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Abstract
Diabetes, one of the most common chronic diseases in the modern world, has 
pancreatic β cell deficiency as a major part of its pathophysiological mechanism. 
Pancreatic regeneration is a potential therapeutic strategy for the recovery of β cell 
loss. However, endocrine islets have limited regenerative capacity, especially in 
adult humans. Almost all hypoglycemic drugs can protect β cells by inhibiting β 
cell apoptosis and dedifferentiation via correction of hyperglycemia and 
amelioration of the consequent inflammation and oxidative stress. Several agents, 
including glucagon-like peptide-1 and γ-aminobutyric acid, have been shown to 
promote β cell proliferation, which is considered the main source of the 
regenerated β cells in adult rodents, but with less clarity in humans. Pancreatic 
progenitor cells might exist and be activated under particular circumstances. 
Artemisinins and γ-aminobutyric acid can induce α-to-β cell conversion, although 
some disputes exist. Intestinal endocrine progenitors can transdeterminate into 
insulin-producing cells in the gut after FoxO1 deletion, and pharmacological 
research into FoxO1 inhibition is ongoing. Other cells, including pancreatic acinar 
cells, can transdifferentiate into β cells, and clinical and preclinical strategies are 
currently underway. In this review, we summarize the clinical and preclinical 
agents used in different approaches for β cell regeneration and make some 
suggestions regarding future perspectives for clinical application.

Key Words: β cell regeneration; β cell dedifferentiation; Cell proliferation; Pancreatic 
progenitors; α-to-β cell transdifferentiation; Enteroendocrine progenitor cells
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Core Tip: Pancreatic regeneration is a potential therapeutic strategy for β cell recovery 
in diabetes. Previous studies have focused on the various cell types and different 
strategies for islet regeneration. However, how far this is from clinical application has 
not been fully elucidated. In this review, we focus on the clinical and preclinical agents 
used in different approaches. The clinical potential and disadvantages of the various 
approaches are discussed, and some suggestions are made for future perspectives.
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INTRODUCTION
Diabetes is a critical global health concern due to its high prevalence[1], as well as 
related disability and mortality[2]. Pancreatic β cell deficiency is a major component of 
the pathophysiological mechanism[3]. Substantial β cell loss results in permanent 
endocrine deficiency and irreversible diabetes. Pancreatic regeneration is a potential 
therapeutic strategy for β cell recovery. However, the endocrine pancreas (islet) has 
limited regenerative capacity, especially in adults[4]. Therefore, strategies for 
promoting β cell regeneration have profound implications for the treatment of 
diabetes, especially for type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D) with 
substantial β cell loss.

There are two ways to regenerate pancreatic β cells. The first is to avoid β cell loss, 
including inhibiting β cell apoptosis/necrosis and dedifferentiation. The second is to 
promote newborn, including endogenous regeneration (stimulating β cell 
proliferation, inducing transdifferentiation and transdetermination of other cells to β 
cells, reactivating pancreatic endocrine progenitors, and facilitating differentiation into 
β cells in vivo) and exogenous supplementation (promoting the differentiation of stem 
cells into β cells, inducing the reprogramming of mature cells into β cells in vitro, and 
then transplanting the obtained cells to patients with diabetes). There is a long history 
of investigations regarding pancreatic regeneration that dates back to nearly a century. 
Under some physiological conditions (e.g., during pregnancy, in obesity, and under 
insulin resistance conditions), islet adaption and increased β cell mass occur in both 
animal models and humans[5-8]. Recently, the emerging technologies have supplied 
more evidence for β cell regeneration. Single-cell RNA sequencing data have showed 
that human islets contain four distinct subtypes of β cells[9], as well as potentially 
intermediate stages[10], suggesting that β cells can adapt, transdifferentiate, or undergo 
neogenesis. Investigations regarding physiological regeneration may provide 
information for drug development. Several strategies have been used to promote β cell 
regeneration, including pancreatectomy, partial duct ligation, and chemical-induced 
massive β cell loss[11-15]. The molecular pathways that drive increases in β cell mass 
have been widely studied. Thousands of materials have been investigated, and 
hundreds have been proved to be functional in the process of β cell regeneration, but 
only a small proportion are clinical, pre-clinical, or clinical potential drugs.

