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Abstract
Erythropoietin (EPO) is the main mediator of erythropoiesis and an important 
tissue protective hormone that appears to mediate an ancestral neuroprotective 
innate immune response mechanism at an early age. When the young brain is 
threatened-prematurity, neonatal hyperbilirubinemia, malaria- EPO is hyper-
secreted disproportionately to any concurrent anemic stimuli. Under eons of 
severe malarial selection pressure, neuroprotective EPO augmenting genetic 
determinants such as the various hemoglobinopathies, and the angiotensin 
converting enzyme (ACE) I/D polymorphism, have been positively selected. 
When malarial and other cerebral threats abate and the young child survives to 
adulthood, EPO subsides. Sustained high ACE and angiotensin II (Ang II) levels 
through the ACE D allele in adulthood may then become detrimental as 
witnessed by epidemiological studies. The ubiquitous renin angiotensin system 
(RAS) influences the α-klotho/fibroblast growth factor 23 (FGF23) circuitry, and 
both are interconnected with EPO. Here we propose that at a young age, EPO 
augmenting genetic determinants through ACE D allele elevated Ang II levels in 
some or HbE/beta thalassemia in others would increase EPO levels and shield 
against coronavirus disease 2019, akin to protection from malaria and dengue 
fever. Human evolution may use ACE2 as a “bait” for severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) to gain cellular entry in order to trigger an 
ACE/ACE2 imbalance and stimulate EPO hypersecretion using tissue RAS, 
uncoupled from hemoglobin levels. In subjects without EPO augmenting genetic 
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determinants at any age, ACE2 binding and internalization upon SARS-CoV-2 
entry would trigger an ACE/ACE2 imbalance, and Ang II oversecretion leading 
to protective EPO stimulation. In children, low nasal ACE2 Levels would benefi-
cially augment this imbalance, especially for those without protective genetic 
determinants. On the other hand, in predisposed adults with the ACE D allele, 
ACE/ACE2 imbalance, may lead to uncontrolled RAS overactivity and an Ang II 
induced proinflammatory state and immune dysregulation, with interleukin 6 (IL-
6), plasminogen activator inhibitor, and FGF23 elevations. IL-6 induced EPO 
suppression, aggravated through co-morbidities such as hypertension, diabetes, 
obesity, and RAS pharmacological interventions may potentially lead to acute 
respiratory distress syndrome, cytokine storm and/or autoimmunity. HbE/beta 
thalassemia carriers would enjoy protection at any age as their EPO stimulation is 
uncoupled from the RAS system. The timely use of rhEPO, EPO analogs, 
acetylsalicylic acid, bioactive lipids, or FGF23 antagonists in genetically 
predisposed individuals may counteract those detrimental effects.

Key Words: Erythropoietin; Angiotensin converting enzyme; Angiotensin II; Hemoglo-
binopathy; Malaria; Coronavirus disease 2019; Fibroblast growth factor 23

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Erythropoietin (EPO) appears to mediate an ancestral neuroprotective innate 
immune response mechanism mitigating tissue injury and pathogen invasion at an early 
age. Age-dependent but anemia-unrelated EPO elevation has been reported in 
conditions that threaten the young brain such as prematurity, incipient kernicterus, and 
malaria. Malaria protective genetic determinants such as the angiotensin converting 
enzyme (ACE) D allele and the thalassemias can raise EPO and extend their protection 
against coronavirus disease 2019 in an age-dependent manner but could turn 
detrimental in genetically predisposed adults. ACE2 could represent a “bait” for severe 
acute respiratory syndrome coronavirus-2 to induce ACE/ACE2 imbalance and 
angiotensin II engendered protective EPO increase at a young age irrespective of 
genetic predisposition.

Citation: Papadopoulos KI, Sutheesophon W, Manipalviratn S, Aw TC. Age and genotype 
dependent erythropoietin protection in COVID-19. World J Stem Cells 2021; 13(10): 1513-
1529
URL: https://www.wjgnet.com/1948-0210/full/v13/i10/1513.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i10.1513

