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Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different 
protein isoforms with distinctive functions. The outcome of alternative splicing 
(AS) can result in a complete loss of function or the acquisition of new functions. 
There is a gap in knowledge of abnormal RNA splice variants promoting cancer 
stem cells (CSCs), and their prospective contribution in cancer progression. AS 
directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer 
cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-
binding transcription factor 4 contributes to maintaining stemness properties in 
both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates 
the AS events in CSCs to maintain stemness. The alternative spliced variants of 
CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, 
and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-
renewal properties and maintaining the pluripotency of CSCs. Various splicing 
analysis tools are considered in this study. LeafCutter software can be considered 
as the best tool for differential splicing analysis and identification of the type of 
splicing events. Additionally, LeafCutter can be used for efficient mapping 
splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces 
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the fact that gene and protein expression need to be investigated in parallel with 
alternative splice variants.
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Core Tip: The alternative splicing machinery can produce various variants, associated 
with stemness characteristics of both stem cells (SCs) and cancer SCs. In this study, the 
role of spliced variants in SCs and stem-like cancer cells is reviewed. We highlight the 
importance of transcript-based expression concurrent with the gene and protein 
expression that leads to better understanding of self-renewal features of tumor cells.
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INTRODUCTION
Alternative ribonucleic acid (RNA) splicing is an emerging topic in molecular and 
clinical studies[1]. Alternative splicing (AS) is the key mechanism to generate a large 
number of messenger RNA (mRNA) transcripts from the relatively low number of 
human genes, which can lead to the assembly of different protein isoforms with 
distinct functions. This structural modification of gene transcripts and their encoded 
proteins is considered a vital process that increases diversity of protein functions in 
order to generate the complex cellular proteome[2,3].

Stem cells (SCs) are undifferentiated cells that are able to self-renewal, or differ-
entiate into any types of differentiated cells. SCs can be found in both embryos and 
adult cells[4]. The self-renewal characteristics also can be found in cancer SCs (CSCs) 
within the tumor environment[5].

In this review, we discuss the significance of AS in determining the final fate of SCs. 
Also, the impact of AS events in promoting stemness features in CSCs is highlighted. 
To address all aspects related to AS, this review provides comprehensive detail 
regarding various types of AS tools.

MAIN TEXT
Alternative RNA splicing and its different types
The outcome of AS can result in a complete loss of function or the acquisition of new 
functions[2,3]. AS can also change the gene expression pattern in cancer cells. Exon-
skipping (a form of alternative RNA splicing) in tumour suppressor genes can lead to 
truncated proteins, similar to classical nonsense mutations, resulting in cancer-specific 
AS in the absence of genomic mutations[6]. It has been demonstrated that nearly half 
of all active AS events are altered in ovarian and breast tumour cells compared to 
normal tissue[3].

There is ample evidence that AS coordinates significant changes in protein isoform 
expression and is the main cause of the functional diversity in proteins and proteome
[7-10]. In humans, it is estimated that up to 94% of genes undergo AS, resulting in 
more than 100000 transcripts[7-9].

As presented in Figure 1, transcripts are products of precursor mRNAs (pre-
mRNAs) splicing processes, where novel transcripts are discovered with increasing 
regularity and added to public databases, providing a valuable resource for analysis of 
AS[11]. During the transcription process, pre-mRNAs are produced. Then, through the 
RNA splicing process, the non-coding regions of pre-mRNAs (introns) are removed, 
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Figure 1 Different types of alternative RNA splicing events.

and coding regions (exons) are joined, and they produce mature mRNAs[12]. Also, it is 
well-established that the more complex process (AS) may increase the diversity of the 
mRNAs which are expressed from a single gene. During AS, different exons can be 
extended or skipped, or introns can be retained within spliced transcripts and produce 
different mRNAs[13]. The majority (approximately ninety percent) of human genes are 
alternatively spliced[14]. AS has been considered as a gene expression regulator and 
miss-splicing can contribute to risk for various human diseases, like cancer[14]. With 
the advent of high-throughput sequencing methods, analysis of human genomic and 
transcriptomic has been efficiently developed. Using bioinformatics tools, the 
sequenced transcripts can be aligned to the genomic reference sequences to find AS 
events[15,16]. Five standard forms of AS events have been identified including 
skipped exon (SE, also known as cassette exons), alternative 5’ splice site (A5SS), 
alternative 3’ splice site (A3SS), retained intron (RI) or intron retention (IR), mutually 
exclusive exons (MXE). Also, alternative first exons (AFE), and alternative last exons 
(ALE) are considered as less common AS events[17].

Exon skipping is the most common AS event, in which the exon as a whole is 
skipped from the mature mRNA transcript[18]. During A3SS and A5SS events, exons 
are flanked on one side by a constitutive splice site (fixated) and on the opposite side 
are flanked by two (or more) competing for alternative splice sites, leading to an 
alternate region (extension) that either is included within the transcript or is excluded
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[17]. IR and MXE are the least abundant subtypes among all five major AS events. 
Normally, during pre-mRNA splicing, introns are fully spliced and excluded from the 
mature mRNA. However, during IR splicing, introns are retained in mature mRNAs. 
IR-spliced isoforms have different destinations, some of them may degrade by the 
nonsense-mediated decay (NMD) pathway, due to the existence of premature 
termination codons within introns. In some cases, further splicing is applied to the IR 
isoforms and helps them to escape NMD. NMD escaped-IR isoforms are translated 
into truncated proteins which have fewer or extra domains in their structure and 
increase the risk of diseases[19]. In the splicing of MXEs, exons are spliced in a 
coordinated manner. MXEs can leave the size of the spliced isoform products 
unchanged. In these isoforms, 1 out of 2 exons (or 1 group out of 2 exon groups) is 
retained, while the other one is spliced out[20].

There are more events that are not categorised among five standard forms including 
alternative AFE (alternative promoters) and ALE (alternative 3′ terminal exons). An 
AFE is the first exon of one splice variant of a gene, which is located downstream of 
some isoforms of this gene, or this exon is excluded from another isoform because it is 
located in the intronic region[21]. The AFE definition is also referred to as ALE in 
which the last exon (3′ terminal exon) may be retained or be excluded in different 
variants of a single gene[22].

The challenge of alternative RNA splicing analysis in cancer research
There is a gap in knowledge of abnormal estrogen-associated RNA splice variants in 
breast cancer, and their prospective contribution to breast cancer progression while 
breast cancer is mainly a disease in which the sex hormone estrogen stimulates 
uncontrolled growth. Furthermore, their relative abundance and their potential to use 
AS in cancer diagnosis and treatment has been neglected.