CORRECTION OF METABOLIC DISORDER AND INHIBITION OF 
APOPTOSIS
The main clinical manifestation of diabetes is hyperglycemia, usually accompanied by 
dyslipidemia. Glucotoxicity, lipotoxicity, and the subsequent inflammation and 
oxidative stress result in β cell dysfunction and death, which further exacerbate 
hyperglycemia and create a vicious circle. Therefore, antidiabetic drugs can lower 
glycaemia and disturb the circle, and thus, inhibit functional β cell loss[16-18]. However, 
the gradual loss of β cell function cannot be reversed using recently developed 
therapies. In some cases, earlier and longer use of the hypoglycemic drug has better 
protective effects on β cells[19]. Considering the wide existence of autoimmune damage 
in T1D and islet microenvironment inflammation in T2D, some immunomodulation 
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therapies can protect β cells[20]. For instance, the activation of the nuclear receptor LRH-
1/NR5A2 induces immune self-tolerance and increases β cell survival[21]. CD3 
monoclonal antibody (mAb), which suppresses the immune system, has significant 
albeit transient preservation capabilities of β cell function, resulting in a decrease in 
insulin requirements for at least 24 mo in patients with recent-onset T1D, and delays 
clinical symptoms by approximately 2 years in high-risk relatives of patients with 
T1D[22]. γ-aminobutyric acid (GABA) acts as an immunosuppressive regulator in T1D 
by mediating cytokine secretion from human peripheral blood mononuclear cells and 
CD4+ T cells[23]. Notably, the antidiabetic drug glucagon-like peptide-1 (GLP-1) 
analogue directly modulates innate immunity-mediated inflammation in patients with 
T2D[24]. In summary, the hypoglycemic drugs and immunomodulation therapies can 
protect β cells, via delay or prevention of β cell loss, by correcting metabolic disorders 
and improving the microenvironment.

Except for the indirect effects, several antidiabetic drugs have direct protective 
effects on β cells by inhibiting stress-induced cell death. The most remarkable drug is 
GLP-1. Native GLP-1 and GLP-1 analogs (e.g., liraglutide, exenatide, and lixisenatide) 
exert antiapoptotic effects on human and rodent β cells through AMPK/mTOR and 
PI3k/Akt signaling pathways, as previously summarized[25]. In addition, GLP-1 
prevents pancreatic β cell death by increasing autophagic flux and restoring lysosomal 
function[26]. The classic hypoglycemic drug metformin decreases human islet apoptosis, 
increases insulin content, and increases the number and density of mature insulin 
granules, which is mediated by a reduction in oxidative stress[27]. Other clinical drugs, 
such as angiotensin-converting enzyme inhibitors, protect human islets from 
glucotoxicity by inhibiting oxidative stress[28]. In summary, the direct antiapoptotic 
effect, together with indirect metabolic improvement and amelioration of 
inflammation, attenuates β cell loss.

INHIBITION OF β CELL DEDIFFERENTIATION
Cell dedifferentiation is considered a mechanism of diabetic β cell failure[29]. Following 
physiological or pathological stress, β cells lose fully mature healthy characteristics 
and revert to progenitor-like cells, with changes in gene expression patterns 
(upregulation of genes that are typically expressed in embryonic endocrine 
progenitors, and downregulation of genes that are expressed in mature β cells) and in 
structural and functional elements (loss of mature secretory granule). The Accili group 
and other groups extend this concept to humans and observe chromogranin 
A/synaptophysin+ and hormone- endocrine cells in patients with T2D and T1D[30-32]. 
The Accili group concludes that an approximately 30% deficit of β cells in T2D is not 
due to death but instead to dedifferentiation or transdifferentiation of β cells to other 
islet types[30]. In contrast, the Butler group finds that the chromogranin+ hormone- islet 
cells accounts for no more than a 2% deficit of β cells in T2D[33]. Single-cell 
transcriptomics in islets from young children reveal that multiple α cell signature 
genes are preferentially observed in juvenile β cells, suggesting the immature state. 
This pattern is also observed in T2D donors, indicating a dedifferentiation process[34]. 
Nevertheless, there is no consistent conclusion regarding cell dedifferentiation in 
humans due to the incapability of lineage tracing.

