
World Journal of
Stem Cells

ISSN 1948-0210 (online)

World J Stem Cells  2020 August 26; 12(8): 706-896

Published by Baishideng Publishing Group Inc



WJSC https://www.wjgnet.com I August 26, 2020 Volume 12 Issue 8

World Journal of 

Stem CellsW J S C
Contents Monthly Volume 12 Number 8 August 26, 2020

THERAPEUTIC AND DIAGNOSTIC GUIDELINES

Hunting down the dominating subclone of cancer stem cells as a potential new therapeutic target in 
multiple myeloma: An artificial intelligence perspective

706

Lee LX, Li SC

OPINION REVIEW

Off-the-shelf mesenchymal stem cells from human umbilical cord tissue can significantly improve 
symptoms in COVID-19 patients: An analysis of evidential relations

721

Pham PV, Vu NB

REVIEW

Mesenchymal stromal cells as potential immunomodulatory players in severe acute respiratory distress 
syndrome induced by SARS-CoV-2 infection

731

Mallis P, Michalopoulos E, Chatzistamatiou T, Stavropoulos-Giokas C

Practical choice for robust and efficient differentiation of human pluripotent stem cells752

Fang M, Liu LP, Zhou H, Li YM, Zheng YW

Human embryonic stem cells as an in vitro model for studying developmental origins of type 2 diabetes761

Chen ACH, Lee KF, Yeung WSB, Lee YL

Autophagy in fate determination of mesenchymal stem cells and bone remodeling776

Chen XD, Tan JL, Feng Y, Huang LJ, Zhang M, Cheng B

Stem cell therapy for Alzheimer's disease787

Liu XY, Yang LP, Zhao L

Exosomes derived from stem cells as an emerging therapeutic strategy for intervertebral disc degeneration803

Hu ZL, Li HY, Chang X, Li YY, Liu CH, Gao XX, Zhai Y, Chen YX, Li CQ

Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine814

Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX

ORIGINAL ARTICLE

Basic Study

Assessment of tobacco heating system 2.4 on osteogenic differentiation of mesenchymal stem cells and 
primary human osteoblasts compared to conventional cigarettes

841

Aspera-Werz RH, Ehnert S, Müller M, Zhu S, Chen T, Weng WD, Jacoby J, Nussler AK



WJSC https://www.wjgnet.com II August 26, 2020 Volume 12 Issue 8

World Journal of Stem Cells
Contents

Monthly Volume 12 Number 8 August 26, 2020

Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure857

Bahrehbar K, Rezazadeh Valojerdi M, Esfandiari F, Fathi R, Hassani SN, Baharvand H

SYSTEMATIC REVIEWS

Role of mesenchymal stem cell derived extracellular vesicles in autoimmunity: A systematic review879

Wang JH, Liu XL, Sun JM, Yang JH, Xu DH, Yan SS



WJSC https://www.wjgnet.com III August 26, 2020 Volume 12 Issue 8

World Journal of Stem Cells
Contents

Monthly Volume 12 Number 8 August 26, 2020

ABOUT COVER

Editorial Board member of World Journal of Stem Cells, Dr. Perez-Campo is currently an Associate Professor in the 
Department of Molecular Biology at the University of Cantabria (Spain). She obtained her degree in Biological 
Sciences from the University of Salamanca (Spain), where she then went on to complete her PhD in 1999. Dr. Perez-
Campo undertook her postdoctoral research at the Paterson Institute for Cancer Research (United Kingdom; 
currently known as Cancer Research UK Manchester Institute) under the supervision of Prof. Lacaud, where she 
remained for more than 10 years working in the field of stem cell biology. Upon returning to Spain, she joined the 
University of Cantabria and focused her research efforts on the molecular mechanisms that control mesenchymal 
stem cell (MSC) differentiation towards the osteoblastic and adipogenic lineages, and how those mechanisms are 
altered in osteoporosis. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Stem Cells (WJSC, World J Stem Cells) is to provide scholars and readers from 
various fields of stem cells with a platform to publish high-quality basic and clinical research articles and 
communicate their research findings online. WJSC publishes articles reporting research results obtained in the field 
of stem cell biology and regenerative medicine, related to the wide range of stem cells including embryonic stem 
cells, germline stem cells, tissue-specific stem cells, adult stem cells, mesenchymal stromal cells, induced 
pluripotent stem cells, embryonal carcinoma stem cells, hemangioblasts, lymphoid progenitor cells, etc. 

