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Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in 
regenerative medicine. However, due to the disadvantages with primary MSCs, 
such as limited cell proliferative capacity and rarity in the tissues leading to 
limited MSCs, gradual loss of differentiation during in vitro expansion reducing 
the efficacy of MSC application, and variation among donors increasing the 
uncertainty of MSC efficacy, the clinical application of MSCs has been greatly 
hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can 
circumvent these problems associated with primary MSCs. Due to the infinite self-
renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs 
are emerging as an attractive alternative for regenerative medicine. This review 
summarizes the progress on derivation of MSCs from human pluripotent stem 
cells, disease modelling and drug screening using hPSC-MSCs, and various 
applications of hPSC-MSCs in regenerative medicine. In the end, the challenges 
and concerns with hPSC-MSC applications are also discussed.

Key Words: Human pluripotent stem cells; Differentiation; Mesenchymal stem cells; 
Regenerative medicine; Disease modelling; Drug screening
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Core Tip: Mesenchymal stem cells (MSCs) exhibit great potential in regenerative 
medicine. However, the clinical application of primary MSCs has been greatly 
hampered by the limitations of primary MSCs. MSCs derived from human pluripotent 
stem cells (hPSC-MSCs) are an attractive source of cells to overcome such problems 
with primary MSCs. This review summarizes the various derivation approaches and 
applications of hPSC-MSCs in regenerative medicine. Lastly, the challenges with the 
use of hPSC-MSCs are also discussed, which indicate that more efforts are needed for 
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INTRODUCTION
Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology 
and plastic adherence. They express MSC surface antigens such as CD73, CD90, and 
CD105 but lack hematopoietic markers such as CD11b, CD19, CD34, and CD45[1]. 
More importantly, MSCs can give rise to multiple mesenchymal lineages, including 
bone, cartilage, and fat cells[1-3]. Friedenstain and colleagues first described an 
adherent subpopulation in bone marrow termed as marrow stromal cells[4-7]. The 
term of MSCs was later introduced in 1991 to refer to these cells[8]. MSCs reside in 
nearly all tissues, including bone marrow and adipose tissues, among others. Due to 
their expandability, multipotency, immunosuppression, and limited ethical concerns 
as compared to other types of stem cells, human MSCs have emerged as an attractive 
cell source for regenerative medicine. Moreover, MSCs exhibit low expression of major 
histocompatibility (MHC) antigens, thereby reducing the need for MHC match 
between different donors and recipients in allogeneic MSC transplant. Due to these 
characteristics that MSCs possess, MSC-based allogeneic transplantation is now the 
forefront of regenerative medicine. As a fast-growing field in regenerative medicine, 
MSCs represent the most clinically used stem cells with over 1000 registered clinical 
trials with an established safety record in patients that can efficaciously treat more 
than 30 diseases. However, there are several limitations of primary MSCs that greatly 
hamper their clinical application. They include limited cell proliferative capacity, 
gradual loss of differentiation potential during in vitro expansion, variation across 
donors, rarity in organs, invasive procedures required for harvesting, etc.

Human pluripotent stem cells (hPSCs), including human embryonic stem cells 
(hESCs) and induced pluripotent stem cells (iPSCs), represent a promising solution to 
overcome the issues associated with primary MSCs. Due to the pluripotency of hPSCs, 
they exhibit unlimited proliferation ability and are able to differentiate into various 
types of cells, including MSCs. Therefore, hPSCs can provide unlimited and uniform 
MSCs as an alternative cell source to primary MSCs. This review summarizes the 
derivation approaches and various applications of hPSC-MSCs, and ultimately the 
challenges associated with safety and efficacy of hPSC-MSCs are discussed.

DERIVATION OF HPSC-MSCS
Although primary MSCs have been widely used for clinical application, the previously 
mentioned limitations with the use of primary MSCs significantly hamper their clinical 
applications. To overcome the problems with primary MSCs, substantial advan-
cements have been made to develop a number of approaches for derivation of MSCs 
from hPSCs, including hESCs and iPSCs. These approaches include spontaneous 
differentiation via coculture with OP9, fetal bovine serum (FBS)-containing media, and 
embryonic body (EB), or directed differentiation via delicate control of signalling 
pathways. The principle of these approaches is to deprive pluripotent signals of 
hPSCs, thereby driving differentiation into MSCs.