This concept of dedifferentiation is of great significance for clinical treatments. In 
contrast to cell death, β cells do not disappear; they exist but lose their characteristics, 
implying that the dedifferentiated cells can quickly restore the functional β cell mass. 
For instance, dysfunctional β cells can recover in patients with T2D with proper 
management, such as diet, exercise, or intensive insulin therapy[35,36]. Except for the 
antidiabetic drugs and the diabetes management, other drugs also own the ability of 
inhibition of β cell dedifferentiation. Salsalate, an anti-inflammatory drug with anti-
diabetic properties, diminishes β cell dedifferentiation by inhibiting the Notch1 
pathway[37]. Renin–angiotensin system inhibitors, either angiotensin II type 1 receptor 
blockers or angiotensin-converting enzyme inhibitors, efficiently reverse the 
dedifferentiated status of β cells via inhibition of NF-κb signaling[38]. It should be noted 
that continued intervention may be required to alter the progressive loss of β cell 
function. As is shown by a recent report, liraglutide plus metformin improves β cell 
function during the treatment period, but the effects disappears after the treatment is 
stopped, in adults with impaired glucose tolerance or newly-diagnosed T2D[39].
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STIMULATION OF β CELL PROLIFERATION
Cell proliferation is considered the main source of regenerated β cells in adult 
rodents[40]. The proliferative rate of β cells is notably high in fetal and neonatal rodents 
but declines rapidly with age[41]. A large number of growth factors and mitogenic 
agents have been shown to promote β cell proliferation in animal models. These 
include hepatocyte growth factor, GLP-1, insulin-like growth factors, epidermal 
growth factors, and others[42]. However, these agents have generally failed to promote 
the significant proliferation of human β cells, possibly due to molecular, structural, 
and functional differences, as well as developmental disparities between mouse and 
human islets[43-45]. In fact, the normal turnover of human β cells is considerably lower 
than that of mice[4,46], and β cells adapt to stressors (such as pregnancy or obesity) in 
completely different ways[47]. Therefore, further consideration should be given to the 
validity of the mouse model to draw conclusions in humans. Thanks to high-
throughput screening technology and the availability of human islets, an increasing 
amount of information regarding human β cells is becoming available. Tyrosine-
regulated kinases Dyrk1a and Nfat manipulate human β cell proliferation[48]. 
Hepatocyte-derived secretory SerpinB1 and its partial mimic GW311616A enhance β 
cell proliferation by inhibiting elastase activity and activating key proteins in the 
growth factor signaling pathway[49]. GABA promotes β cell replication in grafted 
human islets by activating a calcium-dependent signaling pathway and the 
downstream PI3K/Akt and CREB-IRS2 signaling pathways[50]. The antidiabetic drug 
GLP-1 analog exendin-4 stimulates human β cell proliferation in juvenile, but not 
adult, islets and requires calcineurin/Nfat signaling[51]. However, human β cells 
appear to resist proliferation, and their proliferation response to mitogenic stimuli is 
limited at an approximately 0.3%-0.5% increase compared to the basal proliferation 
index (approximately 0.1%-0.2%)[46]. Notably, combining of the Dyrk1a inhibitor with 
the GLP-1 receptor agonist[52], or combined inhibition of Dyrk1a, SMAD, and Trithorax 
pathways[53] induces a synergistic increase in human β cell replication (5%-8%). 
Nevertheless, the approach of stimulating β cell self-replication is not applicable for 
treating patients with complete or near-complete absence of β cells.