In addition to the novelty of the subject, the major reasons for this shortcoming are: 
(1) Heavy computation and high computer skills are required for AS detection and 
analysis; and (2) A high depth of sequencing is required for comprehensive profiling 
of splicing events. Recently published in Scientific Reports (2018)[11], we developed a 
Windows-based, user-friendly tool for identifying AS events without the need for 
advanced computer skills. Additionally, this tool operates as an online module, and 
employs the SpliceGraphs module without the need for additional resource updates. 
First, SpliceGraph generates data based on the frequency of active splice sites in the 
pre-mRNA. Then, the presented approach compares the query transcript exons to 
SpliceGraph exons in the online genome browser ENSEMBL.

Our team in the Dame Roma Mitchell Cancer Research Laboratories is exceptionally 
well positioned to unravel the complexity of AS in breast cancer, and thereby, utilise 
the aberrant alternative splice variants unique to breast cancer as an accurate diagnosis 
tool. Moreover, this proposed project has the capacity to employ alternative splice 
variants as a determinant of better outcomes of disease—a completely novel paradigm 
of disease prevention and diagnosis.

SCs and CSCs
There are various types of SCs. The highest differentiation potential which allows SCs 
to differentiate into any cell type of a whole organism is found in totipotent SCs, like a 
zygote. totipotent SCs can generate embryo and extra-embryonic structures in cells
[23]. Pluripotent SCs (PSCs) are the other types of SCs that are not able to form extra-
embryonic structures in cells, but they have the potential to differentiate into cells of 
three germ layers (endoderm, ectoderm, and mesoderm)[24]. Embryonic SCs (ESCs) 
and induced PSCs (iPSCs) are categorised in PSCs. ESCs are derived from the inner 
cell mass of a blastocyst (preimplantation embryos) and the indefinite self-renewal 
ability and plasticity are their vivid characteristics[25]. iPSCs are artificially derived 
from somatic cells, and their function and features are similar to PSCs. iPSCs have 
shown promising impacts on present and future regenerative medicine[26]. Another 
SC types are multipotent SCs which have limited differentiation abilities than PSCs 
and they only differentiate into a specific cell lineage. Haematopoietic SCs (HSCs) are 
multipotent SCs which can only differentiate into blood cells. Unipotent SCs have the 
least differentiation capabilities which they can only form one cell type, like 
dermatocytes[27].

Due to the similarities between cancer state and embryonic development, several 
studies have focused on the existence of CSCs within the tumor environment[5]. It has 
been well-established that tumor progression, anti-tumor drug resistance, and post-
treatment tumor regeneration are driven by a special cancerous cell type, called CSCs. 
Generally, CSCs characterized by self-renewing, multipotent, and tumor-initiating 
properties. It is really difficult to detect CSCs within a tumor environment because 
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some CSCs that lack specific markers have tumor regeneration abilities[28]. To 
illustrate, cluster of differentiation (CD) 133 marker firstly was utilized to isolate CSCs 
from colon carcinoma, but some CD133- metastatic colon carcinoma cells were found 
which had self-renewal properties as well as CD133+ CSCs[29]. Then, studies showed 
that CSCs could contain some specific subpopulation, like CD133- metastatic colon 
carcinoma cells, they are known as migrating SCs subpopulation[30]. So, in several 
solid tumors, the subpopulation of migrating and resident SCs can be found which 
they have been identified by various surface markers including CD24, CD29, CD44, 
CD90, CD133, aldehyde dehydrogenase 1 (ALDH1), and epithelial-specific antigen. 
These markers can be used as a potential target for developing anti-CSCs specific 
therapies[31].

AS in SCs
The differentiation of SCs and their progenitors relies on various molecular controls 
associated with the gene expression regulation, including chromatin modification, 
transcription factors, post-transcriptional regulation by AS, microRNAs (miRNAs), 
and post-translational modifications. Advanced technologies, as an illustration of 
high-throughput RNA sequencing (RNA-seq), have demonstrated the contribution of 
AS patterns in SCs maintenance and differentiation[32].

ESCs are pluripotent cells which able to self-renew, and they have the ability to 
differentiate into the endoderm, the ectoderm, and the mesoderm cells[33]. Hence, 
they are the best model for monitoring early embryonic development. Also, ESCs are 
the potential source for developing differentiated cells for therapeutic approaches in 
regenerative medicine. One of the first genome-wide studies on splicing patterns in the 
ESCs reported more than thousands of AS events in ESCs[32]. The results of one study 
revealed that human and mouse ESC-related AS events are mostly found in genes 
associated with the cytoskeleton (dystonin, adducin 3), plasma membrane (dynamin 2, 
integrin subunit alpha 6), and kinase activity (calcium/calmodulin dependent serine 
protein kinase, microtubule affinity regulating kinase 2, and mitogen-activated protein 
kinase kinase 7)[34].

Both RNA-seq and splicing microarrays studies reported AS events, particularly 
those associated with changing protein sequence[15]. Also, the gene expression 
alteration of the proteins that regarded as splicing regulators was detected during 
developmental stages, suggesting various AS events during the process of differen-
tiation[16]. For example, increasing expression of splicing regulators like muscle blind-
like (MBNL1 and MBNL2) RNA binding proteins (RBPs) was shown during ESC differ-
entiation which is highly associated with ESC-differential AS. The presence of the 
MBNL motif downstream and upstream of the flanking intronic sequences is 
associated with exon skipping and exon inclusion in ESC respectively[34]. It has been 
revealed that the AS events of genes that they contribute to ESC differentiation foster 
this process, like embryonic SC-specific event in forkhead box p1 (FOXP1), FOXP1-ES. 
The FOXP1-ES spliced isoform stimulates the expression of genes, including octamer-
binding transcription factor 4 (OCT4), nanog homeobox (NANOG), nuclear receptor 
subfamily 5 group A member 2, and growth differentiation factor 3 which these 
transcription factors are required for pluripotency. Along with maintaining ESC 
pluripotency, FOXP1-ES showed effective involvement in the reprogramming of 
somatic cells to iPSCs[35,36]. The fibroblast growth factor 4 splice isoform (FGF4si) of 
FGF4 is another example of transcription factor that play major roles in ESC fate 
determination and promotes differentiation at later stages of development[37].

One of the most important regulators of self-renewal in ESCs is POU domain 
proteins (POU class 5 homeobox 1, also known as OCT4) and its gene expression is 
stimulated by FOXP1-ES. OCT4 has various isoforms including OCT4A, OCT4B, 
OCT4B1, OCT4B2, and OCT4B4. The expression of OCT4A only has been detected in 
ESCs and embryonal carcinoma cells (ECCs). The OCT4B detected in differentiated 
cells and OCT4B1 had higher expression levels in ESCs and ECCs rather than non-
pluripotent cells[38]. Also, it has been revealed that expression patterns of OCT4B2 
and OCT4B4 are similar to OCT4A (they highly expressed in undifferentiated cells), 
and like OCT4B1, their expression is lower in differentiated cells[39,40].