INDEXING/ABSTRACTING

The WJSC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation 
Reports/Science Edition, Biological Abstracts, BIOSIS Previews, PubMed, and PubMed Central. The 2020 Edition 
of Journal Citation Reports® cites the 2019 impact factor (IF) for WJSC as 3.231; IF without journal self cites: 3.128; 
Ranking: 18 among 29 journals in cell and tissue engineering; Quartile category: Q3; Ranking: 113 among 195 
journals in cell biology; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Stem Cells https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-0210 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

December 31, 2009 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Carlo Ventura https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-0210/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

August 26, 2020 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2020 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1948-0210/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJSC https://www.wjgnet.com 776 August 26, 2020 Volume 12 Issue 8

World Journal of 

Stem CellsW J S C
Submit a Manuscript: https://www.f6publishing.com World J Stem Cells 2020 August 26; 12(8): 776-786

DOI: 10.4252/wjsc.v12.i8.776 ISSN 1948-0210 (online)

REVIEW

Autophagy in fate determination of mesenchymal stem cells and 
bone remodeling

Xiao-Dan Chen, Jia-Li Tan, Yi Feng, Li-Jia Huang, Mei Zhang, Bin Cheng

ORCID number: Xiao-Dan Chen 
0000-0003-2510-348X; Jia-Li Tan 
0000-0001-8176-8318; Yi Feng 0000-
0002-8691-3446; Li-Jia Huang 0000-
0003-2818-940X; Mei Zhang 0000-
0001-8514-0034; Bin Cheng 0000-
0001-7288-806X.

Author contributions: Chen XD 
was involved in the 
conceptualization, funding 
acquisition, and writing of the 
original draft; Tan JL took part in 
the conceptualization, funding 
acquisition, and review and editing 
of the manuscript; Feng Y, Huang 
LJ, and Zhang M participated in 
the provision of resources, and 
review and editing of the 
manuscript; Cheng B took part in 
the conceptualization and funding 
acquisition, and participated in the 
supervision, and writing, review, 
and editing of the manuscript; all 
authors have read and approved 
the final manuscript.

Supported by National Natural 
Science Foundation of China, No. 
81873710 and No. 81900976; 
Guangzhou Foundation for Science 
and Technology Planning Project, 
China, No. 201704030083 and No. 
201704020063; and Guangdong 
Financial Fund for High-Caliber 
Hospital Construction, No. 174-
2018-XMZC-0001-03-0125/C-05.

Conflict-of-interest statement: The 
authors declare no conflict of 

Xiao-Dan Chen, Jia-Li Tan, Yi Feng, Li-Jia Huang, Mei Zhang, Bin Cheng, Hospital of 
Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; 
Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong 
Province, China

Corresponding author: Bin Cheng, DDS, PhD, Professor, Hospital of Stomatology, Sun Yat-sen 
University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of 
Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China. 
chengbin@mail.sysu.edu.cn

Abstract
Mesenchymal stem cells (MSCs) have been widely exploited as promising 
candidates in clinical settings for bone repair and regeneration in view of their 
self-renewal capacity and multipotentiality. However, little is known about the 
mechanisms underlying their fate determination, which would illustrate their 
effectiveness in regenerative medicine. Recent evidence has shed light on a 
fundamental biological role of autophagy in the maintenance of the regenerative 
capability of MSCs and bone homeostasis. Autophagy has been implicated in 
provoking an immediately available cytoprotective mechanism in MSCs against 
stress, while dysfunction of autophagy impairs the function of MSCs, leading to 
imbalances of bone remodeling and a wide range of aging and degenerative bone 
diseases. This review aims to summarize the up-to-date knowledge about the 
effects of autophagy on MSC fate determination and its role as a stress adaptation 
response. Meanwhile, we highlight autophagy as a dynamic process and a 
double-edged sword to account for some discrepancies in the current research. 
We also discuss the contribution of autophagy to the regulation of bone cells and 
bone remodeling and emphasize its potential involvement in bone disease.