During embryonic development, MSCs develop from neural crest cells (NCCs), 
lateral plate mesoderm, or paraxial mesoderm, which further develop into craniofacial 
skeleton, appendicular skeleton, and axial skeleton, respectively. The neural crest is a 
transient structure formed through epithelial-mesenchymal transition (EMT) with 
potential to differentiate into a wide range of cell types, including MSCs. It was shown 
that neural crest cells were derived from hPSCs[9-13], which were able to develop or 
differentiate into MSCs[14-16]. Morikawa et al[15] showed that MSCs in the adult bone 
marrow had at least two developmental origins, one of which was the neural crest. By 
lineage tracing, Takashima et al[16] showed that Sox1+ neuroepithelium gave rise to 
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MSCs in part through a neural crest intermediate stage. The combination of the 
glycogen synthase kinase 3 beta inhibitor and transforming growth factor-beta (TGFβ) 
inhibitor very efficiently induced hPSCs towards hNCCs (70%-80%), which further 
differentiated into MSCs with chemically defined medium[14]. The mesoderm is a 
major source of MSCs, and we recently reported a stepwise, serum-free, chemically 
defined and highly efficient protocol to generate hPSC-MSCs via lateral plate 
mesoderm. The resultant iPSC-MSCs displayed similar MSC surface antigen profile, 
gene expression profile, and epigenetic profile. iPSC-MSCs had three lineage differen-
tiation. Significantly, hPSC-MSCs were able to repair cartilage defects, similar to bone 
marrow-MSCs (BM-MSCs)[17]. Upon differentiation, mESCs gave rise to VEGFR-2+

PDGFR+ population followed by VEGFR-2-PDGFR+ population via paraxial mesoderm
[18]. hESC-derived KDR-PDGFRa+ paraxial mesoderm-like cells showed robust 
chondrogenic activity and generated a hyaline-like translucent cartilage particle 
whereas STRO1+ BM-MSCs showed relatively weaker chondrogenesis and formed 
more fibrotic cartilage particles in vitro[19].

MSCs in the placenta develop from trophoblasts in the extraembryonic tissue 
chorion[20]. MSCs can also be derived via trophoblasts. hESCs cultured in serum 
containing medium[21] and serum free medium[22] containing BMP4 and A83-01 
were able to differentiate into trophoblasts and then into MSCs. Trophoblast-derived 
MSCs produced less interleukin 6 (IL-6), C-X-C motif chemokine ligand 10, and C–C 
motif chemokine ligand 2 but more programmed death-ligand 1 in response to IFN 
gamma (IFNγ) treatment as compared with MSCs[21]. Compared with MSCs from 
serum containing medium, serum free approach took longer than serum containing 
approach to derive MSCs, but serum-free derived MSCs grew faster and produced less 
IL-6 and interleukin 8[22].

Barberi et al[23] first reported that MSCs were derived from hESCs by coculturing 
hESCs with monolayer of murine OP9 stromal cells. However, the undefined 
condition in this approach inevitably led to spontaneous differentiation, giving rise to 
an undesired type of cells. Besides MSCs, non-MSCs such as CD34 (+) primitive 
hematopoietic cells, were also present[24]. Vodyanik et al[25] showed that MSCs were 
derived from a common precursor of mesenchymal and endothelial cells called 
mesenchymoangioblast by coculturing hESCs with OP9.