AS events also have found as critical factors to control the hematopoiesis process 
which during this process the HSCs produce mature blood cells in the bone marrow. 
The importance of AS in hematopoiesis has been identified through the analysis of AS 
related to RUNX family transcription factor 1 (RUNX1) which is a critical transcription 
factor for this process. RUNX1a isoforms are generated from RUNX1 by exon 6 AS and 
increase the capacity of the HSC pool[41]. Moreover, multiple isoforms of the other 
HSC-specific genes (homeobox A9, Meis homeobox 1, PR/SET domain 16, and HLF 
transcription factor-PAR bZIP family member) have been found using whole-
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transcriptome splicing of murine HSCs[42]. Also, a bioinformatics analysis revealed 
that the IR in HSC-specific transcripts led to a decrease in the expression of genes 
involved in DNA binding and RNA processing. This process consequently promoted 
the NMD pathway in HSCs[43,44].

Along with ESCs and HSCs, there are neural SCs (NSCs) that are responsible for 
generating neurons and glia during embryonic development. The nervous system 
applies AS for cell differentiation, morphogenesis, and the formation of complex 
neuronal networks. The three major alternatively spliced isoforms of Quaking (Qki) 
have been found in NSCs. Qki5 is one of these isoforms which regulates NSC functions
[45]. Another example of AS involvement in the transition of SC to neuron cells is the 
existence of exon 10 in the mRNA of polypyrimidine tract binding protein 2 (PTBP2) 
protein[46]. Interestingly, it has been cleared that the downregulation levels of the 
other paralog of this protein, polypyrimidine tract binding protein 1 (PTBP1), inhibit 
the existence of exon 10 of PTBP2[47]. Hence, in neural cells, the neuron-specific 
microRNA miR-124 contributes to the downregulation of PTBP1[48]. On the other 
hand, there is another ubiquitous RNA-binding protein which suppresses PTB-
P1/PTBP2 levels by inhibiting the inclusion of exon 11/10 of PTBP1/PTBP2 in 
myoblast cells[49,50].

AS and CSC
SCs in normal tissues are capable of renewing themselves, also, stem-like cells within 
tumors, which have been called CSCs have the ability of self-renewing to seed new 
tumors. Hence, they have also been termed “tumor-initiating cells”[51].

Due to gene expression regulation at the transcriptional level, the contribution of AS 
events has been clearly reported in tumor-related biological processes like prolif-
eration, cell death, migration, and angiogenesis. AS changes transcriptome and 
proteome profile in human cells, therefore, its deregulation may greatly contribute to 
tumor plasticity[9]. Effectively, AS plays a regulatory role in maintaining the balance 
between pluripotency and differentiation of human ESCs during embryogenesis and 
tissue differentiation. Hence, defective AS machinery could mimic the oncogenic 
effects in non-tumorigenic cells. Results of an RNA-seq-based study on mammary cells 
revealed that AS events regulated by serine and arginine rich splicing factor 1 altered 
in human tumors. These defective AS events led to an enhancement of the prolif-
eration and decreased apoptosis in MCF-10A cell cultures[52]. The involvement of 
defective AS events in controlling tumor heterogeneity suggesting that they could also 
lead to re-programming of stem pathways, triggering metastasis, and tumor 
progression[53].

Phenotypic conversions of cells between epithelial and mesenchymal states, known 
as epithelial-mesenchymal transition (EMT), is activated during metastasis and 
enhances the re-activation of stem pathways. Hence, EMT is associated with tumor 
aggressiveness and resistance of cancer cells to anti-tumor drugs[54]. Various types of 
regulators including cytokines and growth factors are dysregulated in cancer cells 
which mainly involved in promoting EMT. EMT influences the mRNA maturation of 
some splicing factor-like epithelial splicing regulatory protein (ESRP). This splicing 
factor regulates the Wnt signaling pathway through exon 4 skipping of T-cell factor 4 (
TCF4). The activation of TCF4 is prompted by nuclear localization of beta-catenin and 
they are major transcriptional mediators of the canonical Wnt signaling pathway[55]. 
It has been revealed that, during EMT, the transactivation of exon 4 carrying TCF4 
isoforms is reduced. On the contrary, the lack of exon 4 Led to surge Wnt signaling 
during EMT[56].

Moreover, ESRP-splicing factors can alter splicing of the Fibroblast growth factor 
receptor 2 (FGFR2)[57]. There are two different isoforms of FGFR2 including IIIb and 
IIIc which have pivotal roles in ligand binding specificity. ESRPs mainly help to the 
production of FGFR2-IIIb by inhibiting exon IIIc. The FGFR2-IIIc levels increase in the 
absence of ESRPs[58]. Spliced transcripts of FGFR2 were detected in primary tumors, 
and significantly enriched in metastases and tumor plasticity[59].

Also, the association between EMT and the emergence of CSCs has been identified
[60]. Studies showed that EMT induces AS events in genes involved in stem-like 
cancer cells. NUMB endocytic adaptor protein (NUMB) is an endocytic adaptor 
protein that has various functions in cell polarity maintenance, cell migration, and 
EMT. The importance of NUMB AS has been reported in various cancers including 
breast[61,62], lung cancer[63], and hepatocellular carcinoma cells[64]. Four NUMB 
isoforms based on the AS of exon 3 and exon 9 have been identified in vertebrates[65]. 
Exon 9 mainly founds in SCs rather than differentiated cells, also enhanced expression 
of NUMB exon 9 has been clearly shown in various cancer types. Interestingly, 
MEK/ERK signaling pathway regulated NUMB exon 9 splicing[66]. In cancer cells, 
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EMT triggers NUMB exon skipping, which leads to enhance invasive properties, and 
abnormal AS events in NUMB may also affect the balance between stem-like and non-
stem cancer cells[67].

One of the most important SC factors which contribute to embryogenesis and 
pluripotency of cancer stem-like cells is a member of POU family genes called OCT4. 
This SC factor plays a pivotal role in self-renewal and pluripotency properties in ESCs 
and ECCs[68]. AS leads to produce three main isoforms of the human OCT4, including 
OCT4A, OCT4B, and OCT4B1[38]. OCT4A contributes to maintaining stemness 
properties in ESCs and ECCs. On the contrary, OCT4B isoforms are not able to show 
these features[38,39].

Another gene that its spliced variants have been found in CSCs is Kirsten rat 
sarcoma viral oncogene homolog (KRAS). The occurrence of mutation and AS in this 
gene results in the production of transformed proteins that promote malignancies[69]. 
The spliced variants of KRAS are KRAS4A and KRAS4B which are known as minor 
and major isoforms respectively and in CSCs the splicing process of KRAS is regulated 
by the RNA binding motif protein 39 splicing complex. Hypoxic state in tumor 
environment activates the expression of KRAS4A in CSCs and there is a correlation 
between the expression of KRAS4A isoform and SC marker ALDH in cells with stem-
like properties. KRAS4A spliced variant controls the metabolic requirements in SCs 
particularly the level of adenosine triphosphate and lactate. These metabolites increase 
in the absence of KRAS4A. Furthermore, Chen et al[70] reported that Indisulam, which 
is a novel sulfonamide compound with potential antineoplastic activity, is an inhibitor 
of KRAS4A splicing, but has no obvious effect on KRAS4B. Also, previously the invol-
vement of Kras4 isoforms in murine SCs during development was reported[71].