Key words: Mesenchymal stem cells; Autophagy; Cell self-renewal; Cell differentiation; 
Cytoprotection; Bone remodeling

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Autophagy is a dynamic recycling mechanism that fuels cellular renovation and 
homeostasis. Recent studies have shed light on an essential role of autophagy in 
orchestrating self-renewal and the multilineage differentiation potential of mesenchymal 
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stem cells (MSCs), thus coordinating bone homeostasis. This review outlines the effects of 
autophagy on MSCs fate determination and cytoprotection under different kinds of 
stresses. Moreover, we emphasize that the involvement of autophagy ensures balanced 
bone remodeling, which will be of significance in facilitating its application as a 
therapeutic target in bone repair and regeneration.
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12(8): 776-786
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INTRODUCTION
Mesenchymal stem cells (MSCs) are a heterogeneous cellular population that can be 
detected in and isolated from bone marrow, adipose, vascular, umbilical cord, 
placenta, skin, and kidney[1-3]. Characterized by their potential of self-renewal and 
differentiation into osteogenic, chondrogenic, and adipogenic lineages, they are 
considered promising therapeutic agents that confer a positive benefit to bone 
maintenance, repair, and regeneration[4]. Therefore, a thorough understanding of the 
underlying mechanisms regulating MSCs function would offer great promise in the 
field of bone regenerative medicine.

Autophagy is a conserved degradation process during which proteins and damaged 
organelles are engulfed by autophagosomes and then fused with lysosomes to be 
degraded for intracellular recycling to fuel cellular renovation[5,6]. There are three types 
of autophagy in mammals, including macroautophagy[7], microautophagy[8], and 
chaperone-mediated autophagy[9], among which macroautophagy is in the spotlight 
for its crucial effects on cell biology and will be henceforth referred to as “autophagy” 
in this review.

Recent evidence has shed light on a fundamental role of autophagy in the fate 
determination of MSCs and the maintenance of bone homeostasis. In addition, 
autophagy has also been implicated as an immediately available cytoprotective 
mechanism in MSCs against stress[10,11]. Dysfunction of autophagy would impair the 
function of MSCs, leading to imbalances of bone remodeling and thus inducing a wide 
range of aging and degenerative bone diseases. Further delineation of the relationships 
among autophagy, MSCs function, and bone homeostasis would uncover new avenues 
for novel therapeutic strategies for bone repair and regeneration.

REGULATORY MECHANISMS OF AUTOPHAGY
Autophagy is regulated by a number of signaling pathways, among which the most 
well-known are the adenosine monophosphate-activated protein kinase (AMPK) and 
the phosphoinositide3 kinase (PI3K)/AKT pathways, which converge on mammalian 
target of rapamycin (mTOR), a well-recognized negative regulator of autophagy that 
integrates nutrient signals[12] (Figure 1). mTOR recruits other regulatory proteins to 
form two distinct complexes, mTORC1 and mTORC2, and mTORC1 is involved in 
autophagy regulation[13].

AMPK is a principal intracellular energy sensor, which conserves energy by 
inhibiting mTOR[14] by phosphorylating and potentiating tuberous sclerosis complex 
(TSC) or by directly binding to RAPTOR, a key subunit of mTORC1[15], and 
consequently inducing autophagy[16]. Furthermore, the PI3K/AKT pathway is also an 
important mTOR modulator that inhibits the mTOR repressor TSC[17], activates mTOR, 
and then blocks autophagy activity[12]. In addition, wnt/β-catenin has been shown to 
be a negative regulator of autophagy, while PTEN induces autophagy by inhibiting 
the PI3K/AKT/mTOR pathway, and activated EGFR/Ras/MEK/ERK, JUK/c-Jun, 
and p38 MAPK signaling pathways have also been revealed as stimulators of 
autophagy[18].

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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Figure 1  Main signaling pathways regulating autophagy. Autophagy is regulated by the adenosine monophosphate-activated protein kinase (AMPK) and 
PI3K/AKT pathways, which converge at mammalian target of rapamycin (mTOR) that functions as a negative regulator of autophagy. AMPK inhibits mTOR by 
phosphorylating tuberous sclerosis complex (TSC), and consequently inducing autophagy. PI3K/AKT pathway inactivates TSC, phosphorylates mTOR, and then 
blocks autophagy activity, while PTEN acts as a brake upstream of Akt. Original elements used in this diagram are from Servier Medical Art (http://smart.servier.com/)
. AMPK: Adenosine monophosphate-activated protein kinase; mTOR: Mammalian target of rapamycin; TSC: Tuberous sclerosis complex.