Culturing hPSCs in the undefined condition of FBS-containing MSC medium is 
another way to derive hPSC-MSCs by providing growth factors required for differen-
tiation towards MSCs. When hESCs or iPSCs were cultured in FBS-containing MSC 
medium for 4 wk to derive hPSC-MSCs, hPSC-MSCs inhibited cell proliferation and 
cytolytic function of natural killer (NK) cells in the same fashion that BM-MSCs did. 
However, they were more resistant to preactivated NK cells as compared with adult 
BM-MSCs[26]. A high density of hESCs on a porcine gelatin-coated dish were cultured 
in a medium containing 10% FBS for 7 d to outgrow the cells and then enrich hESC-
MSCs by 1-2 passages[27]. Functional iPSC-MSCs were also derived on coating with 
gelatin, and the resultant iPSC-MSCs pre-induced into osteogenesis for 4 d formed 
bone in the calvaria defects confirmed by human specific nuclear antigen and 
mitochondrial antibodies[28]. hESC/iPSCs were seeded onto collagen coating and 
cultured in FBS-containing medium for 10 d to generate hESC/iPSC-MSCs[29]. 
Spontaneously differentiated cells (raclures) from feeder-free hESCs were cultured in 
FBS-containing MSC medium for 4 wk, and hESC-MSCs were enriched by following 
passage[30]. Chen et al[31] reported the derivation of hPSC-MSCs by serum-free 
medium containing TGFβ inhibitor and EMT inducer (SB431542) for 10 d to induce the 
mesoderm followed by induction of MSCs in FBS-containing MSC medium. The 
resultant hPSC-MSCs had robust osteogenesis and chondrogenesis but weaker 
adipogenesis. This approach does not require EB and feeder cell coculture.

To mimic in vivo development, Brown et al[32] derived hESC-MSCs via EB in MSC 
medium and enriched them by sorting for CD73 and CD105. EBs from iPSCs were 
exposed to TGFβ1-containing medium, and two types of MSCs were generated. 
Although early (aiMSCs) and late (tiMSCs) outgrowing cells were similar in surface 
antigen profile and three lineage differentiation, aiMSCs were better in osteogenesis 
than tiMSCs and BM-MSCs. Compared with BM-MSCs, aiMSCs were more of 
stemness whereas tiMSCs were more osteogenic, and in vivo bone formation was 
confirmed via ectopic injection[33].

The use of undefined components (such as FBS and feeder) or animal-derived 
components affects clinical applications of hPSC-MSCs. To overcome the problems 
from undefined conditions, serum-free and chemically defined protocols are desired to 
generate clinically compliant hPSC-MSCs. Lian et al[34,35] reported a clinically 
compliant protocol to generate hESC-MSCs and iPSC-MSCs. After 1 wk of differen-
tiation, MSCs were enriched by FACS for CD24- CD105+ cells. The transplanted iPSC-
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MSCs were superior to BM-MSCs in attenuating severe hindlimb ischemia, which may 
result from better in vivo survival and trophic factors of iPSC-MSCs, and higher prolif-
eration of iPSC-MSCs related to increased hEAG1 potasium channel expression[36]. 
The use of animal products, such as gelatin for coating, compromises the application 
of hPSC-MSCs. To generate xeno-free MSCs, FBS was replaced with human serum, 
and porcine gelatin was replaced with human gelatin. Transplanted hESC-MSCs into 
renal capsule formed cartilage[27]. Human platelet lysate is an alternative to FBS for 
the generation of hPSC-MSCs. Compared with the FBS-containing medium, the hPL-
supplemented medium generated significantly more MSCs[37].