PROMOTION OF STEM CELL DIFFERENTIATION
Stem cells, possessing abilities of self-renewal and multilineage differentiation, are the 
ideal source for cell replacement therapy. There are two methods of stem cell-based β 
cell regeneration. One is to promote stem cell differentiation into β cells in vitro. The 
other is to activate pancreatic progenitors and promote them to differentiate into β 
cells in situ. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced 
pluripotent stem cells, which have unlimited self-renewal abilities, are appealing seed 
cells for β cell regeneration. A stepwise protocol was established to guide cell 
differentiation through four successive stages (definitive endoderm, pancreatic 
epithelium, endocrine progenitors, and β-like cells)[54]. The stepwise protocol replicates 
the signaling events that control β cell formation during human pancreas 
development. At present, most differentiation protocols are based on this protocol. 
After decades of work, optimized cocktails of cytokines and chemicals have yielded 
cells with remarkable transcriptional, morphological, and functional resemblance to 
bona fide β cells[55,56]. More recent studies have defined conditions that greatly improve 
the functional maturation of β cells, achieving first- and second-phase insulin 
secretion[57,58]. Notably, diabetic patient-specific β cells can be derived from induced 
pluripotent stem cells or nuclear transfer ESCs, which can avoid immune rejection[59,60]. 
Except for the stem cell-derived β cells, stem cell-derived pancreatic endoderm cells or 
pancreatic progenitors can also be the source of cell replacement for diabetes 
treatment[61]. Transplantation of these progenitors has led to further functional 
maturation in vivo and rescue of experimental diabetes in mice[62]. Other stem cells, 
including mesenchymal stem cells (MSCs), can also differentiate into β cells via the 
stepwise induction protocol[63]. Interestingly, MSCs (unlike MSC-derived β-like cells) 
protect β cells and promote islet regeneration by secreting numerous immuno-
modulatory and tissue regenerative factors[64], thereby inhibiting inflammation in the 
islet microenvironment and promoting microcirculation. At present, ESC-derived 
pancreatic progenitors and MSCs are already undergoing clinical trials. During in vitro 
stepwise differentiation, different protocols are used. In each step, many cytokines and 
chemicals are used to induce stem cell differentiation toward β cells. It is worth 
mentioning that the antidiabetic drug GLP-1 promotes ESCs (including mouse and 
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human) and other stem cells (e.g., pancreatic progenitors) to differentiate into β 
cells[65-68]. Other clinical agents, including ascorbic acid, zinc sulfate, and N-acetyl 
cysteine, are also used for β cell differentiation[56,58]. However, the clinical agents cannot 
work alone and must interact with other agents.