AUTOPHAGY AND MSCS FUNCTION
Autophagy and the lineage determination of MSCs
Considerable evidence has shown a pivotal regulatory role of autophagy in 
self–renewal capacity and lineage determination of MSCs. Induction of autophagy in 
bone mesenchymal stem cells (BMSCs) may account for a decrease in their S-phase 
population and trigger their differentiation into neurons[19]. Despite some controversy, 
Isomoto et al[20] clarified that rapamycin does not have a spontaneous osteogenic effect 
on MSCs, while most studies have confirmed that autophagy contributes to the switch 
between osteogenesis and adipogenesis of BMSCs. More specifically, MSCs tend to 
accumulate undergraded autophagic vacuoles and undergo little autophagic turnover, 
while osteogenic differentiation of MSCs results in more autophagic turnover[21]. 
Induction of osteogenic differentiation of human gingiva-derived MSCs (HGMSCs) 
potentiates autophagy signaling, while inhibition of autophagy precludes osteoblast 
differentiation of HGMSCs[22]. The autophagy inducer rapamycin promotes osteoblast 
differentiation in human embryonic stem cells (ESC) by interfering with mTOR while 
augmenting the BMP/Smad signaling pathway[23].

Osterix-expressing cells with a specific deletion of TSC1, a positive regulator of 
autophagy, have shown that TSC1 deficiency is responsible for the reduction of bone 
mass, as characterized by inhibition of osteogenesis,  enhancement of 
osteoclastogenesis, and elevation of bone marrow adiposity[24]. Consistently, TSC1 
deficiency in BMSCs results in decreased proliferation and a tendency to differentiate 
into adipocytes instead of osteoblasts[24].

Other studies have provided evidence that early mTOR suppression accompanied 
by late Akt/mTOR activation contributes to osteoblast differentiation of MSCs[25]. 
Accordingly, activation of autophagy by mTOR inhibition facilitates osteoblast 
differentiation[25], though whether late mTOR induction and subsequent autophagy 
inhibition would stimulate or interfere with osteogenesis remains to be elucidated. 
Another study in MC3T3 cells also revealed that early activation and subsequent 
inhibition of AMPK are indispensable for osteoblast differentiation[26]. Given that 
mTOR functions as an inhibitor and AMPK as a stimulator of autophagy, these two 
studies coincide in that autophagy is fueled at first and then abrogated during 
osteoblast differentiation. We theorized that such time-dependent catabolic dynamics 
seem fundamental to ensure the ever-changing energy demands during all stages of 
osteogenesis.

Autophagy in aging/senescence of MSCs
Although several studies have revealed that autophagy is activated during aging in 
cells such as fibroblasts[27] and BMSCs[28], the mainstream view currently is that with 
aging, autophagy decreases in different kinds of tissues, ranging from the kidney to 
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the brain[29,30]. Indeed, it has been reported that autophagy activity is significantly 
reduced in aged BMSCs compared with their young counterparts[31]. Basal autophagy 
has a crucial role in the maintenance of the young state of satellite cells, and 
dysfunction of autophagy leads to cell senescence as indicated by the decrease in 
satellite cell number and function[32]. In addition, blockage of autophagy converts 
young BMSCs to a relatively aged state by impairing their osteoblast differentiation 
and proliferation potential while promoting their adipocyte differentiation ability. 
Correspondingly, activation of autophagy turns aged BMSCs into a young state by 
strengthening osteoblast differentiation and proliferation potential while impairing 
adipocyte differentiation capacity[31]. Likewise, pretreatment with rapamycin 
remarkably alleviates MSC aging induced by D-gal and decreases of p-JNK, p-38, and 
ROS generation, supporting the concept that autophagy exerts a protective role in 
MSCs senescence[33]. This protective effect of rapamycin on MSCs senescence can be 
abolished by increasing the ROS level, and inhibition of p38 can rescue the H2O2-
induced MSCs senescence, which suggests that ROS/JNK/p38 signaling contributes to 
mediating autophagy-delayed MSCs senescence[33].

Collectively, autophagy is a surveillance pathway that tightly controls fate decisions 
of MSCs, and therefore it should be considered when searching for methods to 
maintain the pluripotency of MSCs.

