the increase in lipid content. After transplanting DAM 
with/without stem cells into the subcutaneous tissue of animals, hematoxylin and 
eosin, Masson, and perilipin A immunofluorescence staining were used to observe 
adipose tissue regeneration in vivo[33].
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DIFFERENT FORMS OF DAM
After degreasing and decellularizing, DAM can be processed into different shapes of 
biological scaffolds and used with or without stem cells. It can be roughly divided into 
injectable and implantable types according to different usage methods.

The main advantages of injectable DAM are convenience and noninvasiveness, 
including powders and gels. DAM powder is digested into gel with pepsin, and then 
the pH is adjusted to the normal range with sodium hydroxide solution. During use 
and storage, the temperature should be controlled below 10 °C to prevent curing[62]. 
DAM (powder or gel) is usually absorbed to varying degrees after implantation. Some 
researchers have tried to use polymer crosslinking, which slows down the rate of stent 
degradation and enhances angiogenesis and fat induction[86].

The advantage of implantable DAM is that the structural integrity is preserved, 
including foam and sheets. Foam-like DAM is lyophilized into porous foam by 
dissolving with α-amylase, which has a milder effect than pepsin. Another type of 
bead foam is that the DAM solution is rapidly frozen after electrospray technology, 
and then freeze-dried at low temperature. Chemical crosslinking is avoided, and in 
vivo experiments have confirmed that foamed DAM has fat-forming ability and 
biocompatibility[83]. The DAM is cast in a superficial mold, and a sheet-like DAM is 
obtained after freeze-drying. Experiments have shown good mechanical integrity and 
multicellular compatibility[93].

DAM can also be combined with other artificial composite materials, such as 
methylcellulose (MC)[100], methacrylated glycol chitosan (MGC)[84], methacrylate 
chondroitin sulfate (MCS)[84], and polycaprolactone (PCL)[92], to be used as stem cell 
growth scaffolds. It has been shown in vitro that composites can effectively enhance 
host stem cell invasion and angiogenesis[32]. The use of PCL/DAM composites as bio-
ink for 3D printing has boomed in recent years. This open porous structured scaffold 
has been verified in vitro to have better oxygen and nutrient exchange capacity than 
ordinary DAM gels[92,103].

PRECLINICAL STUDIES ON APPLICATIONS OF DAM
At present, as a biological scaffold for tissue engineering, DAM is used alone[33] or in 
combination with stem cells[69] in various fields, including adipose tissue engineering, 
wound healing, nerve repair, cartilage and bone tissue engineering, and in vitro 
biomimetic system research.

Adipose tissue engineering
DAM is the most widely studied as a filler for soft tissue defects. Stem cells are seeded 
on DAM and injected or transplanted into subcutaneous tissue, which provides a 
natural microenvironment for the growth of stem cells to further promote 
adipogenesis and angiogenesis. After coculture of DAM and ASCs, DAM can express 
the adipogenesis markers PPARγ and C/EBPα (major regulators of adipogenesis and 
differentiation) at high levels without exogenous adipogenesis induction compared to 
ordinary monolayer cultures such as Triplicate tissue culture polystyrene and Cell 
Aggregate[26]. Expression of these two genes plays a cross-regulatory role in the entire 
adipogenic differentiation and plays an important role in maintaining the 
transformation of adipocytes to mature phenotypes. After ASCs/stromal cells were 
seeded in DAM microcarriers and then cultured in a low-shear fine-tuning culture 
system for adipogenic culture, expression of the adipogenic genes PPARγ, C/EBPα, and 
LPL was higher than that of ordinary gelatin microcarriers[30]. This indicates that DAM 
plays an important role in mediating adipogenic differentiation of ASCs. After 
implanting DAM loaded with ASCs into the subcutaneous tissue of rats or nude 
mice[69], the implanted area showed significant recellularization and angiogenesis[32,108]. 
This shows that DAM plays an important role in supporting stem cell infiltration and 
tissue remodeling. Han et al[98] used ASCs for seeding on DAM bioscaffolds, and then 
implanted them into the subcutaneous tissue of rats. Cell tracking technology was 
used to verify that the new adipose tissue originated from the host[98], and ASC-seeded 
DAM contributed to fat formation by promoting neovascularization and modulating 
the inflammatory response. In addition, research on the combination of DAM and 
artificial composites is also developing. For example, light crosslinked MGC/MCS and 
DAM form a composite biological scaffold. In vitro studies showed that DAM can also 
enhance the viability, retention, and lipid accumulation of ASCs. MCS composites 
containing 5 wt% DAM were transplanted into the subcutaneous tissue of rats. After 
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12 wk, it was observed that DAM seeded with ASCs significantly increased 
regeneration of adipocytes[83,84]. ASCs were seeded in 3D printed PCL/DAM composite 
bioscaffolds and then implanted into the subcutaneous tissue of nude mice. The results 
after 12 wk showed that there were a reasonable number of mature adipocytes and 
functional blood vessels in the DAM area[92].

