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Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from 
dental tissues, and are a desirable source of autologous stem cells. The use of 
DSCs for stem cell transplantation therapeutic approaches is attractive due to 
their simple isolation, high plasticity, immunomodulatory properties, and 
multipotential abilities. Using appropriate scaffolds loaded with favorable 
biomolecules, such as growth factors, and cytokines, can improve the 
proliferation, differentiation, migration, and functional capacity of DSCs and can 
optimize the cellular morphology to build tissue constructs for specific purposes. 
An enormous variety of scaffolds have been used for tissue engineering with 
DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu 
and loaded with biomolecules favorably regulate angiogenesis, cell-matrix 
interactions, degradation of extracellular matrix, organized matrix formation, and 
the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs 
represent a promising cell source for tissue engineering, especially for tooth, bone, 
and neural tissue restoration. The purpose of the present review is to summarize 
the current developments in the major scaffolding approaches as crucial 
guidelines for tissue engineering using DSCs and compare their effects in tissue 
and organ regeneration.

Key Words: Cell transplantation; Regenerative medicine; Tissue engineering; Neural crest; 
Angiogenesis; Biomolecules

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v12.i9.897
http://orcid.org/0000-0002-6284-0764
http://orcid.org/0000-0002-6284-0764
http://orcid.org/0000-0002-4557-3270
http://orcid.org/0000-0002-4557-3270
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:gorjial@uni-muenster.de
mailto:gorjial@uni-muenster.de


Granz CL et al. Dental stem cells and scaffolds

WJSC https://www.wjgnet.com 898 September 26, 2020 Volume 12 Issue 9

Peer-review started: May 4, 2020 
First decision: May 24, 2020 
Revised: June 5, 2020 
Accepted: August 16, 2020 
Article in press: August 16, 2020 
Published online: September 26, 
2020

P-Reviewer: Ding JX, Wakao H 
S-Editor: Yan JP 
L-Editor: Webster JR 
P-Editor: Xing YX

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Dental stem cells have been used for different types of cell transplantation 
therapies, including teeth, bone, and neural tissue regeneration. In planning for successful 
tissue engineering toward organ-specific regeneration, choosing an appropriate scaffold 
that mimics the extracellular matrix in native tissue and loaded with suitable biomolecules 
to boost dental stem cell functions is of utmost importance.

Citation: Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in 
developing novel therapeutic strategies. World J Stem Cells 2020; 12(9): 897-921
URL: https://www.wjgnet.com/1948-0210/full/v12/i9/897.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i9.897

INTRODUCTION
Stem cells are undifferentiated cells with self-renewing and clonogenic capabilities, 
which can differentiate into various cell lineages. According to the basis of their origin, 
stem cells are categorized as embryonic, induced pluripotent stem cells (iPS), and 
adult (tissue-specific) stem cells[1-3]. Based on their differentiation potential, stem cells 
can be classified as totipotent (the ability to give rise to all types of cells), pluripotent 
(the potential of the cells to produce any type of cells in the organism), multipotent 
(the potential to give rise to cells of their tissue of origin), oligopotent (the potential to 
differentiate into only a few cell types), and unipotent (the ability to produce one cell 
type)[4]. Embryonic stem cells are pluripotent, whereas adult stem cells are limited to 
differentiating into various cell types of their original tissue (multipotent). iPS are 
pluripotent cells that originated from somatic differentiated cells after transduction. 
Adult stem cells exist in different tissues and organs, such as the bone marrow, blood 
vessels, peripheral blood, and skeletal muscles as well as the brain, heart, skin, 
intestine, liver, gonads, and teeth[5-7].

Human mesenchymal stem cells (MSCs), which are multipotent non-hematopoietic 
progenitor cells, have been isolated from both adult and fetal tissues, such as the bone 
marrow, adipose tissue, endometrium, bone, muscle, umbilical cord, blood, Wharton's 
jelly, and amniotic fluid as well as nervous and dental tissues[8]. Human MSCs have 
the potential to differentiate into both mesodermal (osteocytes, adipocytes, and 
chondrocytes) and non-mesodermal (endodermal and ectodermal) lineages 
(hepatocytes and neuronal cells)[9] with both anti- and pro-tumorigenic properties[10] as 
well as a limited risk of inflammatory reactions and uncontrolled growth[11]. The 
source of MSCs has a crucial role in the outcomes of stem cell-based tissue 
engineering[12]. Dental stem cells (DSCs) are neural crest-derived cells that can be 
obtained easily from dental tissues of both adults and children; therefore, they are a 
reliable, accessible source of autologous stem cells[13,14]. DSCs are undifferentiated cells 
that have non-limited self-renewal, multipotent differentiation potential, and colony-
forming capacity[15]. DSCs can be isolated from the dental pulp of deciduous, natal, and 
permanent teeth, the periodontal ligament, the apical papilla, the dental follicle, and 
gingival tissue (Figure 1)[16,17]. One of the unique characteristics of DSCs is their ability 
to differentiate into mesodermal, ectodermal, and endodermal cell lineages[18]. DSCs 
from each source are capable of specifically differentiating into various distinct cells, 
including epithelial cells, odontoblasts, osteoblasts, chondroblasts, adipocytes, 
vascular cells, endotheliocytes, neuronal cells, glial cells, photoreceptor cells, and 
muscle cells[19,20]. Although all stem cells obtained from various sources are named 
DSCs in this study, their phenotype, differentiation potential (both in in vitro and in 
vivo conditions) and functional properties (such as biological response during 
differentiation and tissue repair) are different[21]. For instance, stem cells obtained from 
the apical papilla possess greater proliferation ability, express a higher variety of 
neural markers, and induce more uniform dentine-like tissues compared to dental 
pulp stem cells[22-24]. Furthermore, DSCs isolated from exfoliated deciduous teeth exert 
a higher capacity for osteogenic regeneration and a greater proliferation rate compared 
to dental pulp stem cells[25]. DSCs isolated from pulp tissues are the first and most 
frequent cells evaluated for their odontogenic, osteogenic, and neurogenic 
differentiation potentials[26]. This heterogeneity of DSCs is effectively modulated by the 
function of their microenvironment[27]. DSCs obtained from different sources exhibit 

https://www.wjgnet.com/1948-0210/full/v12/i9/897.htm
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Figure 1  Schematic diagram of different sources where dental stem cells can be isolated. Various subpopulations of dental stem cells (DSCs) can 
be classified according to their tissue of origin. DSCs can be derived from the dental pulp stem cells, exfoliated deciduous teeth, periodontal ligament, dental follicle, 
apical papilla, and gingival tissue.

various patterns of cell surface markers (Table 1)[28-31].
DSCs secrete numerous immunomodulatory mediators, such as interleukin (IL)-6, 

IL-10, IL-1β, interferon-γ, and tumor necrosis factor-α as well as transforming growth 
factor-beta (TGF-β), hepatocyte growth factor, and vascular endothelial growth factor 
(VEGF)[32], and do not express the major histocompatibility complex class II antigen[33], 
which suggests their potential in the regulation of immune responses to promote 
tissue regeneration[34]. DSCs from different sources may exert their immuno-
modulatory properties through the suppression of T-cell proliferation and lymphocyte 
activity as well as the activation of T-cell apoptosis[34,35].