CYTOPROTECTION OF AUTOPHAGY IN MSCS UNDER STRESS
Hypoxic conditions
Autophagy is known to exert cytoprotection for MSCs under stress conditions[34]. It has 
been demonstrated that hypoxia-pretreated MSCs exhibit AMPK/mTOR signaling 
activation, autophagy enhancement, and pro-angiogenic effect improvements[35]. 
Similarly, Zhang et al[36] showed that the autophagy inhibitor 3-methyladenine (3-MA) 
promotes hypoxia-induced apoptosis, while a positive inducer of autophagy, 
rapamycin, decreases hypoxia-induced apoptosis, suggesting that autophagy seems to 
be a protective element in MSCs under hypoxic stress and that atorvastatin could 
improve BMSCs survival during hypoxia by enhancing autophagy via the 
AMPK/mTOR pathway. However, there are also studies showing that hypoxia 
activates the autophagic flux of BMSCs through the AMPK/mTOR pathway and that 
activation of the latter process plays an important role in hypoxia-induced 
apoptosis[37-39]. This complicated scenario might be due to the heterogeneity and site-
specific properties of the MSCs. For instance, BMSCs derived from the mandible have 
higher expression of the stemness markers Nanog, Oct-4, and Sox2, as well as stronger 
autophagy and anti-aging capacities under normoxia or hypoxia, when compared to 
those derived from the tibia[40].

Oxidative stress
A recent study showed that oxidative stress-induced MSCs death could be prevented 
by carbon monoxide, and this protective effect is due to an increase of autophagy[41]. 
Autophagy facilitates the turnover of damaged cellular components, which may result 
in improved cellular survival in the setting of oxidative injury. Therefore, depletion of 
autophagy in MSCs exacerbates oxidative stress-induced MSCs death[41]. Augmenting 
autophagy by JNK activation also protects MSCs against oxidative damage, thereby 
improving MSCs survival[42]. Preconditioning or coconditioning with rapamycin 
alleviates, while 3-MA aggravates, H2O2-induced cell apoptosis[34]. Likewise, H2O2-
treated human MSCs (hMSCs) activates FOXO3 and then induces autophagy in 
response to the elevated ROS level, thus preventing oxidative injury. In line with this, 
suppression of autophagy impairs ROS elimination and the osteogenic capacity of 
hMSCs[43]. However, it is worth noting that these cytoprotective effects of autophagy 
on MSCs in the context of oxidative damage seem to act in a stress severity- and 
duration-dependent manner. Autophagy flux is considered to be a self-defensive 
process during the early stage of MSCs injury induced by H2O2, and this protective 
effect would be abolished after sustained oxidative exposure (i.e., 6 h), as 
demonstrated by increased levels of caspase-3 and caspase-6[34], which indicates that 
adaptive autophagy contributes to an improved survival rate of MSCs under stress, 
while destructive autophagy is induced when it fails to manage excessive stress[44].

Irradiation stress
As the main mechanism by which cells initiate self-protection in a radiation 
microenvironment[45,46], autophagy triggers a DNA damage response by regulating 
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DNA repair and checkpoint protein levels[47]. Some studies have reported that 
autophagy decreases after irradiation, suggesting an impairment in eliminating 
damaged cellular components[48]. Activation of autophagy in MSCs reduces radiation-
generated ROS and DNA damage, leading to the maintenance of stemness and 
differentiation potential[34,49], while suppression of autophagy results in more ROS 
generation, DNA damage, and worsening of self-renewal ability[49]. This radio-
protective role of autophagy on MSCs is further supported by the observation that 
hypoxia increases both the autophagy level and MSCs radioresistance via ERK1/2 and 
mTOR signaling[50-52], suggesting a positive relationship between autophagy and the 
radioresistance of MSCs.