COMPARISON BETWEEN PRIMARY MSCS AND HPSC-MSCS
hPSC-MSCs are similar to primary MSCs in morphology, immunophenotype, differen-
tiation potential, gene expression profile, and epigenetic modification[17,22,38-40]. 
However, there are some differences observed between primary MSCs and hPSC-
MSCs. hPSC-MSCs are smaller in size and proliferate faster than BM-MSCs and 
adipose tissue-MSCs[22,36,39-41]. hPSC-MSCs express higher levels of cell prolif-
eration-related genes whereas BM-MSCs express higher levels of immune-related 
genes, therefore hPSC-MSCs had a superior proliferative ability to BM-MSCs[39,42,
43]. In addition, iPSC-MSCs express higher levels of pluripotent genes and lower 
levels of mesodermal genes compared with original MSCs, which harbor mtDNA 
mutations from original MSCs as well as iPSCs. Compared with primary MSCs, iPSC-
MSCs express a lower level of VCAM1, leading to lower initiating cell frequency of 
HSCs after long-term culture with iPSC-MSCs as feeder[44]. Compared with dental 
tissue-derived MSCs, re-differentiated iPSC-MSCs expressed higher levels of 
pluripotent genes and lower levels of mesodermal genes, but displayed lower 
mitochondrial respiration[45]. iPSC-MSCs also express the lowest level of the HLA-II 
upon stimulation with IFNγ compared with BM-MSCs and fetal-MSCs. Compared 
with BM-MSCs, more iPSC-MSCs survived, and less inflammatory cell accumulations 
and better recovery of hind limb ischemia were also observed upon transplant. These 
suggest that iPSC-MSCs are not sensitive to IFNγ stimulation and have a stronger 
immune privilege after transplantation[46]. In differentiation potential, hPSC-MSCs 
differentiated less effectively along the adipogenic, osteogenic, or chondrogenic 
lineages compared with BM-MSCs[42], especially poorer adipogenesis[31,47,48]. Both 
hESCs and iPSCs inefficiently formed hyaline cartilage compared with BM-MSCs[43]. 
In immunosuppression, iPSC-MSCs were impaired in suppressing T cell proliferation 
compared with primary MSCs but were rejuvenated with regard to age-related DNA 
methylation, and this suggests that iPSC-MSCs reacquire incomplete immunomodu-
latory function, and MSC-specific DNA methylation pattern associates with tissue type 
and aging[38] (Table 1).

DISEASE MODELLING AND DRUG SCREENING
The understanding of the pathological mechanism is critical to developing the 
therapeutic drugs for the treatment of various genetic diseases. In vitro models to 
mimic in vivo development are very useful to investigate the pathology of human 
genetic diseases and further develop therapeutic drugs. However, due to inaccessible 
human tissues and the lack of animal models, research on human genetic diseases and 
drug screening remains very limited. With the breakthrough in iPSC technology, it 
makes it possible to model human diseases and develop their therapeutic drugs in 
vitro. The iPSC-MSC platform can recapitulate the embryonic bone and cartilage 
development, and therefore provide new insights into pathological progression of 
human genetic bone and cartilage diseases for disease modelling and further the 
development of therapeutic drugs.

Hutchinson-Gilford progeria syndrome (HGPS) is a rare but fatal genetic disorder 
caused by progerin, a truncated and farnesylated form of Lamin A, which causes 
systemic accelerated aging in children. Zhang et al[49] generated iPSC-MSCs from 
HGPS patients and showed that HGPS-iPSC-MSCs displayed abnormalities, including 
increased nuclear dysmorphology, DNA damage, and accumulation of calponin-
staining inclusion bodies, leading to their compromised viability under stress, 
especially to hypoxia. Using HGPS iPSC-MSCs platform, seven compounds were 
screened from 2800 small molecules, including all-trans retinoic acid and 13-cis-
retinoic acid, which decreased ALP activity and progerin expression[50].
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Table 1 Comparison between primary mesenchymal stem cells and mesenchymal stem cells derived from human pluripotent stem cells

Comparison Primary MSCs hPSC-MSCs Ref.

Cell number Limited Unlimited [17,36]

Proliferation Slower Faster [36,39,42,43,48,57]

Life span Shorter Longer [17]

Variation Higher Lower [119]

Differentiation potential Higher Lower, esp. adipogenesis [31,43,47,48]

Immunosuppression Higher Lower [38,46]

Pluripotent genes Lower Higher [45]

Mesenchymal genes Higher Lower [45]

VCAM1 Higher Lower [44]

HLA-II Higher Lower [46]

MSCs: Mesenchymal stem cells; hPSC-MSCs: Human pluripotent stem cells derived MSCs; VCAM1: Vascular cell adhesion molecule 1; HLA-II: Human 
leukocyte antigen gene complex class II.

Fibrodysplasia ossificans progressiva (FOP) is an inherited disease characterized by 
heterotopic endochondral ossification in soft tissues after birth and caused by a point 
mutation in ACVR1. iPSC-MSCs from FOP patients were generated, and it was found 
that SMAD1/5/8 and SMAD2/3 were activated and chondrogenesis was enhanced via 
MMP1 and PAI1 in FOP-iMSCs[51-53]. Hino et al[54] screened 6809 small molecule 
compounds using high-throughput screening, and mTOR signaling was identified to 
be a critical pathway for aberrant chondrogenesis. Further mechanism study showed 
that ectonucleotide pyrophosphatase/phosphodiesterase 2 linked FOP-ACVR1 to 
mTOR signaling, causing FOP pathogenesis.