INTRODUCTION
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of the 
coronavirus disease of 2019 pandemic (COVID-19) has to date (September 11, 2021) 
infected almost 225 million people worldwide, causing nearly 4.6 million deaths[1]. 
The COVID-19 pandemic continues to be a global threat despite increasing vaccin-
ations[1]. We and others have recently proposed that the thalassemias and especially 
HbE, might confer resistance to and/or protection from SARS-CoV2 infection and 
severity[2,3]. Supporting this hypothesis, Littera et al[4] from Sardinia found none of 
their seriously ill COVID-19 patients were carriers of beta-thalassemia while a recent 
metanalysis reported a pooled incidence rate of COVID-19 in patients with beta 
thalassemia at 1.34 per 100000 personday, which is less than half of that observed in 
the general population (2.89)[5]. We hypothesized that host immune system 
modulations engendered by malarial selection pressure via thalassemia/HbE 
mutations might confer this protection akin to an antimalarial effect[2]. Another 
genetic variant significantly associated with mild malaria vs severe malaria is the D 
allele of angiotensin converting enzyme (ACE) I/D polymorphism, that codes for 
higher ACE levels and subsequently increased angiotensin II (Ang II) production vs 
the I allele[6-8]. We attempted, therefore, to trace a common denominator to explain 

https://www.wjgnet.com/1948-0210/full/v13/i10/1513.htm
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the emergence of those two genetic determinants forced by malarial evolutionary 
pressure. We posit here that the evolutionary selection of thalassemias and the ACE D 
allele as adaptive alleles for pathogen resistance is neither coincidental nor surprising. 
Both genetic determinants appear to elicit and sustain a phylogenetically preserved 
ancestral neuroprotective innate immune response mechanism against tissue injury or 
pathogen invasion mediated either via systemic or/and local increases in 
erythropoietin (EPO) production[9].

In the present review, we will attempt to explain how (1) Elevated EPO can account 
for COVID-19 protection in the young; (2) EPO augmenting genetic determinants can 
predispose for severe COVID-19 complications in adults, and (3) Endogenous and/or 
pharmacological EPO modulation may offer innovative approaches to treat and/or 
mitigate SARS-CoV-2 disease severity.

EPO’S TISSUE PROTECTIVE ACTIONS
EPO is an evolutionary conserved hormone, well known for almost a century as the 
main mediator of erythropoiesis but its widespread effects throughout the body might 
transcend its primary role[9]. EPO’s principal physiologic stimulus for secretion is 
tissue hypoxia which upon detection by renal interstitial cells is subsequently secreted
[9]. Apart from its two main sites of secretion, the kidney and liver, EPO is locally 
produced and released in a paracrine or autocrine fashion by cells of various tissues 
including the heart, lungs, testes, ovaries, enterocytes, breast gland and human milk, 
spleen, bone marrow macrophages, placenta, retina, astrocytes, and neurons[10,11]. 
EPO’s erythropoietic effects are mediated via binding to an EPO receptor (EPOR) 
homodimer (EPOR)2 on erythroid precursors[9]. Evidence supports the renin 
angiotensin system (RAS) system via Ang II and the EPO-fibroblast growth factor 23 
(FGF23) signaling pathway as additional regulatory pathways, possibly involved in 
EPO’s non-hematological functions[12,13]. EPO’s two distinctive activities 
(erythropoiesis and tissue protection) appear to reside in different EPO domains and 
bind to two distinct receptors[14].