The fate of the stem cells (proliferation and differentiation) is regulated via a 
combination of intrinsic and extrinsic mechanisms. Intrinsic mechanisms consist of 
various transcription factors expressed by the cells. Extrinsic mechanisms are signals 
provided by the dynamic microenvironment (or “niche”), including the extracellular 
matrix (ECM), signaling molecules (such as growth factors and hormones), and 
neighboring cells[36,37]. The microenvironment, which is a three-dimensional (3D) 
structure surrounded by specific cells and ECM, protects stem cells from inappropriate 
differentiation, cell damage, and apoptosis and governs tissue maintenance, 
regeneration, and repair[38,39]. In addition to providing a physical microenvironment for 
cells, the ECM gives the tissue its mechanical properties (elasticity and rigidity), 
provides bioactive molecules and cues to residing cells, and establishes an 
environment to facilitate tissue remodeling in response to dynamic processes, such as 
wound healing[40]. Furthermore, the ECM is produced and arranged by tissue-resident 
cells and secreted into the surrounding environment to provide support to the stem 
cells with its bioactive compounds[41]. Stem cell behaviors are reciprocally regulated by 
the ECM and signals from the surrounding cells and molecules. Furthermore, 
inorganic ions, such as calcium and magnesium, as well as metabolic products, such as 
oxygen drive metabolites, and maintain stem cell fate[42].

The nature of the stem cell microenvironment differs in various tissues. In teeth, a 
particular microenvironment exists at specific anatomic sites that regulates the 
behavior of DSCs[39]. Two different stem cell microenvironments have been identified 
in teeth; (1) the pulp cell-rich zone; and (2) the perivascular and perineurium of the 
dental pulp. The pulp is composed of four distinct zones; an outermost layer 
containing the odontoblasts, a cell-free zone (zone of Weil) with no cells and rich in the 
ECM, the cell-rich zone contains stem/progenitor cells, and the pulp core. Dental pulp 
tissue is populated by odontoblasts, fibroblasts, dendritic cells, macrophages, and 
progenitor cells, whereas the pulp core contains dental pulp cells, vessels, nerves, and 
ECM[43]. The induction of odontoblasts, the biological cells of neural crest origin that 
survive throughout life, occurs during tooth development. However, under 
appropriate conditions, DSCs can differentiate into pre-odontoblasts and later 
secretory odontoblasts, which actively participate in reactionary dentinogenesis[44]. 
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Table 1 Dental stem cells obtained from different sources exhibit various patterns of cell surface markers

Markers DPSCs SCEDT PLSCs DFSCs SCAP

Nestin + + + +

Vimentin + + +

SOX2 + + + +

SOX10 + +

Stro-1 + + + + +

Oct-4 + + + + +

EphB +

Nanog + + + +

CD10 + +

CD13 + + + + +

CD14 + + +

CD19 +

CD24 + +

CD25 +

CD29 + + + + +

CD34 + + + + +

CD44 + + + + +

CD45 + + + + +

CD49 +

CD53 +

CD59 + + +

CD73 + + + + +

CD90 + + + + +

CD105 + + + + +

CD106 +

CD117 +

CD146 + + + +

CD150 +

CD166 + +

CD271 + +

SSEA-3 +

SSEA-4 +

TWIST-1 +

c-myc + +

Notch + +

3G5 +

Klf-4 +

FlK1 + +

DPSCs: Dental pulp stem cells; SCEDT: Stem cells obtained from exfoliated deciduous teeth; PLSCs: Periodontal ligament stem cells; DFSCs: Dental follicle 
stem cells; SCAP: Stem cells obtained from apical papilla.
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Odontoblasts produce the main part of the ECM components of dentin and are 
involved in dentin mineralization[45]. The dentin ECM consists of collagen 
(approximately 90%; Type I, III, and V), proteoglycans (such as chondroitin sulfate and 
heparan sulfate), growth factors [such as TGF-β and bone morphogenetic protein 
(BMP)], and enzymes (such as matrix metallopeptidase 1, 2, 3, 9, and 20)[46]. In the 
dental pulp, DSCs also reside in perivascular and perineurium regions[47], which can be 
identified by aldehyde dehydrogenase-1 expression[48]. The EphB/ephrin-B signaling 
pathway reciprocally modulates the attachment and migration of DSCs originated 
from the perivascular niche via the mitogen-activated protein kinase pathway and 
phosphorylation of Src family tyrosine kinases[49].

Pointing to the importance of ECM in maintaining homeostasis for proliferation and 
differentiation of DSCs, several studies have indicated that reconstruction of the 
appropriate microenvironment and boosting its interaction with stem cells are 
essential steps to successful cell therapy[50]. The application of DSCs in stem cell 
therapeutic approaches is attractive due to their simple isolation and efficient 
administration[51]. The multi-lineage capacity of DSCs differentiation to various tissues 
and organs suggests their greater ability than other adult stem cell populations for the 
treatment of different diseases[52]. There is an enormous amount of evidence to indicate 
that DSCs have great potential for therapeutic cell approaches in various diseases, 
including liver disease, diabetes, myocardial infarction, ophthalmologic diseases, 
muscular dystrophy, Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, and 
spinal cord injury[53]. Furthermore, several studies have explored the potential of DSCs 
in the treatment of caries, periodontal disease, oral and maxillofacial defects, and 
alveolar bone atrophy[54,55]. DSCs possess strong immunomodulatory abilities, which 
suggest that they are a favorable cell source for cell transplantation therapy in 
inflammatory disorders[33]. It has been shown that DSCs are more beneficial for axonal 
regeneration than bone marrow stem cells due to their greater release of neurotrophic 
factors[56]. Despite these extensive efforts, several essential parameters still need to be 
optimized for the clinical use of DSCs in cell transplantation therapy. One of the key 
challenges is the lack of an appropriate stem cell microenvironment, which leads to 
short-term survival of DSCs after implantation. To increase cell viability, transplanted 
cells require particular 3D structures with specific ECM components that protect DSCs 
from cell damage, maintain the stem cell homeostasis, and promote mutual biological 
information transfer between stem cells and the ECM[50,57,58]. A large number of 
investigations have been carried out to reconstruct the stem cell microenvironment to 
strengthen the viability, proliferation, and appropriate differentiation of the 
transplanted cells for successful cell therapy[59]. In this context, ECM scaffolds can form 
a desirable microenvironment for DSCs, which serve as a more favorable template for 
tissue repair and reconstruction[60,61]. In this review, we provide a critical overview of 
the role of different biomaterials used to deliver DSCs to damaged tissue and their 
applications to improve, restore, and maintain tissue or organ reconstruction.