There is a long-standing hypothesis that pancreatic stem or progenitor cells exist in 
the adult animal or even human pancreas. In most circumstances, the pancreatic duct 
serves as a pool for progenitors of both endocrine and exocrine cells after birth and 
into adulthood[69]. The early studies have showed that after pancreatectomy or 
pancreatic duct ligation, a rare population of Ngn3+ endocrine progenitors appears in 
ductal structures in mouse models[14,15]. A recent study also shows that Ngn3+ cells are 
around islets and ducts in experimental models of α-to-β cell transdifferentiation[70]. 
The notion of pancreatic duct-derived neogenesis has been confirmed by using 
lineage-tracing experiments in mice. However, lineage tracing cannot be conducted in 
the human pancreas, and there are some conflicting findings, but more evidence 
supports this notion than not. In pregnant, obese, insulin-resistant, and diabetic 
humans, the number of single/small clusters of insulin+ cells and bihormone-
expressing cells, as well as the proportion of insulin+ cells, within ducts has been 
observed to increase, suggesting that neogenesis may be the main mechanism in adult 
humans[7,8,71]. A very recent study conducts single-cell RNA sequencing and confirms 
the existence of multipotent progenitor-like cells within the pancreatic ducts of the 
human pancreas in patients with T1D and T2D, regardless of the duration of the 
disease[72]. Nevertheless, investigations into the specific markers that characterize the 
progenitors are still in process. Carbonic anhydrase II[73], Hnf1β, Sox9[74], stage-specific 
embryonic antigen 4[75], and activin-like kinase 3[72] are suggested as progenitor 
markers but the results are inconsistent[76]. Notably, except for the ductal tree, the 
progenitors might also exist in intraislets. The recent identification of a “virgin β cell 
subpopulation”, a urocortin 3-, MafA-, and insulin+ subpopulation in the periphery of 
the islet, adds to the potential list of progenitors that can contribute toward a 
functional β cell pool[77]. A very recent study finds that the adult mouse islets contain a 
population of protein C receptor-positive endocrine progenitors, which undergo clonal 
expansion and generate all four endocrine cell types during adult homeostasis[78]. For 
clinical drugs, GLP-1/exendin-4 has been reported to facilitate β cell neogenesis from 
duct cells in streptozocin-induced T1D rats and in cultured human ducts[79]. The 
dipeptidyl peptidase 4 (DPP4) inhibitor (which inhibits GLP-1 degradation) 
vildagliptin promotes β cell neogenesis in streptozotocin-induced diabetic rodents[80,81]. 
Interestingly, a novel diet therapy with a 4-d fasting-mimicking diet induces a 
stepwise expression of Sox17 and Pdx1 (resembling that observed during pancreatic 
development), followed by the Ngn3-driven neogenesis of β cells, and restores insulin 
secretion and glucose homeostasis in both T1D and T2D mice. In human T1D 
pancreatic islets, fasting conditions also activate pancreatic progenitors and promote 
insulin production[82].

INDUCTION OF CELL TRANSDIFFERENTIATION AND TRANSDETERMI-
NATION
Cell transdifferentiation, also known as lineage reprogramming, can also be used for β 
cell regeneration. Distantly related cells (e.g., fibroblasts and keratinocytes) and 
developmentally related cells (e.g., liver, gastrointestinal, and pancreatic exocrine cells) 
can be converted into functional β cells (summarized in our previous review[83]). 
Endogenous α and δ cells are attractive sources for β cell reprogramming due to their 
same developmental transcriptional mechanisms, similar epigenetic landscape, and 
distinctive location. Under a condition of more than 99% β cell loss, slow but 
significant recovery of β cell mass occurs in mice. Lineage-tracing studies suggest that 
the new insulin-producing cells arise from the conversion of pancreatic α cells (in 
adults) or δ-cells (before puberty)[12,13]. The molecular mechanism of this conversion 
between islet cell phenotypes is currently unknown. The genetic deletion of Arx (a 
master regulator of α cell development, and a key transcription factor for maintenance 
of the α cell identity) or forced expression of Pax4 (a master regulator of β cell 
development, and a key transcription factor for maintenance of the β cell identity) 
converts α cells to β cells in mouse models[84,85]. Forced expression of Pdx1 and MafA 
induces the transdifferentiation of human α cells to β cells[86]. The ability of cell 
transdifferentiation is confirmed by lineage-tracing in mice, and preclinical strategies 
are underway. GABA is an inducer of α-to-β cell conversion in mice and human islets, 
which is useful information for clinical trials[87]. Artemisinins, which have already been 
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used for malaria treatment clinically, improve glucose-stimulated insulin release, 
change gene profiles of human islets, and induce α-to-β transdifferentiation[88]. These 
data provide a possible unprecedented β cell regeneration strategy using a known and 
approved therapeutic agent. However some paradoxical effects of artemisinin on β cell 
regeneration warrant further verification[89]. The widely used hypoglycemic drug GLP-
1 has showed some interesting results. An early report has found that 9-wk treatment 
of liraglutide increases β cell number and insulin content and secretion, while it 
decreases α cell number in ZDF rats[90]. A recent study by Lee et al[91] finds that 
recombinant adenovirus expressing GLP-1 can promote α-to-β cell conversion in 
streptozotocin-induced T1D mice, which is proved by using lineage-tracing 
technology[91]. The determination of whether the currently marketed GLP-1 drugs 
(including GLP-1 analogs and DPP4 inhibitor) and other drugs that can increase GLP-1 
levels can induce phenotype conversion from α cells to β cells is of considerable 
interest. In fact, we prove that glucagon receptor mAb, which increases GLP-1 
secretion in the islets and intestines[92,93], can induce α-to-β cell conversion in T1D 
mice[93]. Our most recent study reveals that dapagliflozin, a sodium-glucose co-
transporter type 2 inhibitor, also induces α-to-β cell conversion in T2D mice[94]. Lee’s 
study concludes that fibroblast growth factor 21 (FGF21) participates in GLP-1-
induced α-to-β cell conversion[91], suggesting that FGF21, which is undergoing clinical 
trials[95], might also possess this ability. In contrast to α-to-β cell conversion, δ cell-
derived β cell regeneration is faster and more efficient, always leading to diabetes 
recovery, but only occurs before puberty[13]. Further study shows that instead of direct 
conversion, δ-cells dedifferentiate to a progenitor stage, reenter the cell cycle, and 
recapitulate embryonic development to become insulin producers[13]. This juvenile 
adaptability relies, at least in part, upon the combined action of FoxO1 and 
downstream effectors. The juvenile mechanism can be somewhat mimicked with the 
pharmacological inhibition of FoxO1 after injury, which promotes the δ-to-β 
conversion in adulthood[13].