When pathogen invasion, tissue trauma or insult occurs, a defensive strategic 
ensemble is summoned, spearheaded by chemokines and inflammatory cytokines, to 
attract armies of immune cells that fend off, isolate, kill and remove pathogens and 
dead cells. This process needs to be controlled and must not be allowed to propagate. 
Thus, a tissue protective mechanism is required and seems to be provided by the 
presence of EPO via its binding to the tissue-protective receptor (TPR), a heteromeric 
complex between the EPOR and the β common receptor[9,14]. The TPR is typically not 
highly expressed but compartmentalized intracellularly and is up-regulated and 
exposed when insult, trauma, hypoxia, and inflammation invoke subsequent tissue 
protection[9]. It also has a much lower EPO affinity and needs as high as fivefold 
systemic EPO levels to be activated[9]. EPO’s tissue protective, tissue regenerative, 
angiogenetic, anti-inflammatory, and anti-apoptotic effects have been documented via 
exogenous EPO administration in both vertebrates and invertebrates and in a variety 
of disease models[11,15,16] and correlates to the expression of the EPOR in those non-
hematopoietic tissues[11]. EPO via EPOR expressed on various immune cells, can 
directly affect the way immune cells exert their immunoregulatory effects, and shift 
the function of the immune system towards suppression, swing the inflammatory 
response to immune tolerance, protect injured tissues from apoptosis, and promote 
wound healing[17]. EPO’s immunoregulatory effects have been demonstrated in 
experimental autoimmune encephalomyelitis[18] and in Th17 cell–associated immune-
mediated kidney diseases via EPO binding to T cell–expressed EPOR inhibiting Th17 
cell induction[19]. Furthermore, EPO’s beneficial pleiotropic effects on alveolar-
capillary barrier integrity in acute lung injury/acute respiratory distress syndrome 
(ARDS) have been proposed to be potentially mediated through EPO’s anti-inflam-
matory, anti-apoptotic, anti-oxidative, pro-angiogenic and cytoprotective actions[20,
21]. Finally, EPO stimulates bone marrow endothelial progenitor cell mobilization 
possibly contributing to pulmonary endothelial repair through fusion with resident 
cells, paracrine effects, or combinations of both[20,21].
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YOUNG AGE AND EPO AUGMENTING GENETIC DETERMINANTS: 
EVOLUTIONARY LESSONS ON HOW TO “SAVE THE CHILDREN”
As TPR has a much lower EPO affinity, local tissue concentrations need to be high to 
activate it[9].High endogenous EPO, dissonantly elevated from what is expected by a 
concurrent anemic stimulus and presumably to exert its non-erythropoietic tissue 
protective functions, has been reported in few studies[22-25]. In all these situations, an 
imminent tissue insult or pathogen invasion are present while young age (< 13 years) 
appears to be an important and independent determinant of EPO response unrelated 
to the circulating hemoglobin levels (Figure 1)[22-25]. Cord blood EPO levels are 
strongly correlated to cord blood bilirubin in pathological neonatal hyperbilirubinemia 
potentially shielding the newborn brain from an imminent kernicterus[23]. In 
extremely premature newborns, elevated endogenous EPO levels varied with 
circulating levels of inflammation-related proteins possibly mediating protective and 
repair mechanisms[24]. As a response to pathogen invasion, younger children at all 
degrees of severe malarial anemia (SMA), tends to have significantly higher EPO 
levels than expected from their degree of anemia, a phenomenon that declines with 
increasing age[25]. That the maximum EPO response in SMA occurred very early and 
at a time when cerebral malaria is uncommon reinforces the notion of an appropriate 
tissue protective role for EPO[25]. In that sense, the emergence of the two specific 
classes of malaria protective genetic determinants (the thalassemias and the ACE D 
allele) is congruent with the evolutionary objective of augmenting either systemic 
and/or local tissue EPO concentrations to mitigate tissue injury and/or pathogen 
invasion. The above SMA described age-related EPO pattern has also been reported in 
sickle cell, and HbE/β-thalassemic children without malaria[22,25]. The numerous 
mutations of the globin genes in thalassemias cause various degrees of anemia that are 
a potent and sustained stimulus for renal EPO secretion with elevated systemic EPO 
levels[22,25]. The ensuing ineffective erythropoiesis in thalassemias[25] avoids 
polycythemia and subsequent prothrombotic complications but ensures persistent and 
high enough EPO levels to engage the TPR in various tissues to protect against malaria 
and its feared cerebral complications[26]. The ACE D allele, also significantly 
associated with milder forms of malaria in areas of high malarial burden, is another 
sophisticated genetic selection[5,27-29]. Widespread RAS presence in every human 
organ and the presence of the ACE D allele ensure that adequate substrate, and 
enzyme levels (ACE) are abundant[30,31], to provide for systemically and/or locally 
elevated Ang II levels[7,8] sufficient for endocrine or paracrine effects on EPO 
secretion stimulation[12,32]. In addition, Ang II may exert immune system modulation
[33] and/or direct anti plasmodium activity[34]. The subsequently increased local 
tissue EPO levels would thus bypass systemic EPO prothrombotic effects while 
possibly also conferring the demanded tissue protection[35] and mitigation against 
Plasmodium invasion[12,26,32]. Significantly higher age-related ACE activities in 
serum are found in newborns and premature infants as well as healthy children and 
teenagers than adults [36]. Furthermore, lower nasal ACE2 expression in children 
relative to adults has been reported (Figure 1)[37].