APPLICATIONS OF HPSC-MSCS IN REGENERATIVE MEDICINE
Due to the multipotency, immunosuppression, and unlimited cell sources, hPSC-MSCs 
have been used for various applications in regenerative medicine (Table 2).

Bone regeneration
Like BM-MSCs, iPSC-MSCs had osteogenic potential, and therefore they could form 
typically calcified structure in the scaffolds[55]. iPSC-MSCs had good viability and 
osteogenic differentiation on the CPC scaffold[56]. iPSC-MSCs were similar to BM-
MSCs in preventing bone loss and promoting bone repair for the necrosis region of the 
femoral head[57]. Engineered non-native peptides increased the attachment of iPSC-
MSCs to the scaffolds and enhanced bone and vasculature formation in vivo[58]. 
Biofunctional agents, such as Arg-Gly-Asp (RGD), improved the proliferation and 
bone mineralization of iPSC-MSCs[59]. When iPSC-MSCs were treated with 
metformin, a widely used drug for diabetes, they showed enhanced bone formation 
and increased osteogenic markers and mineralized nodule formation, suggesting that 
metformin might be used to improve bone and periodontal regeneration[60]. Recently 
increasing reports have shown that MSCs exerted their pleiotropic effects by the 
secretion of soluble paracrine factors rather than their differentiation potential[61]. 
MSC-derived exosomes contain cytokines, growth factors, mRNAs, and regulatory 
miRNAs[62]. iPSC-MSC exosomes increased the proliferation, migration, and 
osteogenesis of BM-MSCs[63], significantly prevented bone loss, and promoted local 
angiogenesis by activating the PI3K/Akt signalling pathway in endothelial cells in a 
steroid-induced rat osteonecrosis model[64] (Figure 1).

Genetic modification can improve the bone formation of iPSC-MSCs. Distal-less 
homeobox 3 (DLX3) overexpression enhanced bone formation of iPSC-MSCs as shown 
by increased osteogenic genes and mineralized nodules at the expense of decreased 
proliferation[65]. Bone morphogenetic protein 2 overexpression enhanced bone 
formation on RGD-grafted calcium phosphate cement (CPC) of iPSC-MSCs[66]. Neural 
EGFL like 1 (NELL1) overexpression greatly improved osteogenesis of iPSC-MSCs on 
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Table 2 Mesenchymal stem cells and mesenchymal stem cells derived from human pluripotent stem cells

hPSC-MSCs Disease model or application Animal model or 
human Therapeutic effects Ref.

iPSC-MSCs CKD Rat Protect the kidney against CKD injury [85]

iPSC-MSCs Adriamycin nephropathy Mouse Prevent adriamycin nephropathy [82]

iPSC-MSCs Obesity-associated Kidney injury Mouse Ameliorate endoplasmic reticulum stress [83]

hPSC-MSCs UUO Mouse Protect against kidney fibrosis in vivo and in 
vitro

[84]

hESC-MSCs LN Mouse Prevent the progression of LN [81]

iPSC-MSCs TNBC Mouse Significantly decrease the incidence and burdon 
of metastases

[117]

iPSC-MSCs Breast cancer Mouse Decrease EMT, invasion, stemness, and growth 
of cancer cells

[119]

iPSC-MSCs Skin wounds, pressure ulcers, and 
osteoarthritis

Mouse Have therapeutic potential in skin wounds, 
pressure ulcers, and osteoarthritis

[127]

hESC-MSCs Arthritis Mouse Ameliorate collagen-induced arthritis by 
inducing IDO1

[72]

iPSC-MSCs Osteonecrosis of the femoral head Rat Prevent osteonecrosis of the femoral head [64]

iPSC-MSCs Vascularized composite 
allotransplantation

Rat Induce T cell hyporesponsiveness to prolong 
hind limb survival

[106]

iPSC-MSCs Limb ischemia Mouse Exosomes of iPSC-MSCs attenuate limb 
ischemia by promoting angiogenesis