Acinar cells comprise the most abundant pancreatic cell type, and therefore, 
constitute an attractive source for β cell reprogramming. A combination of Ngn3, 
Pdx1, and MafA (three developmental regulators of β cells) efficiently converts 
pancreatic acinar cells into β-like cells after delivery into the adult mouse pancreas 
using adenoviral vectors[96]. The lineage-reprogrammed cells achieve long-term 
stability and undergo epigenetic, transcriptional, anatomical, and functional 
development toward a β cell phenotype, as well as acquire the ability to reverse 
diabetes[97]. A transient cytokine mixture of epidermal growth factor and ciliary 
neurotrophic factor activates Stat3 signaling, leads to in vivo conversion of acinar-to-β 
cells, and reverses alloxan-induced diabetes in mice[98]. Without any genetic 
manipulation, bone morphogenetic protein 7 induces the conversion of adult human 
nonendocrine pancreatic tissue into endocrine cell types[99]. However, the insulin-
expressing cells arise mainly from extrainsular progenitors rather than the mature 
exocrine cells[99]. It appears that there is not an easy way to induce phenotype 
conversion of mature acinar cells to endocrine cells via clinic-related strategies.

Enteroendocrine progenitors are ideal cell sources for insulin production. 
Enteroendocrine progenitors express Ngn3, the same marker as pancreatic endocrine 
progenitors, and continually arise from gut stem cells as well as contribute to the 
repopulation of the high-turnover enteroendocrine population. Conditional deletion of 
FoxO1 from Ngn3+ intestinal endocrine progenitors leads to the formation of insulin-
producing cells in the gut (namely, transdetermination)[100]. Pharmacological or RNA 
interference-based FoxO1 inhibition in the gut might also achieve this goal. The 
inhibitors of FoxO1 have been studied extensively, but to date, their application in the 
management of metabolic disorders is limited[101]. Oral administration of the FoxO1 
inhibitor AS1842856 to diabetic db/db mice leads to a drastic decrease in fasting plasma 
glucose levels[102], which is suggestive of clinical potential. We have previously showed 
that FoxO1 inhibition by an inhibitor or siRNA promotes human ESCs to differentiate 
into β cells[103]. Based on these results, we infer that the FoxO1 inhibitor might promote 
the production of β cells from intestinal endocrine progenitors. Another target for 
intestine-to-β cell conversion is GLP-1. Intraintestinal injection of a recombinant 
adenovirus constitutively expressing GLP-1 produces insulin-positive cells in the 
intestines, significantly increases serum insulin, reduces blood glucose levels, and 
improves glucose tolerance[104]. GLP-1 treatment induces insulin production in 
developing intestinal epithelial cells, and to a lesser extent, in adult intestinal epithelial 
cells both in vitro and in vivo. The insulin+ cells become responsive to a glucose 
challenge in vitro and reverse insulin-dependent diabetes after implantation into 
diabetic mice[105]. The GLP-1-induced conversion is mediated by the activation of Ngn3 
and its downstream genes[104,105]. We recently find that glucagon receptor mAb 
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promotes intestinal L cell proliferation and increases circulating and intestinal GLP-1 
levels in T2D mice. In addition, GLP-1 production is upregulated in the mouse L cell 
line and primary mouse and human enterocytes[92]. These results suggest that glucagon 
receptor mAb might produce insulin+ cells in the intestines. Other progenitors and 
mature cells, including hepatocytes and neuroendocrine cells, can also convert into β 
cells[83], but no clinical or preclinical drugs have been reported.