EPO IS AN ANCESTRAL NEUROPROTECTIVE MECHANISM PREVENTING 
LETHAL CEREBRAL INSULTS AT YOUNG AGE: IMPLICATIONS FOR 
COVID-19
The above findings and the presence of EPO-like signaling involved in neuropro-
tection in insects that lack hematopoiesis[38], reinforce the rational assumption that, in 
younger age groups, high EPO levels could mediate a phylogenetically preserved 
ancestral neuroprotective innate immune response mechanism preventing lethal 
cerebral damage from both non-communicable (kernicterus, prematurity)[23,24] and 
communicable insults (cerebral malaria) (Figure 1)[25,26]. Preliminary evidence 
suggests that children are indeed less likely to be symptomatic or develop severe 
symptoms when infected with SARS-CoV-2[39] but whether elevated EPO levels could 
account for the milder COVID-19 course is currently not known as EPO levels have 
not been reported in pediatric COVID-19 patients. It is however, known that EPO 
levels are significantly decreased in adult patients with critical COVID-19[40,41]. It is 
conceivable that evolution uses the ACE2 as a “bait” for SARS-CoV-2 to gain cellular 
entry in order to trigger an ACE/ACE2 imbalance[42-44] and stimulate EPO hyperse-
cretion using RAS, uncoupled from hemoglobin levels. Low nasal ACE2 Levels 
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Figure 1 Age dependent erythropoietin secretion and effect of erythropoietin augmenting genetic determinants inducing ancestral 
neuroprotection, malaria protection, and possibly coronavirus disease 2019 protection in children. ACE: Angiotensin converting enzyme; ACE2: 
Angiotensin converting enzyme 2; EPO: Erythropoietin; Ang II: Angiotensin II; β-thal: Beta thalassemia; GS/BS: Gitelman syndrome/ Bartter Syndrome; HIFs: hypoxia 
inducible factors; SARS-COV-2: Severe acute respiratory syndrome coronavirus-2; COVID-19: Coronavirus disease 2019; RAS: Renin angiotensin system; AT1R: 
Ang II type 1 receptor; AT2R: Ang II type 2 receptor; eNOS: Endothelial nitric oxide synthase.

present in children[37] would beneficially intensify this imbalance, especially for those 
without protective genetic determinants[37]. Genetically predisposed children already 
enjoy protective EPO levels through sustained elevated Ang II levels, through the ACE 
D allele in some, the ACE2 T allele leading to lower ACE2 expression in females[6,45], 
or HbE/beta thalassemia in others, thus protecting against coronavirus disease 2019 
(COVID-19), in similar ways seen in malaria and dengue fever[46] (Figure 1). EPO 
secretion augmenting genetic determinants alone or synergistically, might protect 
from or allow an asymptomatic and uncomplicated SARS-CoV2 infection leading to 
seropositivity and subsequent immunity[2]. In the 2nd Indian serosurvey, where only 
3% of the seropositive individuals reported symptoms suggestive of COVID-19[47], 
the highest seropositivity rate was from the state of Odisha (formerly Orissa), where 
almost one quarter of the malaria burden of India is found[48]. Surreptitiously, in the 
same area, α-thalassemia, sickle cell and β-thalassemia alleles were found in 50.84%, 
13.1% and 3.4% of subjects[49], respectively while in the same geographical region, the 
frequency of ACE D allele was significantly higher (57.9%) in mild malaria patients as 
compared to those in severe malaria patients[6].

It seems intuitive to assume that endogenously increased EPO levels represent an 
innate “survival mode” that indeed protects the young from tissue injury and 
pathogen invasion. Longitudinal studies show an overall decrease in EPO levels with 
increasing age, but the influence of the ACE D allele/DD genotype on EPO decline is 
not known. Sustained and chronically elevated EPO levels in young or middle-aged 
non-anemic adults could herald an evolving glucose intolerance or hypertension (HT)
[50,51] and later in life establish unfavorable associations with cardiovascular events
[52], kidney function decline[52], fracture risk[53], and mortality[52]. Most, if not all 
the above conditions share associations with the ACE D allele[54] and thus, elevated 
EPO levels in non-anemic individuals maybe a marker for the presence of the D allele 
and the elevated Ang II it subsequently encodes[7,8,55,56]. The malarial protection 
engendered by the EPO augmenting ACE D allele[6,26-28], and the ACE2 T allele[6,
45], may thus represent an evolutionary trade off and come at the expense of creating a 
disadvantage in older age[52] including increased risk of infection, complications, and 
mortality in COVID-19[45,57-59]. The association of HT with higher risk of severe or 
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fatal COVID-19[60] and association of HT with the ACE D/ACE2 T alleles reported in 
several Indian populations[44,61,62] could explain the statistics observed in India 
during the current phase of the COVID-19 pandemic[1].

THE ACE D ALLELE / DD GENOTYPE AND EPO INTERPLAY: 
IMPLICATIONS FOR COVID-19
RAS and Ang II effects demonstrate impressive complexity (Figure 2)[30,31].