DIFFERENT TYPES OF SCAFFOLD FORMULATIONS
The general concept of tissue bioengineering involves three essential components; 
identification of suitable stem cells, development of appropriate scaffolds, and 
induction of potent signals to repair or regenerate human cells, tissues, or organs[62]. 
Biomaterials are essential components for the construction of scaffolds. Tissue 
bioengineering combines scaffolds with various types of stem cells to reconstruct 
damaged tissues (Figure 2). The application of appropriate scaffolds could improve 
DSCs proliferation, differentiation, adhesion, and migration, which may promote their 
ability to repair the injured tissues and regenerate functional organs[63]. Acellular 
tissues, as well as natural and synthetic biomaterials, can be used as the primary 
source for generating scaffolds[64]. Acellular tissue matrices, such as an acellular 
adipose matrix, are derived from animal or human tissues with all cells eliminated 
during manufacture[65]. In addition, the amniotic membrane has been suggested as a 
suitable biological scaffold for the proliferation and transplantation of DSCs[66]. Natural 
biomaterials consist of proteins (collagen, gelatin, fibrin, and silk) and polysaccharides 
(agarose, alginate, hyaluronan, polylactic acid, and chitosan) which tend to be 
biocompatible due to their cellular adhesion sites, such as Arg-Gly-Asp binding 
sequences, and the ability to degrade without releasing toxic substances. However, 
due to the variability of materials, limited mechanical properties, the risk of 
transmitting pathogens, and provoking immune reactions, their formulations need to 
be promoted for stem cell culture[67,68]. Synthetic biomaterials, including polymer-based 
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Figure 2  Schematic diagram of seeding dental stem cells on the hybrid scaffold, differentiation capability, and potential clinical 
applications for the regeneration of different tissues. DSCs: Dental stem cells.

biomaterials (such as polycaprolactone, polylactic acid, poly-lactic-co-glycolic acid, 
polyglycolide, poly-e-caprolactone, and poly-ethylene glycol) and ceramic-based 
biomaterials (such as hydroxyapatite, bioactive glass, and calcium phosphate) display 
a better mechanical property, reproducibility, and electrical conductivity as well as a 
lower degradation rate[68-70]. Furthermore, synthetic biomaterials possess the possibility 
of optimizing the chemical and physical properties of a scaffold for a particular 
application[71]. Hydrogels, which are networks of hydrophilic polymers, can be 
manufactured from natural biomaterials (such as collagen, fibrin, proteoglycans, and 
hyaluronic acid) or synthetic polymers (such as self-assembly peptide molecules or 
poly-ethylene glycol)[37,72,73]. Hydrogels provide tissue-like microenvironments with 
particular cellular signals, desirable biocompatibility, semi-permeable membranes, and 
cell delivery vehicles[74]. Furthermore, a wide range of nanocomposite biomaterials has 
been assembled by merging nanomaterials within the polymeric matrix to promote the 
efficiency of bioactive scaffolds[75].

The desirable properties of a scaffold for stem cell transplantation are 
biocompatibility, biodegradability, mimic the 3D biological microenvironment, 
incorporation of different ECM, pore size, stability, electrical conductivity, porosity, 
non-immunogenicity, interconnectivity, safety (low or non-toxic) and alignment[70,76,77]. 
Various fabrication techniques have been developed to produce different scaffolds, 
such as emulsion freeze-drying, electrospinning, thermally-induced phase separation, 
solvent casting/particular leaching, computer-aided design/computer-aided 
manufacturing, melt molding, rapid prototyping (3D printing, selective laser sintering, 
stereolithography, and fused deposition modeling), nanofiber self-assembly, and 
photolithography[78,79]. The basic tissue engineering procedures consist of appropriate 
scaffold manufacture, hydrogel matrix support, and patterning design. The 
combination of these approaches promotes the development of the desired complex, 
both in tissue structure and function[20,80].

Scaffold-based cultures are conventionally applied in two-dimensional (2D) 
systems. Although 2D systems are a valuable medium for the investigation of basic 
cell biology and preclinical drug testing, data generated in these systems are 
insufficient to translate into in vivo experimental studies[81]. Furthermore, inappropriate 
cell-to-cell and cell-to-ECM contacts, reduction of polarization, and alteration of key 
signaling pathways modulate stem cell differentiation ability[81,82]. Thus, several 3D 
scaffold-based cultures have been developed. Although existing 3D cultures are not 
without limitations, they enhance cell viability, growth, differentiation, and migration 
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and improve cellular communications[82]. Combining DSCs with suitable scaffolds 
offers a promising strategy for cell delivery and transplantation. Two main approaches 
for this combination are cell-based and cell-free tissue engineering. In the cell-based 
approach, stem cells are seeded and cultured onto the scaffold in vitro to produce the 
desired tissue before transplantation[83]. In the cell-free approach, a bioactive scaffold 
with growth and differentiation factors is embedded in the respective tissues, induces 
the homing of resident stem cells, and promotes their proliferation and 
differentiation[84].

Furthermore, the environmental cues, such as various growth factors/morphogens, 
markedly affect the behavior of DSCs seeded in scaffolds and are vital to the success of 
regenerative therapies[85,86]. Several proteins, such as BMP, sialoprotein, fibronectin, 
and osteopontin, are able to coat various types of biomaterials and promote the 
behaviors of DSCs[87]. Pre-treatment of biomaterials with the abovementioned proteins 
could enhance adhesion, differentiation, proliferation, migration, and function of DSCs 
and improve the formation of new tissues[87,88].

DSCS IN COMBINATION WITH SCAFFOLDS FOR TISSUE RESTORATION
DSCs represent an auspicious cell source for tissue engineering, particularly for tooth, 
bone, and neural tissue reconstruction. A vast number of these investigations point to 
the importance of various scaffolds to design effective tissue engineering approaches 
(Table 2).

TOOTH RECONSTRUCTION
The therapeutic role of DSCs in combination with various scaffolds has been 
extensively investigated in restoring tooth damage or loss due to caries, periodontal 
disease, trauma, or genetic disorders[89]. The procedure of dentin formation consists of 
odontoblastic deposition, vascularization, and neuron formation[20]. Among multiple 
approaches to promote dentin formation and teeth tissue regeneration, the application 
of DSCs with a synthetic pre-designed and optimized scaffold is the most accepted 
technique for tooth regeneration[90]. The appropriate scaffold can be implemented with 
DSCs and growth factors to induce the generation of dental tissues, which can 
integrate with the adjacent tissues[16]. Scaffolds developed from either synthetic or 
natural biomaterials have been used for tooth reconstruction. Natural materials, such 
as collagen[91], chitosan/gelatin[92], silk protein[93], alginate[94], hyaluronic acid[95] as well 
as synthetic polymers, such as polyglycolate/poly-l-lactate[96], polycaprolactone-poly 
glycolic acid[97], polylactic acid-co-polyglycolic acid[98], polycaprolactone /gelatin/ 
nano- hydroxyapatite[99], nano-hydroxyapatite/collagen/poly-l-lactide[100] and poly-
ethyl methacrylate-co-hydroxyethyl acrylate[101] were used as scaffold materials for 
dental restoration and regeneration. Several investigations have indicated the 
regeneration of vascularized pulp-like tissue after subcutaneous implantation of tooth 
slices containing DSCs accompanied by an appropriate scaffold, particularly in the 
presence of growth factors such as dentin matrix protein[102,103]. In several experiments, 
a combination of the abovementioned scaffolds was used to promote cell 
differentiation, vascularization, and safety as well as to reduce immunological and 
ectopic complications. The development of a vascularized dentin/pulp tissue in a 
subcutaneously transplanted human root canal containing a poly-lactic-co-glycolic 
acid scaffold seeded with DSCs has been reported[104]. A scaffold consists of a pulp-
specific ECM (an acellular ECM within the hydrogel) and an endothelial ECM 
(collagen-chitosan hydrogels) to promote odontogenic differentiation of DSCs and 
induce extensive vascularization in an in vivo model of a tooth root slice[105]. Comparing 
collagen and gelatin with chitosan, it has been stated that chitosan exerts weaker 
support for human DSCs growth and differentiation[106]. In addition, 3D nano-fibrous 
gelatin/silica bioactive glass hybrid scaffolds provide a suitable microenvironment 
that mimics the architecture and composition of a natural dental micromilieu and 
enhances the growth and differentiation of human DSCs[107]. Furthermore, the 
administration of human DSCs associated with acellular dental pulp resulted in pulp-
like tissue structures and the maintenance of ECM[108]. DSCs seeded in 3D scaffold-free 
stem-cell sheet-derived pellets promote odontogenic differentiation[109].