Erb-B2 receptor tyrosine kinase 2 (HER2) is a member of the epidermal growth 
factor receptor family of receptor tyrosine kinases and its overexpression is a common 
feature of invasive breast carcinomas. Cells that express HER2 receptors considered as 
HER2-positive breast cancer. The full-length HER2 is known as wild-type HER2 
(wtHER2) which has about 1255 amino acids. While the altered form of HER2 has been 
identified with the absence of sixteen amino acids from the extracellular domain 
(deletion of exon 16). This HER2 splice variant is known as d16HER2 which highly 
enriched in the regulation of the breast CSCs (BCSCs) activity by its functional 
interaction with the notch receptor 1 family members[72]. Also, d16HER2 spliced 
variants are involved in initiation and aggressiveness of tumors, CSC properties, EMT, 
and the trastuzumab susceptibility of HER2 positive BC cells compared with wtHER2
[73].

Another example of EMT-promoting splicing changes is occurred by two splicing 
factors including QKI and RNA-binding Fox proteins (RBFOX1/RBFOX2). QKI and 
RBFOX2 are responsible for exon skipping of cortactin transcript during EMT[74]. The 
roles of QKI and RBFOX1 in establishing the SC features in breast tumor cells and 
regulating the EMT have been declared by applying exon 30 splicing (exon skipping) 
in the actin-binding protein FLNB[75].

AS in the CSC marker
One of the most well-known cell surface adhesion receptors of CSCs is CD44 which 
also famous as a CSC marker. CD44 is a non-kinase transmembrane glycoprotein 
comprised of 20 exons which AS leads to produce two different isoforms including the 
standard (CD44s) and variant (CD44v) isoforms[76]. Exons 1–5 and 16–20 are involved 
in CD44s isoform and make it the smallest isoform which is expressed by the 
mesenchymal cells. On the other hand, the middle nine exons (exons 6-15 of the 
genomic DNA) can be alternatively spliced and located between exons 1–5 domain 
and exons 16–20 region which form CD44v isoforms[77]. CD44 activates by binding to 
its main ligand, hyaluronic acid. Activated CD44 Leads to cell proliferation and 
metastasis[78]. CD44s isoforms predominantly express on hematopoietic and 
mesenchymal cells and the CD44s isoforms abundance in cancer cells induces stem-
like features[79]. This protein is highly expressed in many cancer cells and its 
alternative spliced variants play a critical role in tumor progression.

Previously, it has been reported that switching from CD44v to CD44s isoform led to 
promoting EMT in cells. Cancer cells that undergo an EMT acquire SC-like properties, 
and CD44 expression increases in these cells, while the expression levels of splicing 
factor ESRP reduced[54]. Splicing factor ESRP contributes to switching CD44v isoform 
into CD44s which is required for promoting EMT[80]. Various studies have been done 
to reveal the exact role of CD44 isoforms in cancer cells. It has been reported that 
increasing tumor cell survival, invasiveness, and migration is associated with CD44s
[81]. Ouhtit et al[82] showed the increased expression of CD44 in metastatic breast 
tumors and they provided in vivo evidence for the role of the CD44s isoform in 
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promoting breast tumor invasion and metastasis to the liver. Moreover, Hiraga et al
[83] declared that CD44 can induce functional properties in CSCs and its CD44s variant 
contributes to the promotion of bone metastases. Besides CD44s, there is some 
evidence that proved the role of CD44v in enhancing CSC activities[84,85]. Also, 
protecting CSCs from reactive oxygen species-induced stress by interacting with a 
glutamate-cystine transporter that subsequently promotes tumor growth[86].

One of the driving factors that control EMT-associated splicing changes are ESRP-1 
and -2 splicing factors. ESRP1 inhibits CSC traits by inhibiting the production of 
CD44s. Increased expression of CD44s upon EMT-induction leads to the invasive 
phenotype in cancer cells. Also, the results of bioinformatics analysis of the Cancer 
Genome Atlas program of breast cancer showed that there is a significant negative 
correlation between the ratio of the CD44 isoforms and the ESRP1 splicing factor[79]. 
Also, it has been proved that the expression levels of ESRP1 decreased in triple-
negative breast cancer (TNBC) compared with non-TNBC samples. Along with direct 
regulatory effects of ESR1 on CD44s isoform, this splicing factor also controls the CSCs 
functions by splicing α6β1 integrin. α6 integrin subunit (CD49f) is a well-known 
biomarker for BCSC and other CSCs and there are two splice variants for this subunit 
including α6Aβ1 and α6Bβ1 isoforms[87,88]. ESRP1 impedes CSC function by inducing 
the expression of the α6Aβ1 splice variant and repressing α6Bβ1 integrin isoform[58,
89].

Despite the above arguments, there are some controversies about the role of ESRP1 
in promoting[90] or inhibiting[89] CSC properties. The results of a study which was 
conducted by Yae et al[90] seem contradictory. They reported that ESRP1 contributes 
to breast cancer metastasis through a mechanism in which these splicing factors 
stimulate the upregulation of the CD44v isoforms and results in lung metastasis of 
breast cancer cells accompanied by the expansion of stem-like cancer cells[90]. Also, 
Hu et al[91] revealed that CD44v is expressed on CD24-/CD44+ breast CSCs which 
enhances the risk of metastasis to the lung, rather than cells that expressing CD44s.

ALDH is a common CSC marker which catalyses the oxidation of aldehydes. There 
are 19 various types of ALDH in the human genome. Upregulation of ALDHs has 
found in SCs and CSCs[92]. However, ALDH1 mainly considered as SCs and CSCs 
markers and contributes in self-renewal activity which has three isoenzymes 
ALDH1A1, ALDH1A2, and ALDH1A3. Among these isotypes, ALDH1A1 is the most 
prominent SC marker in renal cell carcinoma (RCC) tumor, breast cancer[93], colon 
cancer[94], and is linked to tumorigenesis, mortality, and self-renewal activity[95].

Another marker of CSCs in the gastrointestinal tract is doublecortin-like kinase 1 (
DCLK1) which mostly correlated with tumor initiation, EMT, and progression[96,97]. 
In RCC tumor, DCLK1 alternative spliced variants (DCLK1 ASVs) overexpressed 
compared to control samples. DCLK1-long isoforms (Isoforms 2 and 4) are associated 
with RCC recurrence and they mainly co-expressed with renal tumor SC markers 
including ALDH1A1, C-X-C motif chemokine receptor 4, and CD44. It has been proved 
that a high level of DCLK1 alternative transcript (Isoform 2) promotes the expression 
of RCC SC markers and increases self-renewal activity[98].