First, in severe acute respiratory syndrome (SARS) and COVID-19 most deaths 
occur due to ARDS[63]. The frequency of the ACE D allele was reported to be 
significantly higher in ARDS[64] but also in the hypoxemic group in Vietnamese 
patients with SARS related ARDS in the first SARS epidemic[65]. The association of the 
ACE D allele/DD genotype with increased mortality is now being increasingly 
reported in various ethnic groups in SARS-CoV-2 as well[59,66]. This association 
might reflect the effects the ACE D allele exerts via Ang II on interleukin 6 (IL-6) and 
plasminogen activator inhibitor-1 (PAI-1) levels (Figure 2)[67,68]. Both IL-6 and PAI-1 
Levels correlate with Ang II and are the highest in individuals with the ACE DD 
genotype[67-70]. IL-6 can inhibit EPO secretion in the kidney[71], is a prognosticator of 
COVID-19 disease severity, progress to severe disease and mortality[72,73]. Similarly, 
elevated PAI-1 is an independent risk factor for poor ARDS outcomes in COVID-19[74] 
and IL-6 induced significantly elevated PAI-1 Levels in critically ill COVID-19 patients
[74,75]. This suggests that the ACE gene I/D polymorphism may play important roles 
in SARS-CoV-2 infection disease progression into ARDS, and dysregulated immune 
response[59].

Congruent to its primary evolutionary (neuroprotective) objective of enhanced EPO 
secretion when threatened by pathogen invasion, ACE D allele/DD-genotype elevated 
levels of Ang II, reduce ACE2 tissue expression and activity by stimulation of 
lysosomal degradation through an Ang II type 1 receptor (AT1R) dependent 
mechanism and thus, might mitigate entry of pathogens using the ACE2 receptor[76,
77]. The ACE2 malaria protective T allele could further reduce ACE2 expression and 
similarly mitigate pathogen entry[45]. ACE2 is ubiquitous and also present in type I 
and type II alveolar epithelial cells[78,79]. Loss of ACE2 expression with increasing 
age, in males, and type 2 diabetes (DM)[80], is known to precipitate severe acute lung 
failure[81]. Binding and internalization of ACE2 by SARS-CoV-1/2 involves the same 
AT1R dependent mechanism as Ang II[44], in reducing ACE2 cell surface expression
[42,43]. A vicious circle of ACE/Ang II/ACE2 imbalance and persistently increased 
Ang II levels through continual RAS over-activation might lead to lung shut-down, in 
similar mechanistic ways as described in human H7N9[82] and H5N1[83]. 
Additionally, an aberrant T-cell-mediated immune response and cytokine storm could 
be further mediated by the excessively elevated and unopposed Ang II levels[63,84]. 
Clonally expanded tissue-resident memory-like Th17 cells have been reported in the 
bronchoalveolar lavage fluid from patients with severe COVID-19[85]. Th17 cells are 
under the influence of Ang II signaling[86] and their cell numbers were associated 
with disease severity and lung damage. Th17 cells demonstrate a potentially 
pathogenic profile of cytokine expression that may lead to immune-mediated inflam-
matory diseases[57,85,86]. Both EPO binding to T cell–expressed EPOR as well as 
AT1R block have been shown to inhibit Th17 cell induction[19,86].

Moreover, Ang II from a functional T-cell RAS plays a pivotal role in T-cell 
activation towards pro-inflammatory effects, proliferation, chemotaxis, cytokine 
production, and regulation of memory CD8+ T cell development[33,86]. All these Ang 
II effects could explain the adverse ACE D allele autoimmunity associations across 
several ethnicities and autoimmune conditions such as multiple sclerosis (MS)[86], 
systemic lupus erythematosus (SLE)[87,88], rheumatoid arthritis[89] and vitiligo along 
with higher IL-6 Levels[89-92]. In addition, Ang II induced pyroptosis, an inflam-
masome initiated lytic form of programmed cell death further contributes to the 
COVID-19 cytokine storm[93]. In COVID-19 and under the influence of the ACE D 
allele and the excessively increased Ang II levels[84], caspase-1 mediated pyroptotic 
inflammatory cell necrosis could lead to autoantigen exposure and stimulate multiple 
autoantibody production[94], thus leading to the development of a myriad of 
autoimmune conditions such as MS, SLE, antiphospholipid antibodies and syndrome, 
autoimmune hemolytic anemia, and thrombocytopenia, Guillain-Barré syndrome, 
vasculitis as well as a Kawasaki like syndrome with autoantibodies to ACE2 in 
children[95]. This pattern that is analogous to our findings in sarcoidosis where ACE D 
allele induced serum ACE increase and subsequent Ang II elevation can steer the 
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Figure 2 Proinflammatory effects of angiotensin converting enzyme D allele induced Angiotensin II via plasminogen activator inhibitor-1 
and interleukin 6 induction and their effects on the α-Klotho/fibroblast growth factor 23 axis; inhibitory action of recombinant human 
erythropoietin/erythropoietin analogs/Lipoxin A4/fibroblast growth factor 23 antagonists. Orange minus sign denotes inhibition. Green plus sign 
denotes stimulation. ACE: Angiotensin converting enzyme; FGF23: Fibroblast growth factor 23; PAI-1: Plasminogen activator inhibitor-1; IL-6: Interleukin 6; rhEPO: 
Recombinant human erythropoietin; Vit D: Vitamin D; ARDS: Acute respiratory distress syndrome; AA: Autoantibodies; LXA4: Lipoxin A4; ACEi: Angiotensin 
converting enzyme inhibitors; ARB: Angiotensin receptor blockers; NP-6A4: AT2R peptide agonist.