The application of combined DSCs with the ECM scaffold can be used for root canal 
therapy. It has been shown that DSCs are able to differentiate into functional 
odontoblasts with angiogenic potential[110]. Implantation of a 3D scaffold by shaping 
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Table 2 A vast number of these investigations indicate the importance of various scaffolds to design effective tissue engineering 
approaches

Scaffold Growth factors/bioactive 
molecules Experimental model Target tissue Ref.

Silicon - In vitro Teeth [168]

Collagen sponge SCF In vitro and in vivo (mice) Teeth [126]

Collagen type I and type III SDF-1 In vivo (dogs) Teeth [91]

Collagen type-I and N-acetic acid SDF-1, bFGF, BMP-7 In vitro and in vivo (rats) Teeth [120]

Collagen/chitsosan - In vitro - [129]

Collagen-polyvinylpyrrolidone sponge - Case report Teeth [144]

Silk fibroin SDF-1 In vitro and in vivo (mice) Teeth [123]

Acellular dental pulp ECM - In vivo (mice) Teeth [108]

Intrafibrillar-silicified collagen - In vitro and in vivo (mice) Teeth [169]

Matrigel bFGF-2, TGF-β1 In vitro - [121]

Peptide hydrogel VEGF, TGF-β1, FGF-1 In vivo (mice) Teeth [118]

Gelatin methacrylate hydrogel - In vivo (rats) Teeth [133]

PuraMatrix™ VEGF In vivo (mice) Teeth [134]

Poly-ε-caprolactone and hydroxyapatite SDF-1, BMP-7 In vitro and in vivo (rats) Teeth [124]

Polycaprolactone-poly-glycolic acid BMP-7 In vitro and in vivo (mice) Teeth [97]

Thermoresponsive hydrogel - In vitro and in vivo (mice) Teeth [111]

DL-lactide/co-polymer of L-lactide /DL-lactide, 
and hydroxyapatite tricalcium phosphate

BMP-2 In vitro and in vivo (mice) Teeth [132]

3D hydroxyapatite scaffolds containing peptide 
hydrogels

- In vivo (mice) Teeth [112]

Poly-lactic-co-glycolic acid - In vitro and in vivo (mice) Teeth [104]

Beta-tricalcium phosphate scaffold BMP-2 In vitro and in vivo (mice) Teeth [131]

Collagen sponge - Clinical trial Bone [153]

Collagen sponge - Clinical trial Bone [151]

Collagen sponge - Clinical trial Bone [152]

Chitosan/gelatin BMP-2 In vitro and in vivo (mice) Bone [92]

Arginine-glycine-aspartic acid - In vitro and in vivo (mice) Bone [141]

Granular 3D chitosan - In vitro Neural tissue [193]

Matrigel BMP-9 In vitro and in vivo (mice) Bone [180]

3D nano-fibrous gelatin/silica bioactive glass hybrid - In vitro Teeth [107]

3D gel collagen matrix BMP-2 In vitro and in vivo (rats) Bone [177]

Poly-ε-caprolactone biphasic calcium phosphate - In vitro and in vivo (rabbit) Bone [160]

Glass nanoparticles/chitosan-gelatin - In vitro and in vivo (rats) Bone [159]

3D poly-lactide Extracellular vesicles In vitro and in vivo (rats) Bone [179]

2D monolayer culture/3D poly lactic-co-glycolic - In vitro Bone [174]

Dense collagen gel or acellular - In vivo (rats) Bone [150]

Calcium phosphate cement functionalized with iron 
oxide nanoparticles

- In vitro Bone [166]

Poly-lactic-co-glycolic acid - In vitro and in vivo (rats) Bone [164]

Hydroxyapatite-collagen sponge - Clinical trial Bone [146]
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3D porous chitosan bFGF In vitro Neural tissue [201]

Fibrin and collagen - In vivo (rats) Sciatic nerves [9]

Collagen Tetracycline In vivo (mice) Sciatic nerves [206]

Collagen - In vitro and in vivo (rats) Sciatic nerves [210]

3D alginate/hyaluronic acid NGF In vitro and in vivo (mice) Peripheral nerves [207]

Collagen sponge (DSCs condition medium) - In vitro and in vivo (rats) Facial nerves [211]

3D bio-printing of scaffold-free nervous tissue - In vitro and in vivo (rats) Facial nerves [208]

Chitosan - In vitro and in vivo (rats) Spinal cord [198]

Aligned electrospun poly-ε-caprolactone/ poly-
lactide-co-glycolic acid

- In vitro and in vivo (rats) Spinal cord [202]

bFGF: Basic fibroblast growth factor; BMP: Bone morphogenetic protein; NGF: Nerve growth factor; SDF: Stromal cell-derived factor; SCF: Stem cell factor; 
TGF-β: Transforming growth factor beta; VEGF: Vascular endothelial growth factor; DSCs: Dental stem cells; BMP: Bone morphogenetic protein; ECM: 
Extracellular matrix.