In summary, the AS machinery could regulate the self-renewal features of stem-like 
cancer cells. This process is performed by producing spliced variants of cancer cell 
markers. The most important spliced variants of CSCs markers are CD44s, CD44v, and 
α6Bβ1 integrin because they have found on the surface of various CSCs. Also, the 
splicing factor ESRP is responsible for the splicing changes of both CD44 isoforms and 
α6Bβ1 integrin. The Table 1 represents the association of the alternative RNA splice 
variants and their activities in both SCs and CSCs[99-105].

AS analysis tools
Since the pivotal role of AS events has been cleared in increasing self-renewal 
properties and maintaining the pluripotency of CSCs, it is highly important to detect 
differential splicing using computational approaches. Sequencing methods have paved 
the way to survey AS. Initial studies by microarray profiling and EST-cDNA sequence 
data reported that about two-thirds of human multi-exon genes are alternatively 
spliced[106]. Then, high-throughput sequencing technologies provide a high depth of 
coverage and sensitivity to identify human AS. For the first time to survey the splicing 
complexity, the Genome Analyzer system of Illumina was used by Pan et al[7] Their 
results proved the effectiveness of the RNA-seq method to analyze AS events. 
However, it has been found that the RNA-seq method is not sufficient itself due to its 
short sequencing reads (approximately 100-150 bp), and needs a number of computa-
tional approaches to monitor differential splicing[107].
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Table 1 Genes that undergo splicing events in stem cells and stem-like cancer cells

Type Gene Ensembl ID Alternative RNA 
splice variants Activities Ref.

IGF1 ENSG00000017427 IGF1Ec, IGF1 Ea IGF-IEc enhances proliferation and 
represses muscle progenitors 
differentiation, IGF-IEa activates 
anabolic pathways

[99]

POU5F1 (OCT4) ENSG00000204531 OCT4A, OCT4B, 
OCT4B1

Play roles in pluripotency and self-
renewal of embryonic stem cells

[38]

RBM4, RBM14, CoAA ENSG00000173933 CoAZ, ncCoAZ Influence co-transcriptional splicing [100]

DNMT3B ENSG00000088305 DNMT3B3, 
DNMT3B3∆5

DNMT3B3∆5 expressed in ESCs and 
functionally distinct from DNMT3B3

[101]

VEGFA ENSG00000112715 VEGF120, VEGF164, 
VEGF188

All promote MSC proliferation; some 
enhance paracrine signaling, osteogenic, 
or endothelial differentiation

[102]

FGF4 ENSG00000075388 FGF4, FGF4si FGF4 is important to stem cell 
maintenance, while FGFsi antagonizes 
some of FGF4’s activity

[37]

PKCd ENSG00000163932 PKCdI, PKCdII PKCdI is caspasecleavable and PKCdII is 
caspase in-cleavable

[103]

POU2F2 (OCT2) ENSG00000028277 OCT2.2, OCT2.4 Oct2.2 is sufficient to induce neural 
differentiation in mouse ESCs, Oct2.4 is 
able to block neural differentiation

[104]

RMB14, CoAA ENSG00000239306 CoAA, CoAM CoAA is downregulated in favor of 
CoAM during early embryonic 
development

[105]

RUNX1 ENSG00000159216 RUNX1a Increases the capacity of the HSC pool [41]

Qki ENSG00000112531 Qki5 Regulates neural stem cell function [45]

PTB ENSG00000117569 nPTB (PTBP2) with 
exon 10

Transition of stem cell to neuron cells [46]

Non-cancerous 
stem cell

FOXP1 ENSG00000114861 FOXP1-ES Promotes the maintenance of ESC 
pluripotency and contributes to efficient 
reprogramming of somatic cells into 
induced pluripotent stem cells

[35]

NUMB ENSG00000133961 NUMB exon skipping 
by EMT

Affect the balance between stem-like and 
non-stem cancer cells 

[67]

KRAS ENSG00000133703 KRAS4A Enriched in the cancer stem cell 
population and helps to modulate the 
metabolic requirements and stress 
responses associated with the cancer 
stem-progenitor cell transition

[70]

HER2 ENSG00000141736 D16her2 Role in the regulation of the BC stem 
cells (BCSCs) activity through its 
functional interaction with the NOTCH 
family members

[72]

CD44 ENSG00000026508 CD44s CD44s isoforms in cancer cells induces 
stem-like features

[79]

CD44 ENSG00000026508 CD44v Promote CSC activities and protecting 
CSCs from ROS-induced stress 

[86]

α6β1 integrin (ITGA5, 
VLA-6, CD49f/CD29)

ENSG00000091409 α6Bβ1 integrin Promotes the function of breast CSCs 
and tumor initiation 

[89]

FLNB ENSG00000136068 FLNB exon 30 skipping Associated with EMT gene signatures in 
basal-like breast cancer/ establishing the 
mesenchymal and stem-like cell state in 
breast cancers

[75]

DCLK1 ENSG00000133083 DCLK1-long isoforms 
(Isoforms 2 and 4) 

Promotes expression of RCC stem cell 
markers and increases self-renewal 
activity

[98]

POU5F1 (OCT4) ENSG00000204531 OCT4A Promotes stemness properties in 
embryonal carcinoma cells

[38]

Cancer stem cell
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ALDH1 ENSG00000165092 ALDH1A1 Promotes tumorigenesis, mortality, and 
self-renewal activity in RCC

[98]

IGF-1: Insulin like growth factor 1; POU5F1: POU domain proteins; OCT4: Octamer-binding transcription factor 4; RMB: RNA binding motif protein; 
DNMT3B: DNA methyltransferase 3 beta; VEGFA: Vascular endothelial growth factor A; FGF4: Fibroblast growth factor 4; PKCd: Protein kinase C delta; 
RUNX1: RUNX family transcription factor 1; Qki: Isoforms of Quaking; PTB: Polypyrimidine tract binding; FOXP1: Forkhead box p1; NUMB: NUMB 
endocytic adaptor protein; KRAS: Kirsten rat sarcoma viral oncogene homolog; HER: Erb-B2 receptor tyrosine kinase; CD: Cluster of differentiation; ITGA5: 
Integrin subunit alpha 5; FLNB: Filamin B; DCLK1: Doublecortin-like kinase 1; ALDH1: Aldehyde dehydrogenase 1.

There are three approaches to perform differential splicing analysis, including exon-
based, isoform-based, and event-based methods. Mainly, exon-based and event-based 
methods are categorized in one strategy called the count-based method (Table 2)[108-
146].

Isoform-based method
Isoform-based methods are based on the reconstruction of full-length transcripts at the 
first step, then these methods estimate the relative isoform abundance across samples 
or conditions. Following that, statistical testing is used to identify the significant 
differences in the relative transcript abundances among various experimental 
conditions and samples. It is noticeable to say that the effectiveness of this method 
relies on accurate transcript quantification. Some of the isoform-based tools have been 
developed including cuffdiff2, HMMSplicer, PennDiff, rSeqDiff, DiffSplice, NSMAP, 
and MISO. The last two mentioned tools are also able to detect splicing events while it 
is not possible for others.