Wound healing
Clinically, deep burns or large skin trauma are usually treated by flap transfer surgery. 
Patients often have infections, fluid loss, and electrolyte disorders[109-112]. Lee et al[113] 
used DAM sheet scaffold dressing to treat full-thickness skin wounds on the back of 
rats. The results showed that the wound healing rate, epithelial formation rate, and 
microvascular density were significantly higher than those of ordinary wound 
dressings[113]. Woo et al[114] applied a double-layer dressing (the upper layer was made 
of titanium dioxide and chitosan film by electrospinning, and the lower layer was 
DAM) to a full-thickness wound in rats. It was showed that it can accelerate the 
induction of fresh granulation tissue regeneration and reduce epidermal scar 
formation. These results indicate that the components of DAM (such as collagen, 
laminin, fibronectin, and GAGs) and various growth factors (such as VEGF and bFGF) 
can promote regeneration of the ECM in the wound area, further recruit adipose stem 
cells, fibroblasts, and epithelial cells to accelerate tissue reconstruction and vascular 
regeneration[114].

Nerve repair
Regeneration is difficult after nerve tissue damage. Lin et al[89] used DAM containing 
ASCs in a rat cavernous nerve injury model, and showed the best recovery of erectile 
function in rats with DAM seeded with stem cells, but the results did not reach 
statistical significance due to large differences. However, we also saw substantial 
recovery of erectile function and histological improvement associated with DAM 
seeded with ASCs, which has potential for clinical application in the future[89].

Cartilage and bone tissue engineering
Cartilage is difficult to repair due to its nonvascular nature and long-term wear and 
tear. Cartilage-derived ECM has been used in research on cartilage regeneration[115,116]. 
The cartilage decellularized matrix seeded with ASCs can completely repair articular 
cartilage defects with hyaline cartilage. At the same time, the contents of GAGs and 
type II collagen and biomechanical properties have been proven to be comparable to 
those of natural cartilage[115]. Adipose-derived mesenchymal stem cells are also used 
for cartilage regeneration, which differentiates into chondrocytes and can produce 
important proteins required for articular cartilage (such as the mucus glycoprotein 
Lubricin)[117-119]. This alternative treatment has proven to be effective. However, due to 
limited resources, the prospect of clinical application is limited. Choi et al[81] have 
prepared an ECM/stem cell composite, which formed cartilage-like tissue after being 
cultured in cartilage induction medium for 45 d, and at the same time, the expression 
of cartilage-specific GAGs and type II collagen increased. This shows that DAM 
containing endogenous active factors can support cartilage differentiation of human 
ASCs and help with cartilage-specific glycoprotein and collagen synthesis[81], which 
has potential clinical value in the synthesis of cartilage-like tissue.

Bone has significant capacity of regeneration, but patients with large-scale bone 
defects need surgical autogenous bone transplantation, which causes damage and 
infection of the donor site[120-122]. Artificial composite scaffolds are poorly biocompatible 
and cannot support vascular regeneration and bone tissue growth[122], while the source 
of acellular bone tissue is insufficient to meet clinical needs[123,124]. Mohiuddin et al[125] 
used DAM hydrogels to treat C57BL/6 mice for critical size repair of femoral defects. 
The results showed that hydrogel can enhance expression of type I collagen and 
osteopontin, while the hydrogel-treated group significantly enhanced bone 
regeneration in vivo[125].

Bionic research in vitro
The composition and structure of DAM show that it can mimic the natural 
microenvironment of stem cells and even tumor cells in the body. Research shows that 
when  seeding  on  DAM or  chemica l ly  modi f ied  DAM[30,31,33,64,74,84,92,96,126], 
ASC[76,81,84,89,93,85,82,98,104,127], smooth muscle cells[90], umbilical vein endothelial cells[90], 
chondrocytes[90], and neuroblasts[25] can maintain high viability and excellent 
proliferation, indicating that DAM may become the ideal 3D culture system for the 
large-scale expansion of stem cells in vitro. Dunne et al[93] used DAM as a 3D cell 
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culture system and established a human breast cancer in vitro bionic system to study 
the growth of breast cancer cell lines (MCF-7, BT474, and SKBR3) and the sensitivity of 
anticancer drugs (lapatinib and doxorubicin). This restored the original characteristics 
of breast cancer cell growth in vivo, and expression of adhesion molecules in tumors in 
vivo. This is undoubtedly beneficial to the screening and research of antitumor 
drugs[93].