immune system towards a protracted course with aberrant gastrointestinal immune 
reactivity and endocrine autoimmunity including polyglandular autoimmune 
syndromes[96-98]. Moreover, it has been reported that in acute sarcoidosis presenting 
with erythema nodosum and usually a benign and self-restricting course, the ACE DD 
genotype, significantly worsens prognosis[99]. Caspase-1 mediated pyroptosis and 
autoantigen exposure could lead to AT1R autoantibodies[94], shown to correlate 
significantly with IL-6[100], that can further mediate persistent proinflammatory Ang 
II effects by agonistic stimulation of AT1 receptors and increased AT1 receptor 
activity, even in the absence of the ACE D allele. Low-dose acetylsalicylic acid (ASA)
[101] and increasing bioactive lipid (BAL) intake [arachidonic acid (20:4 n-6), 
eicosapentaenoic acid (20:5 n-3), and docosahexaenoic acid (22:6 n-3)] may result in the 
formation of increased amounts of endogenous Lipoxin A4 (LXA4) thus offering novel 
treatment options in the prevention and management of COVID-19 (Figure 2)[102]. 
Drug design research using LXA4 as a lead compound might result to innovative 
treatment modalities in autoimmune diseases[94].

Second, RAS influence on EPO levels likely represents an amalgam of complex, 
intercalated and interrelated set of signals involving multiple molecular mechanisms
[12,32,103-106]. Endogenously elevated EPO levels due to hypoxia in high altitude[107,
108] or in human genetic models seem protective[109] while low EPO levels are 
associated with dismal COVID-19 prognosis (Figure 1)[41]. Epidemiological studies 
suggest that physiological adaptation in a hypoxic environment at high altitude may 
protect persons from the severe impact of acute infection caused by SARS-CoV-2[107,
108]. Reductions in cumulative incidence and mortality rates of COVID-19 with 
increasing altitude have been reported[107,108]. Possible explanations are related to 
reduced virulence and decreased SARS-CoV-2 pathogenicity at high altitude[107] 
along with physiological acclimatization to chronic hypoxia via increased EPO and 
genetically adapted high altitude native populations with lower ACE DD genotype 
frequency[108,110]. Recently, patients with fatal COVID-19 at 4150 meters above sea 
level displayed 2.5 times lower EPO levels compared to survivors but Ang II levels 
were not measured in that study[41].

Furthermore, studies in patients with inherited genetic defects in specific kidney 
transporters and ion channels such as Gitelman’s and Bartter’s Syndromes (GS/BS) 
showed a statistically significant absence of COVID-19 infection and COVID-19 
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symptoms (Figure 1)[109]. In GS/BS patients, the above-mentioned genetic defects 
result in defective salt reabsorption in the thick ascending limb of loop of Henle[109]. 
The resulting salt wasting, hypokalemia, and metabolic alkalosis with relatively low 
levels of serum chloride induce chronic RAS activation with elevated Ang II levels but 
due to AT1R signaling defects a hypertensive phenotype is not seen[111]. Instead, 
endogenously increased levels of aberrantly glycosylated ACE2[112] and Ang 1-7 
counteract Ang II effects[109,112]. Intriguingly, GS/BS patients also demonstrate Ang 
II receptor type 2 dependent increase in EPO levels[103] and lack of Ang II induced 
increase of the PAI-1 gene and protein expression compared to healthy adults[113], 
both phenomena being possibly protective against COVID-19 at any age.