Cufflinks is an isoform-based pipeline which contains three programs including 
Cufflinks, Cuffmerge, and Cuffdiff. Cufflinks first applies transcript assembly by 
generating overlap graphs with fragments and quantifying the aligned reads. 
Transcript abundance of a transcript is then estimated in form of FPKM (fragments per 
kilobase per million mapped fragments). Then, using Cuffmerge, collected assemblies 
are merged to create a consensus reference. Cuffdiff2 finally performs different tests 
for detecting differentially expressed genes and differential isoform changes are 
calculated by applying a one-sided t-test[147].

HMMSplicer is a precise algorithm for analyzing canonical and non-canonical splice 
junctions in short-read datasets. HMMSplicer firstly divides each read in half, then 
seeds the halves to the reference genome and based on Hidden Markov Model, finds 
the exon boundary. At final points, a score is assigned to each junction, based on the 
alignment strength, number, and quality of bases supporting the splice junction. The 
true and false positives can be distinguished perfectly using this scoring algorithm and 
lead to find novel both canonical and non-canonical splice junctions[110]. PennDiff, as 
an accurate statistical method takes information regarding both gene structures and 
pre-estimated isoform relative abundances into consideration, then analyzes differ-
ential AS or transcription for RNA-seq data[111].

rSeqDiff is implemented as an R package for the detection of differential isoform 
expression from multiple RNA-Seq samples using the hierarchical likelihood ratio test. 
rSeqDiff can considering three cases for analysis, including genes with no differential 
expression, genes with differential expression without differential splicing, and genes 
with differential splicing[112].

DiffSplice is additionally another isoform-based method for the detection and 
visualization of differential transcription. The DiffSplice approach is not based on 
transcript or gene annotations, it overcomes the requirement for full transcript 
inference and quantification, which may be a challenge due to short read length. So, 
what makes DiffSplice distinct from other methods is that this tool uses a divide-and-
conquer approach to seek out the difference between transcriptomes within the variety 
of AS modules (ASMs), where transcript isoforms separate. The abundance of various 
AS isoforms existing in each ASM is calculated for every sample and is compared 
across sample groups. A non-parametric statistical test is used for each ASM to 
demonstrate significant differential transcription with a controlled false discovery rate 
(FDR)[113].

NSMAP (non-negativity and sparsity constrained maximum a posteriori) model is 
provided to estimate the expression levels of isoforms using RNA-seq data. Like 
DiffSplice, NSMAP does not require annotation information. This tool drives the 
structures of isoforms and estimates the expression levels simultaneously[114].

MISO (mixture of isoforms) model with the help of bayesian inference estimates the 
expression level of alternatively spliced genes from RNA-seq data. Also, it is a probab-
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Table 2 Alternative splicing analysis tools based on isoform-based method and count-based method (including the exon- and event-
based approaches)

Tools Human/ plants/ 
animals Types of detecting splices Type of tool Year of 

publish Ref. Citation

Isoform-based method

Cuffdiff2 All - Linux 2012 [109] 9550

HMMSplicer All - Linux 2010 [110] 79

PennDiff All - Linux 2018 [111] 9

rSeqDiff All - R 2013 [112] 29

DiffSplice All - Windows/Linux 2013 [113] 141

NSMAP All - MatLab package 2011 [114] 46

MISO All SE / A3SS / A5SS / MXE / 
TandemUTR / RI / AF / AL

Linux 2010 [115] 1166

Exon-based method

TopHaT All - Linux 2009 [116] 11026

DEXSeq All - R 2012 [117] 1091

edgeR All - R 2010 [118] 19012

JunctionSeq All - R 2016 [119] 81

limma All - R 2015 [120] 11033

rSeqNP All - R 2015 [121] 10

Event-based method

MAJIQ All SE / A5SS / A3SS Linux 2016 [122] 171

rMATS All SE / A5SS / A3SS / RI / MXE Linux 2014 [123] 746

SUPPA All SE / A5SS / A3SS / RI / MXE / 
AF / AL

Linux 2015 [124] 134

SUPPA2 All SE / A5SS / A3SS / RI / MXE / 
AF / AL

Linux 2018 [125] -

ASGAL All SE / A5SS / A3SS / RI Linux 2018 [126] 12

Astalavista 
version 3.0

All SE / A5SS / A3SS / RI Linux 2012 [127] 62

LeafCutter All SE / A5SS / A3SS Linux 2018 [128] 200

SpliceGrapher All SE / A5SS / A3SS / RI Linux 2012 [129] 132

KisSplice All SNPs, indels and AS events (SE 
/ A5SS / A3SS / RI )

Linux 2012 [130] -

Alt Event Finder All SE Linux 2012 [131] 24

Matt All SE / A5SS / A3SS / RI Linux 2018 [132] 14

ALEXA-seq All SE / A5SS / A3SS / RI Linux 2010 [133] 340

Outrigger All SE / A5SS / A3SS / RI Linux 2016 [134] 86

ASDT All SE / A5SS / A3SS / RI Perl 2018 [135] 5

SplicePie All SE / RI R 2015 [136] 17

VAST-TOOLS All SE / A5SS / A3SS / RI R 2017 [137] 118

spliceR All SE / A5SS / A3SS / RI / 
AF/AL

R 2014 [138] 80

Pro-Splicer Human SE / A5SS / A3SS Website (http://prosplicer.mbc.nctu.edu.tw/
)

2003 [139] 50

ASPicDB Human SE / A5SS / A3SS / RI / 
AF/AL

Website (
http://srv00.recas.ba.infn.it/ASPicDB/)

2006 [140] 33

http://prosplicer.mbc.nctu.edu.tw/
http://srv00.recas.ba.infn.it/ASPicDB/
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H-DBAS Human SE / A5SS / A3SS / RI / 
AF/AL

Website (http://www.h-invitational.jp/h-
dbas/)

2007 [141] 56

ASIP Plant SE / A5SS / A3SS / RI Website (http://www.plantgdb.org/ASIP/) 2006 [142] 535

ASG Human SE / A5SS / A3SS / RI Website (
https://brcwebportal.cos.ncsu.edu/asg/)

2004 [143] 116

VastDB vertebrate SE / A5SS / A3SS / RI Website (
https://vastdb.crg.eu/wiki/Main_Page)

2017 [137] 118

Astalavista Human/ 
Animals

SE / A5SS / A3SS / RI Website (http://astalavista.sammeth.net/) 2007 [144] 205

SpliceDitector Plant/ Human SE / A5SS / A3SS / RI Windows 2018 [11] 1

dSpliceType All SE / A5SS / A3SS / RI / MXE Windows/ Linux 2015 [145] 4

AltAnalyze All SE / A5SS / A3SS / RI / MXE Windows/ Linux 2010 [146] 253

SE: Skipped exon; A3SS: Alternative acceptor site; A5SS: Alternative donor site; RI: Retained intron; MXE: Mutually exclusive exons; AF/AL: Alternative 
first/last exons.

ilistic framework that takes RNA-seq data of single-end or paired-end to perform more 
accurate AS analysis at either the exon or isoform level. Interestingly, MISO provides 
confidence intervals for estimates of exon and isoform abundance, detects differential 
expression, and uses latent information to enhance accuracy. Also, this tool using GFF 
annotations can generate various types of AS events including SE, A3SS/A5SS, MXE, 
TandemUTR, RI, AFE, and ALE[115].