CLINICAL TRIAL ON APPLICATION OF DAM
Most studies on DAM were preclinical studies combined with stem cells. Recent 
research has shown that stem-cell-free DAM can also promote adipose tissue 
regeneration. For the first time, Kokai et al[33] applied DAM alone to a clinical trial. 
DAM prepared from cadaveric human adipose tissue was applied to the subcutaneous 
tissue of nude mice and the subcutaneous wrist dorsum of humans. After 24 wk in 
vivo, the material retention rate was 44% ± 16%, and the regeneration of adipocytes 
could be clearly observed by immunofluorescence assays, such as perilipin A. Clinical 
trials evaluated biocompatibility, volume retention, and soft tissue regeneration over a 
16-wk period. There were wrist pain, redness, swelling, and itching at the initial stage 
during the observation period, which may have been related to the initial 
inflammation. At 16 wk, the average graft retention was about 47%. No inflammation 
or necrosis was observed in pathological observation, and adipose tissue was formed 
around the dilated vessels. Although the study had many limitations, the role of DAM 
in promoting adipose regeneration was verified[33].

OTHER APPLICATIONS
As an important endocrine organ, adipose tissue is closely related to many metabolic 
diseases such as diabetes mellitus (DM). The specific mechanism of how the ECM is 
involved in regulating adipocyte metabolism is unclear. The relationship between 
DAM and DM has been the focus of research. The ECM of adipose tissue is closely 
related to metabolic diseases. Factors such as hypoxia, inflammation, and fibrosis of 
the ECM are related to insulin resistance and DM[128-132]. After collecting visceral and 
subcutaneous adipose tissue, Baker et al[99] used metabolic assays to measure glucose 
uptake, lipolysis, and adipogenesis in adipocytes in normal cell culture and 3D DAM 
culture. The results show that DAM with diabetes can cause metabolic dysfunction in 
adipocytes of non-DM patients; nondiabetic DAM can rescue metabolic dysfunction in 
adipocytes of DM patients. This indicates that the ECM is involved in regulating 
glucose uptake and lipolysis as a target for manipulating adipose tissue metabolism[99].

Autologous fat transplantation is used in the clinic to treat vocal cord paralysis. 
Although biocompatible, its unpredictable absorption rate is also a limitation[133,134]. 
Kim et al[100] used the MC/DAM composite hydrogel for rabbit vocal cord paralysis 
studies, and showed that the composite hydrogel group had no early absorption after 
8 wk, and the physiological symmetry of vocal cord vibration returned to normal 
levels. The composite hydrogel overcomes the shortcoming of the indefinite 
absorption rate of autologous fat transplantation. Its good biocompatibility and 
positive functional recovery make it possible for clinical use as stable vocal cord 
enhancement laryngoplasty[100].

CONCLUSION
In the past 10 years, the preparation of DAM has been improved by different 
decellularized techniques. The material retains the main collagen components and 
most structural proteins and growth factors. This biologically active system can recruit 
host stem cells and mimic the growth microenvironment to promote the regeneration 
of soft tissues. Furthermore, DAM can be processed into different forms for different 
applications. For DAM, preliminary progress has been made in soft tissue regeneration 
and metabolic diseases. The combination of DAM with stem cells or growth factors has 
important value in preclinical studies such as wound healing, nerve repair, cartilage 
and bone tissue engineering, and bionic system. It is believed that with further 
exploration and research on DAM, it will play a major role in the field of stem cells 
and soft tissue regeneration.
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However, residues of chemical and enzymatic reagents in the current preparation 
methods are still problems to be resolved. At the same time, the microstructural 
destruction and component loss (such as collagen and protein) caused by 
decellularized reagents and inefficient acellular technology are problems that require 
improvement. Will it be possible to develop a high-efficiency and high-retention 
decellularization technology based on physical methods to obtain a more complete 
DAM in the future? Considering this, a deep understanding of the cascade interaction 
in tissue regeneration, which is induced by DAM structural proteins and infiltrating 
host stem cells, is required.
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