In critical and deceased COVID-19 patients, EPO levels have recently been reported 
to be significantly lower and not in accordance with the similarly low hemoglobin 
levels[40,41]. Moreover, elevated Ang II levels, strongly associated with viral load and 
lung injury have been reported in another study[84], and in avian influenza A virus 
H5N1 infected mice and H7N9 infected patients[82,83]. To date, no study has been 
reported in COVID-19 patients that has investigated the simultaneous measurement of 
Ang II and EPO and/or correlations to their ACE I/D polymorphism.

Renin and Ang II increase and RAS inhibitors inhibit EPO secretion in healthy 
volunteers[106]. Severe COVID-19 is also frequently associated with HT, DM, obesity, 
and metabolic syndrome[114], all resulting in RAS activation through various 
mechanisms[106]. Nevertheless, the expected Ang II induced EPO rise does not occur 
in critically ill COVID-19 patients even though the RAS augmenting ACE D allele may 
be overrepresented in both COVID-19 and associated risk diseases[58,59,61]. 
Marathias et al[106] recently elegantly reviewed RAS and Ang II influence on EPO 
secretion. Glucose and sodium reabsorption, hyperinsulinemia, the G-protein-coupled 
receptor 91, all induce RAS activation. The increased Ang II is expected to enhance 
EPO secretion through tubulointerstitial ischemia, direct upregulation of EPO 
transcription factors and bone marrow stimulation along with enabling erythropoiesis 
supportive iron metabolism[106]. On the other hand, glucose toxicity in the renal 
parenchyma in concurrent DM, obesity, and metabolic syndrome, induce damage on 
the renal EPO-producing cells and lower EPO secretion. Additionally, HT with 
widespread use of RAS inhibitors, diabetic hyporeninemic hypoaldosteronism, 
autonomic neuropathy, obesity or DM induced hypogonadism with low testosterone, 
chronic and acute inflammation through Ang II induced IL-6 increase[72], all inhibit 
renal EPO secretion (Figure 2)[71,106]. Finally, blunted EPO response has been 
documented in critically ill patients while a recent meta-analysis suggests that EPO 
therapy may decrease mortality[115].

Moreover, elevated Ang II reduces renal α-Klotho expression, interfering with 
FGF23 signaling and resulting in elevated FGF23 Levels (Figure 2)[116]. FGF23 will 
inhibit 1α-hydroxylase, leading to the lowering of 1,25-dihydroxyvitamin D3 
production and cause or aggravate an incipient vitamin D deficiency, implicated in 
numerous adverse outcomes including morbidity and mortality in COVID-19[116,
117]. All the ACE D allele associations as in HT, type 2 DM, kidney disease, and 
possibly mortality in COVID-19 could be explained by Ang II induced FGF23 
elevations[84,116]. FGF23 serves as a proinflammatory paracrine factor, secreted 
mainly by M1 proinflammatory macrophages[118]. Powerful and dose-dependent 
associations have been demonstrated between elevated FGF23 Levels and higher risks 
for chronic kidney disease, left ventricular hypertrophy and congestive heart failure, 
autosomal dominant hypophosphatemic rickets, osteomalacia, vitamin D deficiency, 
fibrous dysplasia, aging, and mortality[119]. Unifying these mechanisms is the finding 
that both IL-6 and PAI-1 are significant regulators of FGF23 homeostasis[119-121]. 
Dexamethasone abolished IL-6 induced FGF23 increase[119,120] while PAI-1 
inhibition substantially decreased FGF23 levels (Figure 2)[121]. rhEPO administration 
significantly decrease PAI-1 levels in multi-trauma patients[122] and led to the 
miraculous recovery of a critically ill elderly COVID-19 patient[123]. EPO’s inhibitory 
effect on PAI-1 and subsequently FGF23 may well have contributed to the patient’s 
recovery and further studies are planned to investigate the potentially favorable 
rhEPO effect in severe COVID-19[124-126]. Human data show that both endogenous 
and exogenous EPO influence FGF23 levels via alterations of the ratio of active to 
inactive FGF23 in favor of its inactive form, thus attenuating effects of bioactive intact 
FGF23 levels and explain EPO’s protective effects[118,127]. At present, no study has 
been reported that investigated FGF23 levels in COVID-19.
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THERAPEUTIC CONSIDERATIONS
Currently, therapeutic approaches are symptomatic and include empirical 
immunosuppressive and anti-inflammatory tactics (dexamethasone)[128], interferons
[129], targeting of individual cytokines (IL-6: Tocilizumab/statins/heparin; PAI-1: 
Statins, and numerous target substances in development)[75,130-132] and correction of 
isolated laboratory abnormalities (e.g., sodium disturbances)[133]. Prolonged use of 
these interventions may lead to serious adverse effects and reduction of host defenses 
with resurgence of opportunistic infections.