Count-based method
Count-based methods comprised of both exon-based and event-based models. In 
exon-based approaches read counts are assigned to different features, such as exons or 
junctions. The main difference between these two approaches is that exon-based 
methods are not able to provide the type of splicing event; they just estimate the differ-
entially expressed exons/junctions between samples. Tools which have been 
developed based on the exon-based methods are TopHaT, DEXSeq, edgeR, Junc-
tionSeq, limma, and rSeqNP. Except for TopHat, all exon-based tools are launched in 
the R environment.

TopHat is a software package that finds spliced junctions ab initio by large-scale 
mapping of RNA-seq reads. TopHat performs mapping the reads using Bowtie (
http://bowtie-bio.sourceforge.net), an ultra-fast short-read mapping program to 
reference genome[116]. Also, TopHat is considered as a prior separately running tool 
for other software including Alt Event Finder, FineSplice, SplicingCompass, and 
NSMAP[148]. Firstly, the RNA-Seq data is processed by TopHat to find the splicing 
junctions. Then, NSMAP re-counts all the possible isoforms formed by the combin-
ations of collected exons from TopHat, and identifies the expressed isoforms and their 
expression level estimations[114].

DEXSeq is another exon-based method which uses a linear model to detect differ-
ential splicing genes from RNA-seq data[117]. Identifying differential expression levels 
of genes, exons, or transcripts is also done by the edgeR package. Moreover, using a 
negative binomial generalized log-linear model, edgeR can be used to analyze the 
count data. Then, the expression levels are calculated by comparing the logFC of an 
exon to the logFC of the entire gene[118]. The JunctionSeq package works based on the 
statistical approach of DEXSeq to calculate the differential exon usage and exon 
junctions[119].

Limma package is a well-known R package for detecting differential gene 
expression also provides differential splicing using exon count data. Limma integrates 
various statistical principles to perform large-scale expression studies accurately. First, 
this package applies a linear model to calculate differential expression tests for the 
exon-level expression data. Then, the exon-level statistics are turned to gene-level 
statistics for detecting differential spliced genes[120].

rSeqNP like other exon-based methods is able to test differential expression and 
differential splicing of genes. This tool uses standard non-parametric tests based on 
ranks of expression values of genes and isoforms[121].

Event-based methods through calculating the percentage spliced in (PSI) values can 
generate splicing events including SE, A3SS/A5SS, MXE, RI, AFE, and ALE. There are 
various types of software in this category which some are available as python, R, Perl 

http://www.h-invitational.jp/h-dbas/
http://www.h-invitational.jp/h-dbas/
http://www.plantgdb.org/ASIP/
https://brcwebportal.cos.ncsu.edu/asg/
https://vastdb.crg.eu/wiki/Main_Page
http://astalavista.sammeth.net/
http://bowtie-bio.sourceforge.net),
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packages, or others are accessible through online websites. Some of the most important 
tools are MAJIQ, rMATS, LeafCutter, SUPPA/SUPPA2, ASGAL, spliceR, SpliceDi-
tector, etc.

MAJIQ (modeling alternative junction inclusion quantification) is able to find splice 
graphs and local splice variations (LSV) using RNA-seq data and transcriptome 
annotation file. An LSV can be determined as a split in a splice graph or from a single 
exon (reference exon). Single source LSV is related to splits from a reference exon to 
multiple 3’ splice sites in downstream exons, while, single target LSV is related to 
multiple 5’ splice sites spliced to an upstream reference exon. Both simple splicing 
events and complex transcript variations can be included in the LSVs. The MAJIQ 
builder and MAJIQ quantifier make up MAJIQ. The MAJIQ builder tries to detect 
known and novel LSVs and construct a splice graph for genes collected from RNA-seq 
data and transcriptome annotation. Following that, the MAIJQ quantifier applies 
Bayesian PSI modeling and bootstrapping to estimates PSI values for each quantified 
LSV. MAJIQ is mainly used with the Voila package which is a visualization tool that 
using the output of MAJIQ (builder and quantifier), creates interactive summary files 
with gene splice graphs, LSVs, and their quantification[122].

MATS (multivariate analysis of transcript splicing) is a Bayesian statistical 
framework for the identification of differential spliced genes obtained from RNA-Seq 
data. MATS applies multivariate uniform before estimating the correlation of exon 
splicing between samples, also it uses a Markov Chain Monte Carlo (MCMC) method 
along with a simulation-based adaptive sampling method to report the P value and 
FDR of differential AS[149]. rMATS is a developed version of the MATS method. 
rMATS uses a hierarchical framework to account for sampling uncertainty in 
individual replicates and variability among both paired and unpaired replicates 
between sample groups, also it can estimate the PSI of each event[123].

LeafCutter is an event-based method developed to analyze samples and population 
variation in intron splicing using short-read RNA-seq data. LeafCutter can detect 
differential splicing between sample groups, and used for mapping splicing 
quantitative trait loci (sQTLs). So, analyzing sQTLs by LeafCutter can help to identi-
fication of disease-associated variants. To compare LeafCutter and MAJIQ tools, 
MAJIQ is used to predict local splicing variation using split-reads and identification of 
complex splicing events, but MAJIQ does not scale properly more than thirty samples 
and has not been adapted to map sQTLs. The LeafCutter output of AS events is mainly 
focused on SEs, 5′ and 3′ alternative splice site usage, and additional complex events 
that can be summarized by differences in intron excision. Comparison of LeafCutter to 
other methods for differential splicing analysis revealed that the majority of the 
introns that LeafCutter reported as the most significant differentially spliced, shared a 
splice site with rMATS and MAJIQ. It can be considered that LeafCutter is able to 
detect the same differentially spliced events[123].

SUPPA is another event-based method which uses RNA-seq data to calculate PSI for 
differential spliced events[124]. SUPPA and its different version, SUPPA2, are able to 
consider AFE and ALE events coupled with other standard types of events. SUPPA2 
has more advantages, including working with various replicates per condition and 
with different conditions. Also, SUPPA2 is able to cluster the differentially spliced 
events among various conditions to determine common splicing patterns and 
regulatory mechanisms[125].