CONCLUSION
Pancreatic β cells own the ability of regeneration, and several types of cells can convert 
into β cells. The types of cells that can generate β cells, and the preclinical and clinical 
agents used for regeneration are summarized in Figure 1 and Table 1. Almost all 
hypoglycemic drugs and some immunomodulators can protect β cells by inhibiting β 
cell death and dedifferentiation through the correction of hyperglycemia and 
improvement of the consequent inflammation and oxidative stress. GLP-1 and other 
optimized molecules may promote stem cells to differentiate into β cells in vitro and 
supplement β cell mass. Endogenous regeneration is an attractive approach. 
Regeneration in intraislets (including β cell proliferation and α/δ-to-β cell conversion), 
intrapancreas (including acinar-to-β cell reprogramming, reactivation of endocrine 
progenitor, and differentiation into β cells), and other sites (e.g., transdetermination of 
enteroendocrine progenitors to β cells) have all been investigated with some 
promising results. The different regeneration paths might represent different 
compensatory mechanisms for occasional β cell demise, relatively common stressors, 
or widespread islet loss and/or partial organ remodeling (as summarized in a 
previous review[69]). Notably, two or more regeneration paths often occur 
simultaneously in one condition. For instance, β cell replication and neogenesis from 
progenitors often occur together; α-to-β cell conversion generally induces progenitor 
activation. Notably, one drug often protects β cells from different aspects. For instance, 
GLP-1 and GABA promote the replication of β cells, enhance the conversion of α-to-β 
cells, and suppress immune reactions and cell apoptosis. As a result, GLP-1 and GABA 
have valuable significance for β cell regeneration and diabetes treatment. Several 
studies have identified the long-term effects of GLP-1. For example, exenatide 
improves β cell function for up to 3 years of treatment in patients with T2D[106,107]. The 
safety and effects on the β cell function recovery of GABA in patients must be 
determined.

In addition, there are other areas that require further investigation. First, the 
regeneration mechanism between humans and rodents is different. Most strategies for 
promoting regeneration have only been successfully applied to animals and have 
failed in humans. Therefore, conclusions should be drawn cautiously from mouse 
models when interpreting the results for humans; moreover, carrying out experiments 
using human islets and conducting clinical trials would help. Second, the efficiency of 
β cell recovery induced by current clinical drugs is low, and other strategies that have 
high clinical efficiency and potential are required. Third, the win-win aim of 
hypoglycemia and islet regeneration is challenging when using a single agent, and a 
combination strategy is needed. A possible strategy might involve agents with good 
glucose-lowering efficacy and agents that have been demonstrated potential to 
preserve and regenerate β cells. On one hand, the agents with good glucose-lowering 
efficacy (such as insulin), achieve glycemic goals rapidly, thereby minimizing the 
exposure of β cells to glucotoxicity and lipotoxicity. On the other hand, several agents, 
such as GLP-1 or GABA, have been demonstrated to be potentially able to preserve 
and regenerate β cells, and may potentially contribute to the aim of recovering β cell 
mass. Fourth, the promotion of proliferation and neogenesis may lead to the 
development of cancer. The investigation of signals that mediate the physiological 
expansion of β cell mass in obesity and insulin resistance might lead to novel β cell 
regeneration reagents without significant tumorigenic risks. Besides, regulatory 
mechanisms to turn on and off regenerative and oncogenic pathways require 
investigations before applying regenerative approaches clinically. Additionally, 
further investigation is required into how the interventions to expand β cell mass can 
be specifically targeted to β cells. Taken together, in the last century, considerable 
efforts have been made to achieve complete β cell regeneration, and several agents 
have showed clinical potential, but there is still a long way to go.
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Table 1 Cell types, regeneration mechanisms, and clinical/preclinical agents for pancreatic β cell regeneration