sheet-like aggregates of DSCs with a thermos-responsive hydrogel into the human 
tooth root canal generates pulp-like tissues with rich neovascularization without 
adding growth factors[111]. Furthermore, transplantation of human DSCs with 3D 
hydroxyapatite scaffolds containing peptide hydrogels resulted in vascular ingrowth, 
osteodentin deposition, and pulp tissue formation in immunocompromised mice[112]. 
Using bioengineered methods, it has been shown that it is possible to achieve 
functional teeth with entire roots[113]. The nanofiber hydrogel PuraMatrix is a synthetic 
matrix that is used to create a biocompatible, biodegradable, and non-toxic 3D 
environment for a variety of cells[114]. DSCs injected with PuraMatrix into full-length 
human root canals differentiate into functional odontoblasts; pointing to a novel 
strategy to facilitate root formation in damaged teeth[115]. Several in vitro and in vivo 
studies revealed that the addition of various signaling molecules and growth factors 
[such as granulocyte colony-stimulating factor (G-CSF), stromal cell-derived factor 
(SDF), basic fibroblast growth factor (bFGF), and VEGF] to different scaffolds (both 
natural and synthetic) enhances the regeneration of intra-canal pulp-like tissues via the 
promotion of dentine formation, mineralization, neovascularization, and 
innervation[116]. DSCs transplanted with SDF-1 or G-CSF on a collagen scaffold 
promote pulp reconstruction in an animal pulpitis model[91,117]. Autologous DSCs 
transplanted into a root canal with collagen types I and III associated with SDF-1 after 
pulpectomy in dogs significantly increased the expression of angiogenic and 
neurotrophic factors, indicating the potent trophic effects of the combined scaffold and 
chemokine on neo-vascularization during pulp regeneration[91]. In addition, DSCs 
seeded into peptide hydrogel loaded with FGF-1, TGF-β1, and VEGF differentiated 
into odontoblasts-like cells and formed a vascularized dental pulp-like tissue inside 
the dentin cylinder[118]. Moreover, TGF-β2 increased the odontogenic differentiation of 
DSCs isolated from the apical papilla[119]. DSCs isolated from adult human tooth pulp 
and seeded on the surfaces of 3D collagen gel cylinders exhibited significantly 
increased cellular recruitment when applied with SDF-1α, bFGF, or BMP-7[120]. 
Encapsulating TGF-β1 and FGF-2 in a biodegradable polymer of lactide and glycolide 
microspheres provides the controlled release of growth factors to human pulp cells[121]. 
Furthermore, scaffold composition plays a key role in determining whether the 
application of signaling molecules or growth factors is needed. Various growth factors, 
such as SDF, FGF, TGF-β1, VEGF, and BMP were loaded on different scaffolds, such as 
peptide hydrogel, collagen, gelatin hydrogel, and alginate hydrogel, to enhance 
endodontic regeneration of DSCs[122]. In addition, a silk fibroin scaffold loaded with 
bFGF has been described as a promising scaffold for the proliferation and 
differentiation of DSCs in vitro[123]. Implantation of DSCs with poly-ε-caprolactone and 
hydroxyapatite in association with SDF-1 and BMP-7 generated tooth-like structures 
(putative periodontal ligament and new bone formation) in the mandibular incisor 
extraction socket[124]. In addition to SDF-1, stem cell factor (SCF), a potent chemokine, 
enhances the mobilization and trafficking of stem cells[125]. SCF promoted 
neovascularization and new collagen fiber formation after subcutaneous implantation 
of DSCs with a collagen sponge scaffold in mice. Furthermore, SCF improved DSCs 
migration, proliferation, and chemotaxis in vitro, possibly via the upregulation of ERK 
and AKT phosphorylation[126].
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Sialoprotein is a dominant non-collagenous protein in dentin, which plays a role in 
the induction of dental pulp cell differentiation into odontoblast-like cells and is 
essential for dental pulp stem cell identity and fate[127,128]. Subcutaneous implantation of 
DSCs seeded on a 3D scaffold containing an acellular ECM embedded in a 
collagen/chitosan scaffold led to the production of dental pulp-like tissue and the 
expression of dentin sialoprotein in nude mice[129]. The application of DCSs combined 
with treated dentin matrix, a biological scaffold, has been suggested as a suitable 
therapeutic approach for the reconstruction of the tooth root[130]. Immortalized DSCs 
exhibited potent odontogenic differentiation ability and secreted dentin 
sialophosphoprotein when seeded in a beta-tricalcium phosphate scaffold and BMP-2 
in nude mice[131]. Among three different scaffolds (DL-lactide, co-polymer of L-lactide 
and DL-lactide, and hydroxyapatite tricalcium phosphate), a copolymer of L-lactide 
and DL-lactide showed the highest odontogenic regenerative capacity after the 
addition of DSCs and BMP-2[132].

A few studies have indicated that using a co-culture of DSCs with other stem cells 
improves neovascularization. The co-culture of DSCs and human umbilical vein 
endothelial cells with gelatin methacrylate xenogeneic hydrogel resulted in the 
neovascularization of mouse dental pulp[133]. Transplantation of DSCs and human 
umbilical vein endothelial cells with VEGF seeded into PuraMatrix significantly 
enhanced vascularization and mineralization of mouse vascularized pulp-like tissue 
and osteodentin[134]. In addition, using silk fibroin scaffolds promoted the ability of 
human DSCs in attracting vessels, which leads to the improvement of healing and 
regeneration of damaged tissues[135]. Transplantation of DSCs with a tooth 
fragment/silk fibroin scaffold loaded with SDF-1 resulted in the generation of pulp-
like tissues with vascularity, organized fibrous matrix formation, and dentin formation 
in nude mice[136].

BONE RECONSTRUCTION
An enormous number of studies have been carried out to investigate the role of 
various scaffolds on the bone regeneration capacity of DSCs[137]. The osteogenic 
differentiation ability of DSCs, mostly isolated from dental pulp or periodontal 
ligament, has been well demonstrated in both in vivo and in vitro studies[138]. DSCs 
originating from dental pulp, dental follicle, gingival tissue, and periodontal ligament 
exert different osteogenic capacity[139], which can be modulated by various types of 
biomaterial scaffolds[140]. For instance, an in vivo investigation has shown that DSCs 
from the periodontal ligament encapsulated in an arginine-glycine-aspartic acid 
tripeptide scaffold exhibit a greater ability to repair bone defects by promoting the 
formation of mineralized tissue compared to gingival MSCs[141]. In addition, DSCs 
derived from the dental pulp exhibit great neovascularization potential while 
differentiating into osteoblasts, which subsequently promote bone restoration[142].

The most common scaffolds used to seed DSCs (particularly isolated from human 
dental pulp or exfoliated deciduous teeth) for bone tissue engineering in both 
experimental studies and clinical trials are collagen sponge membrane and 
hydroxyapatite/tri-calcium phosphate granules ceramic[143]. DSCs seeded in collagen 
sponge scaffolds exhibit strong restoration ability in human mandible bone defects[144]. 
The application of DSCs seeded onto a collagen-polyvinylpyrrolidone sponge scaffold 
in the left lower premolar region of a patient with periodontal disease increased bone 
density and decreased tooth mobility, periodontal pocket depth, and the bone defect 
area[145]. Using DSCs with a hydroxyapatite-collagen sponge scaffold to fill the alveolar 
defect in 6 patients with cleft lip and palate resulted in satisfactory bone 
regeneration[146]. A three-year clinical study revealed that the bone tissue regenerated 
following the application of human DSCs seeded on collagen scaffolds was uniformly 
vascularized and compact[147]. However, this study revealed that the new bone 
developed at the implantation sites was compact and different from the normal 
spongy alveolar bone in the mandibles[147]. In contrast, no ectopic bone formation was 
observed when DSCs were seeded on hydroxyapatite–tri-calcium phosphate 
scaffolds[148]. Furthermore, it should be noted that for any successful cell trans-
plantation approach, the optimal number of DSCs is essential. It has been 
demonstrated that dense culture conditions improve the mineralized nodule formation 
of DSCs and promote osteogenic-lineage commitment, possibly via the integrin 
signaling pathway[149]. DSCs seeded in dense collagen gel scaffolds exert a higher 
beneficial effect on the craniofacial bone healing process compared to acellular 
scaffolds[150].
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DSCs isolated from the dental follicle and the periapical papilla have been 
considered for the regeneration of alveolar bone and were successfully assessed in a 
few preclinical pilot studies. The application of dissociative dental pulp with a 
collagen sponge scaffold in patients with deep intrabony defects due to chronic 
periodontitis led to the effective restoration of defects with significant stability of the 
gingival margin[151]. In addition, the application of DSCs seeded onto collagen sponge 
in the deep intrabony defects of 29 patients suffering from chronic periodontitis 
significantly improved clinical outcomes of the periodontal regeneration process[152]. 
Another clinical trial has shown that using DSCs in combination with the collagen 
sponge scaffold in 6 patients resulted in a well-differentiated bone with Haversian 
system formation in the tooth extraction site[153].