Inflammatory stress
Increasing evidence has shown that autophagy provides a crucial line of induction and 
modulation of the inflammatory status of MSCs. In a TNF-α/cycloheximide-induced 
inflammatory environment, enhancement of autophagy reverses the decreased 
survival rate of MSCs, while inhibition of autophagy aggravates apoptotic 
progression[53]. Nevertheless, there have been reports of the adverse regulatory effects 
of autophagy in MSCs. The inflammatory cytokines TNF-α and IFN-γ synergistically 
enhance autophagy in MSCs, as evidenced by increased expression of BECN-1/
Beclin-1. Knockdown of Beclin1 improves the therapeutic effects of MSCs and increases 
their survival by promoting Bcl-2 expression via the ROS/MAPK1/3 pathway[54,55]. 
Wang et al[56] showed that autophagy is triggered in MSCs in response to a liver fibrosis 
(LF) microenvironment. Of note, autophagy suppression can improve the antifibrotic 
potential of MSCs and this contributes to their inhibitory effects on T lymphocyte 
infiltration as well as the production of inflammatory cytokines TNF-α and IFN-γ[56]. 
Additionally, inhibition of autophagy increases ROS accumulation and MAPK 1/3 
activation in MSCs, which are essential for prostaglandin E2 expression to exert an 
immunoregulatory function, thus resulting in enhanced suppression upon activation 
and expansion of CD4+ T cells and leading to upregulation of the immunosuppressive 
function of MSCs[54]. This implies that autophagy may not always be beneficial in 
protecting the reparative effect of MSCs. Hence, modulating the multifaceted effects of 
autophagy in MSCs would provide a novel strategy to improve MSCs-based therapy.

AUTOPHAGY AND BONE REMODELING
Bone remodeling is dynamic process that helps to maintain bone integrity and mineral 
homeostasis. There are three kinds of cell types involved in bone remodeling: 
Osteoclasts, osteoblasts, and osteocytes[57]. Among them, both osteoblasts and 
osteocytes are derived from BMSCs, while osteoclasts have a hematopoietic origin[58]. 
Osteoclasts are multinucleated cells that initiate bone remodeling by digesting old 
bone, whereas osteoblasts are responsible for synthesizing and secreting bone matrix 
to form new bone[58]. Osteocytes, as the most abundant cell type in bone tissue, are 
pivotal in bone remodeling by coupling osteoblasts and osteoclasts activities[59] via the 
receptor activator of NF-kappa B (RANK)/receptor activator of NF-kappa B ligand 
(RANKL)/osteoprotegerin (OPG) system[57]. Though still in its infancy, growing 
evidence has clarified that autophagy is closely related to bone remodeling mediated 
by osteoclasts, osteoblasts, and osteocytes, by which it exerts a critical role in coupling 
bone formation and bone resorption, thus maintaining normal postnatal bone 
homeostasis[60].

Autophagy in osteoclasts
Previous research has demonstrated that activation of autophagy by AMPK signaling 
inhibits osteoclast differentiation[61]. Moreover, autophagy induced by OPG attenuates 
osteoclast bone resorption via the AKT/mTOR/ULK1 axis[62]. Similarly, autophagy 
favors OPG-mediated inhibition of osteoclast differentiation and bone resorption 
through the AMPK/mTOR/p70S6K signaling pathway[63]. These data highlight a 
negative regulation of autophagy in osteoclastogenesis. However, Cao et al[64] showed 
that inhibiting autophagy suppresses TRPV4-induced osteoclast differentiation and 
osteoporosis via the Ca2+-calcinertin-NFATc1 pathway. In addition, JNK1-induced 
autophagy decreases apoptosis of osteoclast progenitors and stimulates RANKL-
mediated osteoclastogenesis[65], which shows a positive effect of autophagy on 
osteoclast activity, suggesting a potential role of autophagy in initiating bone 
remodeling.
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Autophagy in osteoblasts
Moreover, autophagy promoted by estradiol protects osteoblasts from apoptosis via 
the ER-ERK-mTOR axis[66]. Interestingly, both early proliferation and differentiation 
are not interfered by inactivation of autophagy by FIP200 ablation, a fundamental 
element of mammalian autophagy, while osteoblast terminal differentiation is 
adversely affected, as shown by defective nodule formation[67], which suggests a 
positive role of autophagy in nodule formation. Consistently, osteoblastic 
mineralization is found to be accompanied by activation of autophagy, in which 
vacuoles could act as vehicles for crystals secretion. Thus, osteoblast specific 
autophagy deficient mice exhibit a significant reduction of mineralization and bone 
mass[68]. Bone mass in osteoblast-specific Atg7 conditional knockout (cKO) mice is 
significantly decreased compared with the control, the phenotype of which is caused 
by a decrease of osteoblast number and mineralization, as well as an increase of 
osteoclast number and osteoclast activity[60]. These results mean that autophagy exerts 
a critical role in osteoblast differentiation.