Regeneration 
mechanisms Cell types Clinical/preclinical agents

Ref.   
      
    

Correction of glucotoxicity 
and lipotoxicity

All antidiabetic drugs [16-18]

Suppression of the 
immune system

Immunomodulation therapies, for instance, activation of the nuclear receptor LRH-
1/NR5A2, CD3 mAb, GABA, GLP-1

[21-24]

Inhibition of cell death Islet β cells GLP-1, metformin, angiotensin-converting enzyme inhibitors [25,27,28]

Inhibition of cell 
dedifferentiation

Islet β cells Antidiabetic drugs and the diabetes management, such as diet, exercise, or intensive 
insulin therapy; Other drugs, such as salsalate, renin–angiotensin system inhibitors

[35,36]; 
[37,38]

Stimulation of cell 
proliferation

Islet β cells A large number of growth factors and mitogenic agents, including hepatocyte growth 
factor, GLP-1, insulin-like growth factors, epidermal growth factors in rodent models; 
Inhibition of Dyrk1a, SerpinB1, GABA, GLP-1, etc.; Combining of the Dyrk1a 
inhibitor with the GLP-1 receptor agonist; combined inhibition of Dyrk1a, SMAD and 
Trithorax pathways

[42]; 
[48-51]; 
[52,53]

Pluriopotent stem cells Stepwise induction with cocktails of cytokines and chemicals; GLP-1, ascorbic acid, 
zinc sulfate, N-acetyl cysteine, etc.

[54-58]; 
[56,58,65-
66]

Stem cell-derived pancreatic 
endoderm cells or 
progenitors

GLP-1 [67]

Mesenchymal stem cells Stepwise induction [63]

Promotion of stem cell 
differentiation

Pancreatic stem or 
progenitor cells in vivo

GLP-1, dipeptidyl peptidase 4 inhibitor, fasting-mimicking diet, etc. [79-82]

Pancreatic α cells GABA, artemisins, GLP-1, glucagon receptor mAb, sodium-glucose co-transporter 
type 2 inhibitor inhibitor, fibroblast growth factor 21, etc.

[87,88,90,
91,93,94]

Pancreatic δ-cells FoxO1 inhibitor, etc. [13]

Pancreatic acinar cells Cytokine mixture of epidermal growth factor and ciliary neurotrophic factor [98]

Enteroendocrine progenitors FoxO1 inhibition, GLP-1, etc.
[100,104,
105]

Induction of cell 
transdifferentiation and 
transdetermination

Other progenitors and 
mature cells, including 
hepatocytes, neuroendocrine 
cells

Not determined.

GABA: γ-aminobutyric acid; GLP-1: Glucagon-like peptide-1; mAb: Monoclonal antibody.
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Figure 1 Integrative view of the cell types and clinical/preclinical agents for β cell regeneration. FMD: Fasting-mimicking diet; GABA: γ-
aminobutyric acid; GCGR mAb: Glucagon receptor monoclonal antibody; GLP-1: Glucagon-like peptide-1; MSCs: Mesenchymal stem cells; ND: Not determined.
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