Scaffold composition and surface properties play a key role in the osteogenic 
differentiation of DSCs and the process of bone tissue regeneration[142,154]. Significantly 
greater mineralization occurred when DSCs were seeded into a collagen type I 
matrix[155]. Furthermore, DSCs seeded on hyaluronic acid, fibrin, and polyesteramide 
type-C exhibit higher mineralization compared to standard tissue culture 
polystyrene[156].

Ceramic scaffolds, such as tri-calcium phosphate, hydroxyapatite, bioactive glass 
biphasic calcium phosphate, and calcium silicate, have chemical and structural 
similarities to the native bone and are commonly used as scaffolds to enhance bone 
regeneration and restoration of DSCs[157]. The addition of tricalcium phosphate to the 
composition of the other scaffolds enhances the differentiation of DSCs into osteoblast-
like cells[158]. Chitosan/gelatin scaffolds significantly increased DSCs viability and 
differentiation as well as the formation of hydroxyapatite-rich nanocrystalline calcium 
phosphate in immunocompromised mice, particularly when cells were pre-treated 
with recombinant human BMP-2[92]. Potent bone formation was observed in the defect 
area of rat femoral bone after application of DSCs seeded in bioactive glass 
nanoparticles/chitosan-gelatin bionanocomposite compared to mesoporous bioactive 
glass nanospheres[159]. A combination of poly-ε-caprolactone biphasic calcium 
phosphate with DSCs increased the newly formed bone regeneration of calvarial 
defects in rabbit models[160]. Furthermore, a combination of poly-lactic-co-glycolic acid 
with ceramics is usually used to enhance biomimetic potential and promote bone 
regeneration[161]. An in vitro study has revealed that human dental pulp SCs adhesion 
and proliferation, as well as their differentiation toward the osteogenic lineage, are 
significantly improved when seeded in hydroxyapatite (a member of the calcium 
phosphate-based bioceramics) and poly-lactide-co-glycolide[162]. Implantation of 
human DSCs seeded in beta-tri-calcium phosphate scaffolds exerted an anti-
inflammatory effect and restored periodontal hard tissue defects[163]. Greater bone 
regeneration was also reported when human DSCs were seeded on poly-lactic-co-
glycolic acid[164] and α- calcium sulfate hemihydrate/amorphous calcium phosphate[165] 
scaffolds. Calcium phosphate cement functionalized with iron oxide nanoparticles also 
exhibits a potent effect on the spreading, osteogenic differentiation, and bone mineral 
synthesis of DSCs, possibly via activation of the extracellular signal-related kinases 
WNT/β-catenin pathway[166].

Different forms of silicon, particularly the orthosilicic acid form, promote osteoblast 
proliferation and differentiation, the mineralization process, and collagen production 
through enhancement of the precipitation of apatite from calcium and phosphate-
containing solutions[167]. Semicarbazide-treated porous silicon exerted an appropriate 
scaffold for DSCs adhesion and in vivo cell therapy, whereas silanization with 
aminopropyltriethoxysilane-treated porous silicon has been suggested as a favorable 
scaffold for a long-term in vitro culture system for DSCs proliferation and 
differentiation[168]. Intrafibrillar-silicified collagen scaffolds markedly improved the 
proliferation, osteogenic differentiation, and mineralization capacity of human DSCs 
compared to non-silicified collagen scaffolds[169]. A novel biocompatible nano-
engineered osteoinductive and elastomeric scaffold fabricated from a porous 
nanocomposite of poly-glycerol sebacate and nanosilicates enhanced the physical 
integrity and mechanical strength of the cellular microenvironment for in vitro 
osteogenic differentiation and bone regeneration without persistent scaffold-related 
inflammation in vivo[170].

Hybrid composites are also used as promising biomaterials for bone regeneration. It 
has been suggested that four different scaffold materials, including porous 
hydroxyapatite alone or combined with three polymers polylactic-co-glycolic acid, 
alginate, and ethylene vinylacetate/ethylene vinylversatate, are suitable for DSCs 
osteogenic differentiation[171]. Electrospun nano-ECM nanofibers with fluorapatite 
scaffolds enhance the growth, differentiation, and mineralization of DSCs[172], possibly 
mediated via modulation of the FGF and VEGF signaling pathways[173]. Comparing the 
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behavior of DSCs seeded on a 2D monolayer culture or 3D poly lactic-co-glycolic 
scaffold, it has been shown that DSCs exerted proper adherence and enhanced 
osteogenic differentiation on the 3D scaffold cultures[174]. Furthermore, it has been 
suggested that DSCs seeded in hydrogel scaffolds have greater potential for 
odontogenic differentiation than cells embedded in collagen-I hydrogel scaffolds[175]. 
Various layer-by-layer-modified gelatin sponge scaffolds increased the adhesion and 
proliferation of DSCs and enhanced their potential for bone tissue regeneration[176].

Several differentiation factors, such as BMP, were used to potentiate DSCs bone 
formation capacity. A 3D gel-based heparin-conjugated collagen matrix combined 
with recombinant human BMP-2 improved DSCs differentiation and seeding 
efficiency in vitro and promoted the osteogenic differentiation of these stem cells to 
form ectopic bone formation in a rat model[177]. Exfoliated human DSCs significantly 
increased the expression of BMP-2 and 7, bone and cartilage formation markers, when 
seeded in carbonate apatite scaffold in an in vivo alveolar bone remodeling model in 
rats[178]. DSCs isolated from human gingival tissues seeded onto 3D poly-lactide 
scaffolds enriched with extracellular vesicles, small membrane vesicles containing 
various bioactive molecules, exhibited potent osteogenic inductivity in vitro and 
showed a marked improvement in bone healing of rat calvaria bone tissue in vivo[179]. 
On the other hand, some biomaterial scaffolds may facilitate biomolecule-induced 
tissue formation. For instance, 3D matrigel scaffold enriched with DSCs led to 
enhanced BMP-9-induced osteogenesis and mineralization in ectopic bones in nude 
mice[180].

Although the majority of studies rely on the application of DSCs alone, several 
studies have employed co-culture systems (DSCs in combination with other cells) 
intending to promote bone regeneration, particularly in 3D scaffolds[181]. Human DSCs 
and amniotic fluid stem cells seeded onto fibroin scaffolds resulted in pronounced 
bone repair associated with neovascularization in critical-size rat cranial bone 
defects[182]. The co-cultured constructs of DSCs and endothelial cells seeded in 3D 
polycaprolactone blended with poly-L/D-lactide revealed a significantly higher up-
regulation of genes related to osteogenesis and angiogenesis[183].