Alternative Splicing Graph ALigner (ASGAL) is an event-based tool that uses RNA-
Seq samples and a gene annotation to detect AS events. Firstly, ASGAL constructs the 
splicing graph from the gene annotations. Then, the RNA-reads alignment is done 
against the constructed splicing graph of the input gene. Finally, AS events are 
determined. The most prominent feature of ASGAL is that this tool can have higher 
accuracy to predict events. Because as compared with other tools which perform 
spliced alignment against a reference genome, ASGAL tries to detect novel splice sites 
based on a splicing graph[126].

SpliceR is an R package to detect AS events uses the full-length transcript output 
from RNA-seq data. For each event, spliceR annotates the genomic coordinates of the 
differentially spliced elements, to enhance downstream sequence analysis. Moreover, 
the possibility of the coding potential and NMD sensitivity of each transcript are 
determined by spliceR[138].

SpliceDetector is a windows-based user-friendly software for the identification of 
AS events directly from transcripts without any computer skill requirement or 
database download. Furthermore, to construct splicing graphs, data updating is not 
necessary because SpliceDetector uses the updated information deposited in the 
Ensembl database. To use SpliceDetector software, first, it takes human, plant, and 
model organisms transcript IDs as input. Then, it constructs a SpliceGraph based on all 
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of the exon coordinates of the related gene. Finally, AS events are provided as output
[11].

The interaction between epigenetic and AS within SCs and CSCs
The critical role of AS in producing different mRNA variants, and even non-coding 
RNAs (ncRNAs), form one gene is well-established. AS can directly enhance 
transcriptomic and proteomic diversity. AS is regulated by RBPs which monitor the 
splicing machinery by binding to the pre-RNA. AS can be subjected to epigenetic 
regulation, like DNA methylation and histone modifications, and regulation by 
ncRNAs[150]. Long ncRNA (lncRNAs) are ncRNAs mainly longer than 200 nucleo-
tides which have emerged as an essential regulator in various cellular processes[151]. 
Also, the critical roles of lncRNAs in adult SCs have been identified. Long intergenic 
non-protein coding RNA PNKY (Pnky) is a neural-specific lncRNA within the nucleus 
of NSCs. This lncRNA maintains the undifferentiating features of NSCs and neural 
differentiation enhanced by knocking down Pnky. Interestingly, Pnky could regulate 
AS through interacting with splicing regulator PTBP1[152,153].

MiRNA are small non-coding RNAs, about 23 nucleotides in length, play role in 
gene expression regulation by pairing with complementary sequences in protein-
coding transcripts[154]. The microRNA-290 cluster maintains the pluripotency and 
stemness properties of ESCs by monitoring AS, also known as a master regulator of 
AS. The splicing factors MBNL1/2 are targeted by one of the members of this cluster, 
miR-294, and the downregulation levels of MBNL1/2 have been found in ESCs and 
during reprogramming of iPSCs. Also, it has been reported that the majority of AS 
events are regulated by miR-294 through MBNL1/2 repression and this repression 
leads to up-regulation of other splicing factors in ESCs, so miR-294-dependent AS 
events are enhanced[155].

Also, the indirect involvement of some specific spliced variants in the miRNA 
expression regulation process has been demonstrated in CSCs. CSCs of human head 
and neck squamous cell carcinoma (HNSCC) are mostly characterized by CD44v3 
isoforms which generate through alternative mRNA splicing of CD44. Also, ALDH1 
markers along with the high expression of transcription factors OCT4, SRY-box 
transcription factor 2 (SOX2), and NANOG are the other features of HNSCCs. In CSCs, 
Oct4-Sox2-Nanog TFs are activated by binding the CD44v3 to its ligand hyaluronan and 
these TFs have binding sites on miR-302 promoter. So, the interaction between 
hyaluronan-induced CD44v3-spliced variants and mentioned TFs plays a pivotal role 
in the downregulation of miR-302 target genes (like epigenetic regulators: Lysine-
specific histone demethylase and DNA methyltransferase 1), and this process is critical 
for the acquisition of CSC features[156].

Transcript-based expression analysis adds value to understanding of transcriptome 
in SC research
Measuring the expression of alternatively spliced mRNAs, instead of overall gene 
expression, is considered as a new and more accurate approach for marker discovery 
in cancer research[157]. For example, many apoptotic regulatory genes, such as BCL-x, 
encode for alternatively spliced protein variants with opposing functions: One 
apoptotic and the other anti-apoptotic[158]. In recent years, there has been a 
discernible shift in cancer diagnosis and therapy due to the perception about the role 
of genes and their proteins. Cancer can occur irrespective of changes in expression of a 
gene or protein, but rather as a result of aberrant splice variants that are linked to 
cancer progression and/or drug resistance and is compensated by the decreased 
expression of other splice variants originating from that same gene.

Future of AS
AS contributes to a range of phenotypic traits of tumours as they progress and 
metastasis, and is a potential target for gene therapy[6,9]. With the advent of next-
generation sequencing technology (NGS) and bioinformatics approaches, studying AS 
patterns has been performed in both cancerous and non-cancerous cells with 
increasing details. However, assembled transcripts obtained from NGS technology are 
not complete because this technology could sequence short reads. Hence, NGS 
platform may not be suitable enough for AS analysis. To overcome this limitation, the 
Pacific Bioscience (PacBio) platform has been developed based on the single-molecule 
real-time sequencing technology. PacBio technology provides full-length transcript 
sequencing without assembly. The PacBio full-length transcriptome data is the most 
accurate source to investigate AS[159]. AS analysis has been performed in various 
plant and mammalian species using PacBio platform[160-162].
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Some cancer-specific differential spliced isoforms have been identified which can be 
used in cancer diagnosis and as potential targets for selective anti-tumor treatments in 
the future[163]. Currently, single-cell transcriptomic studies have paved the way for 
analyzing the gene-level expression and identification of isoforms originating from the 
same gene, to determine the distinct gene expression signatures within cells, especially 
tumor cells. Also, single-cell techniques have provided a powerful method for 
identifying CSCs[164]. There are some controversies regarding the AS pattern in 
single-cells. Some evidence reported that several spliced transcripts exist in single-
cells. Faigenbloom et al[165] measured pairs of included and skipped isoforms 
obtained from spliced exons in single-cells. While, other studies demonstrated that 
single-cells express only one transcript variant or the dominance of a single transcript 
variant[166,167]. Further work in single-cell AS analysis is required to unravel the 
potential future of using AS events to develop personalized medicine for various 
diseases including cancer.

CONCLUSION
Unravelling AS opens a new avenue towards the establishment of new diagnostic and 
prognostic markers of cancer progression and metastasis as well as the development of 
a new generation of anticancer therapeutics: Treatments that inhibit specific splice 
variants, rather than targeting genes. Although the significant roles of alternatively 
spliced transcripts in promoting self-renewal properties of CSCs have been identified, 
more studies are needed to identify the whole CSCs-related splicing events to 
strengthen the therapeutic benefits of AS in the future.
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