Autophagy in osteocytes
Yang et al[69] suggested a negative correlation between osteocyte autophagy and an 
ovariectomy (OVX) induced oxidative stress condition and bone loss. Reduction of 
autophagy by estrogen deficiency promotes the apoptosis of osteocytes, whereas 
restoration of autophagy strengthens the anti-apoptotic effects to improve osteocyte 
viability[70]. Osteocytes-specific cKO of Atg7, a key gene involved in autophagy, results 
in reduced bone mass, decreased cancellous and cortical bone thickness, and increased 
cortical bone porosity at 6 mo for both male and female mice, which contributes to 
decreases in osteoblast number, bone formation rate, and osteoclast number[71]. In 
addition, EphrinB2 in osteocytes limits autophagy to ensure bone quality by 
controlling mineral accumulation, while dysfunction of the osteocytic EphrinB2-
autophagy signal results in bone fragility[72]. These findings emphasize a central role of 
autophagy in regulating osteocyte biology as well as bone remodeling.

AUTOPHAGY AND BONE DISEASE
Increasing numbers of studies have revealed a crucial role of autophagy in the 
development and progression of many kinds of bone disease, such as osteopetrosis, 
Paget's disease, and osteoporosis[73-75]. Recently, a genome-wide association study of 
wrist bone mineral density caught our attention since it revealed a close relationship 
between osteoporosis and autophagy[76]. Further research demonstrated that MSCs 
from an osteoporosis mouse model induced by estrogen deficiency exhibit reduced 
autophagy, which is associated with abnormal regenerative function[73]. Interestingly, 
restoration of autophagy by administrating rapamycin rescues the regenerative 
function of MSCs and protects OVX mice from osteoporotic development[73]. A similar 
decreased level of autophagy is also observed in OVX rats, while restoration of 
autophagy in osteoblasts by overexpressing autophagy gene damage-regulated 
autophagy modulator (DRAM) inhibits osteoblast proliferation and promotes their 
apoptosis[77]. In addition, activation of autophagy restored bone loss in aged mice[31], 
whereas blockade of autophagy alleviated glucocorticoid-induced and OVX-induced 
bone loss by interfering with osteoclastogenesis[75]. What’s more, defective autophagy 
in osteoblasts results in mouse osteopenia[67]. In experimental models of arthritis, 
rapamycin treatment can reduce the number of osteoclasts and osteoclast formation, 
thus inhibiting bone absorption in young rats[78]. Furthermore, rapamycin reduces 
bone resorption in renal transplant patients[79], enhances osteogenic differentiation in a 
mouse model of osteopenia[80,81], and ameliorates age-induced bone defects in aged 
rats[82]. Further study is warranted to explore the potential application of autophagy 
modulators as preventive or therapeutic strategies in bone disease.

CONCLUSION AND FUTURE PERSPECTIVES
In general, although the prevailing views currently support the hypothesis that 
autophagy contributes to the maintenance of MSCs integrity by preserving their self-
renewal and osteoblast differentiation potential while inhibiting adipocyte 
differentiation, thus orchestrating bone homeostasis (Figure 2), some data are still 
somewhat controversial. To some extent, autophagy is a dynamic process that 
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Figure 2  Role of autophagy in mesenchymal stem cells integrity and bone homeostasis. Autophagy contributes to the maintenance of 
mesenchymal stem cells integrity by preserving their self-renewal and osteoblast differentiation potential while inhibiting adipocyte differentiation, thus orchestrating 
bone homeostasis. Original elements used in this diagram are from Servier Medical Art (http://smart.servier.com/). MSCs: Mesenchymal stem cells.

depends on immediate cellular energy demands. Thus, it is necessary to investigate its 
biological role along a timeline instead of at a single isolated time point. In addition, 
autophagy may act as a double-edged sword, the effects of which are modified in 
response to the features, severity, and duration of a specific stress. Furthermore, the 
latest study emphasizes a critical role of mitochondrial autophagy, or mitophagy, in 
stem cell fate plasticity and determination[83,84]. Effects of an underlying crosstalk 
between autophagy and endoplasmic reticulum stress in MSCs and bone biology 
regulation is also beginning to be uncovered[85]. Further study is needed to lift the veil 
on the pleiotropy of autophagy, its reciprocal and functional interactions with other 
organelles, and their role in MSCs functional orchestration and bone biology 
modulation.
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