NEUROLOGICAL DISORDERS
DSCs derived from dental pulp and oral mucosa display high expression of various 
neural crest-related and developmental genes[184]. DSCs can be differentiated into the 
neuron-, Schwann-, glia-, and oligodendrocyte-like cells[185]. Due to the high 
proliferative capacity and propensity to differentiate into neural stem cells, DSCs are 
attractive candidates for developing a human neuronal lineage for the treatment of 
various disorders[186]. The role of DSCs in cell transplantation therapy of traumatic and 
hypoxic-ischemic injuries of the central or peripheral nervous system as well as 
neurodegenerative diseases has been extensively investigated[187]. DSCs are promising 
sources for cellular transplantation-based therapeutic strategies for neurological 
disorders[188]. The seeding of DCSs into different scaffolds promotes cell viability and 
differentiation towards neuronal-like cells[189,190]. Scaffolds can be designed to provide 
biological growth factors for neuronal tissues and to accurately adjust the diffusion 
rate of these essential biomolecules and enzymes[187].

The application of combined DSCs with various scaffolds promotes the function of 
injured neural tissues and reduces the inflammatory responses. The most common 
scaffolds applied for neural tissue regeneration and repair include chitosan, heparin-
poloxamer, silicone tubes, poly-ε-caprolactone/poly-lactide-co-glycolic acid, and 
electrospun neuro-supportive scaffolds[191]. Different scaffolds were used to enhance 
neural differentiation and promote their neuronal characteristics. DSCs can be seeded 
in the biodegradable electrospun neuro-supportive scaffold, which is amended by 
different 3D coatings, for enhanced in vitro and in vivo recovery of neuronal 
damage[192]. The granular 3D chitosan scaffolds provide an appropriate 
microenvironment for attachment, proliferation, and neural differentiation of 
DSCs[193]. Furthermore, a 3D floating sphere culture system has been shown to provide 
a suitable micromilieu for human DSCs to retain their neuronal characteristics 
compared to myogenic and osteogenic properties[194]. Using an acellular ECM scaffold 
has been shown to promote DSCs to obtain a neuronal-like organization, including a 
central body associated with long cytoplasmic extensions that follow the underlying 
fibers, with high cell-matrix adhesion properties[195]. Some scaffolds can support the 
neurotrophic release of DSCs for the subsequent survival and differentiation of neural 
stem cells as well as neural cells. For instance, DSCs promoted the survival and 
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differentiation of adult murine neural stem cells on ethyl acrylate and hydroxyethyl 
acrylate copolymer scaffold through the enhancement of neurotrophic factor 
secretion[196].

Transplantation of DSCs with a chitosan scaffold markedly enhanced the recovery 
of motor function and suppressed inflammatory responses, possibly via the secretion 
of neurotrophic factors, such as glial cell-derived neurotrophic factor and brain-
derived neurotrophic factor, in experimental models of spinal cord injury. 
Furthermore, the combination of DSCs with scaffolds inhibited cell injury and death 
through the reduction of caspase activity[197]. A significant functional recovery of hind-
limb locomotor activities has also been observed following the transplantation of DSCs 
seeded in chitosan scaffolds in a spinal cord injury animal model[198]. Solubilized forms 
of acellular ECM from dentine, bone, and spinal cord have discrete structural, 
mechanical, and functional properties. Human DSCs exhibited a strong positive 
response to spinal cord ECM hydrogels by the greater expression of neural lineage 
markers. This ECM scaffold markedly enhanced the differentiation of DSCs to a neural 
lineage; indicating the importance of site-specific tissues in the promotion of stem cell 
behavior for constructive spinal cord regeneration[24]. A combination of DSCs with 
heparin-poloxamer, a desirable thermosensitive hydrogel for in vivo applications, 
loaded with various growth factors, such as bFGF and nerve growth factor (NGF), 
markedly promoted functional recovery, cellular regeneration, and tissue repair in a 
rat model of spinal cord injury[187], possibly via modulation of the MAPK/ERK, 
PI3K/Akt and JAK/STAT3 signaling pathways[199]. Indeed, both bFGF and NGF play 
an essential role in the neural differentiation of DSCs[200]. Chitosan scaffolds in 
combination with bFGF exerted a synergistic facilitating effect on DSCs differentiation 
to neural cells, possibly via activation of the ERK signaling pathway[201]. It has been 
shown that DSCs can proliferate efficiently on an aligned electrospun poly ε-
caprolactone/poly lactide-co-glycolic acid scaffold and restore defects in rat spinal 
cord. Furthermore, these cells contribute to remyelination by the expression of 
oligodendrogenic lineage markers[202].

Multiple studies have assessed the effects of DSCs with various scaffolds on various 
experimental models of peripheral nerve injury. DSCs seeded into a polylactic-glycolic 
acid scaffold significantly improved the regeneration of injured facial nerve and 
promoted functional recovery compared to autografts[203]. Schwann-like cells derived 
from DSCs and grown in collagen scaffolds facilitated axonal outgrowth and 
myelination in both 2D and 3D in vitro models of peripheral nerve injury[204,205]. 
Furthermore, oligodendrocyte progenitor cells induced by differentiation of human 
DSCs via gene transfection in combination with collagen or collagen and fibrin 
scaffolds improved axonal outgrowth and myelination in an animal sciatic nerve 
injury model[9,206]. Human DSCs isolated from the periodontal ligament and gingival 
tissues and encapsulated in 3D alginate/hyaluronic acid scaffolds in the presence of 
NGF improved the proliferation and differentiation of DSCs toward the formation of 
neural tissues[207]. DSCs seeded on poly-lactic-co-glycolic acid collagen enhanced the 
interconnections of injured axons in a model of facial nerve injury[203]. When cultured 
under either 2D- or 3D-collagen scaffolds, human DSCs originating from gingival 
tissue have shown a greater capability of differentiating into neurons and Schwann-
like cells in a 3D collagen scaffold compared to the 2D culture system. Furthermore, 
these cells with a 3D scaffold improved regeneration and functional recovery of neural 
tissues in rat facial nerve defects[208]. It has been shown that collagen scaffolds in the 
presence of different growth factors, such as bFGF, exhibited favorable mechanical 
properties and improved facial nerve regeneration[209]. Human DSCs expressing STRO-
1, c-Kit, and CD34 markers and seeded in a collagen scaffold engrafted into rat sciatic 
nerve defects improved axonal regeneration from proximal to distal stumps[210]. 
Interestingly, the administration of serum-free conditioned medium from DSCs 
plunged in a collagen sponge into the gap caused by rat facial nerve transection, 
induced axonal regrowth and restored the neurological deficits[211].