An Occam’s razor therapeutic strategy guided by mendelian, and mechanistic 
evidence might be pursued. ACE I/D polymorphism genetic testing could be 
predictive and guide patient triage and treatment decision making as individuals with 
the DD genotype are predisposed to a more severe COVID-19 disease course[59]. 
Research evidence supports the notion that endogenously[109,112] and exogenously 
increased EPO levels[123] could break the vicious circle of persistent ACE D allele 
augmented Ang II stimulation on PAI-1, IL-6 and FGF23 by both synergistic and 
individual inhibition[21,122,123,127,134]. Whenever the administration of rhEPO is not 
possible due to contraindications or heightened prothrombotic risk, EPO derivatives 
can coax EPO’s tissue-protective activity via its TPR for therapeutic use without the 
risks attributed to EPO’s hematological actions[10,14,134]. Furthermore, EPO mediates 
reduction of auto-and alloantibody formation and used together with LXA4 inducing 
BALs and/or ASA could prevent recently reported AT1-AA induced collateral 
damage and autoimmune pathology[94,101,102,135,136]. Moreover, in hematologic 
patients, rhEPO treatment is associated with an enhanced antibody response to the 
influenza vaccine, similar to that of healthy subjects and it is conceivable that this 
effect could also be replicated in COVID-19 vaccinations, especially in immunocom-
promised patients[137]. Additional treatment modalities could employ a combination 
of autologous peripheral blood or umbilical cord-derived mesenchymal stromal cells 
and rhEPO/EPO derivatives that induce notable clinical improvement shortly after 
initiating treatment in a critically ill patient with severe ARDS[138,139].

Recently, NP-6A4, a novel AT2R peptide agonist with an FDA orphan drug 
designation for pediatric cardiomyopathy, increased expression of AT2R and 
cardioprotective EPO in a pre-clinical model with severe obesity and pre-diabetes (ZO 
rat), along with suppression of nineteen inflammatory cytokines including IL-6 
without increasing expression levels of ACE2[140]. NP-6A4 appears as an ideal 
adjuvant drug candidate for EPO mediated tissue protection and mitigation of 
cytokine storm[140]. Finally, elucidating FGF23 Levels in COVID-19 could help 
prognosticate, prevent, and help treat potential future complications. The use of FGF23 
antagonists such as the FGF23 antibody burosumab, could be employed to lower 
FGF23 Levels in FGF23-mediated disorders[141], including COVID-19. To date and to 
the authors’ knowledge, such clinical trials do not exist.

CONCLUSION
Age dependent EPO secretion[22-25] and the contribution of EPO augmenting genetic 
determinants in children and adults as a disease modifier in malaria is established[6,
25-28]. In the present work, we posit that this EPO effect extends to and explains 
COVID-19 protection in children[39] and can provide new pathophysiological insights 
and therapeutic avenues in adults (Figure 1). Elevated protective EPO mRNA levels 
were recently reported being 2.6 times higher in nasopharyngeal swab samples of 
adult SARS-CoV-2 patients that were asymptomatic or showing mild COVID-19 
clinical symptoms, as compared to a control group[142]. EPO induces endothelial 
nitric oxide (NO) synthase and increases NO production in endothelial cells[14]. 
Increased NO bioavailability is shown to inhibit fusion of the SARS-CoV spike protein 
to ACE2 and early production of viral RNA [143], potentially mediating EPO 
protection in SARS-CoV-2 too.

The intricate balance between the components of the RAS axis (peptides and 
peptidases) and its interactions with the EPO and α-Klotho/FGF23 axes are 
incompletely understood in the context of chronic stable and acute decompensated 
environments. Known and unknown genetic determinants and concurrent diseases 
with their pharmacological interventions further complicate the view. High Ang II and 
low EPO levels in COVID-19, have been reported and strongly associate with viral 
load[84], lung injury[84], and critical disease[40,41]. Ang II, excessively augmented in 
the presence of the ACE D allele[7,8], leads to reduction in ACE2[44], and increases 
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FGF23, PAI-1, and IL-6 levels[67-70,116], that along with increasing age, co-morbidities 
and concurrent pharmacological RAS interventions, all blunt EPO response[50,71,106] 
and potentially reduce EPO levels in critically ill COVID-19 adult patients (Figure 2)
[40,41]. In adults with COVID-19, this proinflammatory constellation would promote 
progress to ARDS, and cytokine storm with pyroptotic inflammatory reactions, 
autoantigen exposure, autoantibody production and subsequent autoimmune 
disorders[95].
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