THE IMPACT OF DIFFERENT SCAFFOLDS USED IN DSCS CELL 
THERAPY
Using an appropriate scaffold can promote the proliferation, differentiation, migration, 
and functional capacity of DSCs and can optimize and preserve the cellular 
morphology to build tissue constructs for a specific purpose[63]. Although the 
application of DSCs alone could yield promising outcomes in cell replacement therapy 
in  part icular  conditions[212], an  appropriate  scaf fold provides  a  viable  
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microenvironment to boost the development of DSCs towards new tissue formation, 
especially in tissues or organs with extensive defects[213]. The optimal number of DSCs 
is essential to develop tissue and organ substitutes and to restore organ function[149]. In 
addition to establishing definitive protocols for DSCs preparation, appropriate carrier 
scaffolds play a crucial role to increase the number of cells for implantation 
(Figure 3)[214].

A crucial and challenging demand for an appropriate scaffold design is 
recapitulating the dynamic nature of the native tissue[215]. Although each polymer 
scaffold has its pros and cons and favorable tissue engineering applications, collagen 
and fibrin, alone or by forming hybrid scaffolds, provide an adequate pulp connective 
tissue formation associated with marked vascularization, particularly when loaded 
with active biomolecules[117,118,216]. Collagen is the main component of the ECM and is 
expressed widely in bone, teeth, and the brain. A collagen scaffold provides excellent 
biocompatibility and controllable biodegradability, particularly for bone tissue 
engineering[217,218]. However, collagen has poor mechanical, chemical, and thermal 
stability and degrades fast at an uncontrolled rate. Fibrin is a non-toxic biomaterial 
scaffold that can attach various biological surfaces to regenerate tissues, such as bone 
and nervous tissues, with a low inflammatory response[219]. However, low mechanical 
stiffness of fibrin scaffolds limits tissue diffusion and direct implantation of cells to the 
damaged tissues[220,221]. Different bioceramic scaffolds exhibit excellent biocompatibility 
and osteoconductivity due to their chemical and structural similarity to native bone, 
which is characterized by high mechanical stiffness and low elasticity[158,222]. 
Furthermore, bioceramic scaffolds improve stem cell differentiation and 
osteogenesis[222]. The main disadvantages of bioceramic scaffolds are brittleness and 
slow biodegradation in the crystalline phase[218]. Soft polymers with highly aqueous 
hydrogels, such as collagen, share a resemblance to neural tissues, play an important 
role as a possible internal filler for neural conduits and increase the quality of 
peripheral nerve regeneration[223].

Furthermore, the scaffold should be porous and spongy to be able to deliver 
sufficient DSCs to injured tissues and to allow the stream of ECM and the formation of 
neovascularization[165,166]. However, some of the currently available biomaterials do not 
fully imitate the essential functions of natural ECM and fail to provide an appropriate 
scaffold[224]. Among the different biomaterials, the self-assembly of monodisperse cells 
into 2D or 3D complex structures that produce more extracellular matrix and promote 
intercellular communication possess the characteristics of the ideal approach[225]. 
Although both 2D and 3D cell culture systems provide appropriate methods for stem 
cell replacement transplantation, 3D systems seem to be more effective at mimicking 
the ECM in native tissues[226,227]. In general, 3D culture systems have been shown to be 
more beneficial in providing a template for the reconstruction of defects and cell-to-
cell interactions as well as for improving cell adhesion, proliferation, ECM generation, 
maintenance of cell polarity, and restoration of various tissues[228,229]. In addition, 3D 
scaffolds enhance the sensitivity of stem cells towards drugs and biomolecules[230]. The 
optimization of 3D scaffold pore sizes may lead to better tissue regeneration through 
the enhancement of mechanical strength[231]. The dimension of the defect is a key factor 
in selecting a scaffold for tissue or organ regeneration[232]. For instance, in the 
reconstruction of cleft lip and palate, the amount of bone formation may not be 
enough to fill the bone defect[233], a problem that may be solved by the application of 
3D cell culture systems[234]. In this regard, higher osteogenic differentiation of DSCs 
and MSCs has been observed in 3D than in 2D cell culture[174,235].

In addition to an appropriate scaffold, using bioactive molecules, such as growth 
and angiogenic factors, has been suggested as a promising strategy for the 
improvement of DSCs transplantation. Bioactive molecules, such as VEGF, have a 
short half-life and need to be encapsulated in degradable materials to regulate their 
release and promote their effects[236]. Scaffolds provide a purposeful approach for 
better incorporation between stem cells and biomolecules to improve tissue 
regeneration[26]. The interpolation of active biomolecules with the scaffold is essential 
for their transport into the injured tissues and for their efficacy to promote the 
colonization of DSCs and their matrix deposition[123]. DSCs and various scaffolds 
transplanted together with bioactive molecules, such as G-CSF, BMP, and bFGF, can 
fill the entire pulp or bone defect as well as develop new dentin or bone 
formation[92,93,118]. Biomolecules, such as SDF-1, SCF, and G-CSF, help to summon DSCs 
and enhance the number of cells in the implantation site, and other factors, such as 
VEGF, can enhance the formation of new blood vessels in regenerative tissues[26,237].

On the contrary, a few investigations have suggested that transplantation of DSCs 
without scaffold may have more beneficial effects on tissue regeneration. To prevent 
the inflammatory response, immune rejection, or infections, a few studies have 
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Figure 3  Schematic overview of the optimal biomimetic environment for application in tissue engineering. Stem cells require appropriate 
scaffold materials as well as biomolecules and growth factors to achieve optimal therapeutic effects.

indicated that transplantation of stem cells without scaffolds (such as 3D stem cell 
spheroids) may be an alternative option for DSCs transplantation[238]. Transplantation 
of DSCs without a scaffold for injured tooth tissues in 26 patients led to the 
regeneration of 3D pulp tissue which contained blood vessels and sensory nerves 12 
months after therapy[239]. Despite these studies, it seems that the simple injection of 
competent DSCs inside organ defects is poorly regenerative[123].

A few decades of intense basic studies and clinical trials on DSCs are essential to 
translate knowledge gained on these cells into the implementation of defined and 
reproducible therapeutic approaches to cure or alleviate diseases. In addition to the 
application of an ideal scaffold, the success of cell transplantation therapy using DSCs 
also relied greatly on designing methodologies for isolation and purification, a 
sufficient number of stem cells, and effective and safe differentiation into different 
lineages[240,241]. The development of an accurate immunomodulatory strategy for 
injectable and implantable biomaterials is of particular importance to facilitate the 
grafting of DSCs at inflamed sites[242,243].

CONCLUSION
This study describes the main scaffolds, both natural and synthetic, used in DSCs 
transplantation and evaluated the advantages and disadvantages of various types of 
scaffolds. Most of the existing studies concerning the development of novel 
therapeutic approaches for restoration of damaged tissues have been limited to in vitro 
and in vivo DSCs testing, with a small number of clinical trials. Although the co-
application of biomolecules with an appropriate scaffold seems to be crucial for 
effective cell transplantation therapy with DSCs, there is still much to learn about the 
dynamics of these molecules as well as their interactions with the ECM and DSCs to 
allow planning of appropriate therapeutic approaches. Further advances in tissue 
engineering need to focus on innovative combinations of biopolymers and 
biomolecules to promote the capability of DSCs for novel and effective therapeutic 
approaches (Figure 3).
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