[121]

iPSC-MSCs Limb ischemia Mouse Insensitivity of iPSC-MSCs to interferon γ 
potentiates repair efficiency of hind limb 
ischemia

[46]

iPSC-MSCs Limb ischemia Mouse Attenuate limb ischemia [35]

iPSC-MSCs Periodontal defects Rat Aid periodontal regeneration [68]

iPSC-MSCs Bone defects Mouse Regenerate non-union bone defects more 
efficiently than BM-MSCs upon BMP6 
overexpression

[33]

iPSC-MSCs Calvaria defects Mouse Repair calvaria defects [28]

iPSC-MSCs Osteochondral defects Rat iPSC-MSCs are able to repair cartilage defects [17]

iPSC-MSCs FOP FOP-iPSC-MSCs enhance chondrogenesis via 
activin A enhanced mTOR signalling

[53,54]

hESC-MSCs Lupus and uveitis Mouse Increase survival of lupus-prone mice and 
decrease symptoms of uveitis

[40]

hESC-MSCs EAE model of multiple sclerosis Mouse Improve EAE symptoms [101]

hESC-MSCs EAE Monkey Attenuate disease progression in a primate EAE 
model

[41]

hESC-MSCs EAU Mouse Slow down the development of EAU [103]

iPSC-MSCs Inflammatory bowel disease models Mouse Promote intestinal repair via TSG-6 [111]

hESC-MSCs Experimental inflammatory bowel 
disease

Mouse Protect against experimental inflammatory 
bowel disease

[107]

iPSC-MSCs SS Mouse Prevent the progression of SS [112]

iPSC-MSCs Allergic rhinitis Modulate T-cell phenotypes towards Th2 
suppression through inducing Treg expansion

[108]

iPSC-MSCs Asthma Inflammation Mouse Alleviate asthma inflammation by CX43-
mediated mitochondrial transfer

[110]

iPSC-MSCs Corneal injury Mouse Exert therapeutic effects in the cornea by 
reducing inflammation 

[99]

iPSC-MSC-Exos improve cutaneous wound 
healing by promoting collagen synthesis and 

iPSC-MSCs Skin wound Rat [120]
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angiogenesis.

iPSC-MSCs SR-aGvHD Human iPSC-MSCs are safe and well tolerated [114]

CKD: Chronic kidney disease; UUO: Unilateral ureteral obstruction; LN: Lupus nephritis; TNBC: Triple-negative breast cancer; EMT: 
Epithelial–mesenchymal transition; IDO1: Indoleamine 2, 3-dioxygenase 1; FOP: Fibrodysplasia ossificans progressive; mTOR: Mammalian target of 
rapamycin; EAE: Experimental autoimmune encephalomyelitis; EAU: Experimental autoimmune uveitis; TSG-6: TNFα-stimulated gene-6; SS: Sjogren’s 
syndrome; CX43: Connexin 43; Exos: Exosomes; SR-aGvHD: Acute steroid-resistant graft versus host disease.

Figure 1 Signaling pathways of mesenchymal stem cells derived from human pluripotent stem cells in improving various diseases. 
Mesenchymal stem cells derived from human pluripotent stem cells (hPSC-MSCs) improve diseases or prevent against injury through immunosuppression or 
paracrine effects. hPSC-MSCs secrete a variety of soluble paracrine factors to exert their therapeutic effects on immunosuppression, proliferation, differentiation, anti-
apoptosis, angiogenesis, etc. PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; BDNF: Brain-derived neurotrophic factor; NGF: Nerve growth factor; HGF: 
Hepatocyte growth factor; IGFBP1: Insulin-like growth factor-binding protein 1; TNFα: Tumor necrosis factor; IL6: Interleukin 6; Bax: BCL2-associated X; SIRT6: 
Sirtuin 6; IL10: Interleukin 6; TSG6: TNFα-stimulated gene-6; IFNγ: Interferon γ; ERK1/2: Extracellular signal-regulated protein kinases 1 and 2.

RGD-CPC[67].
Due to osteogenic differentiation potential, iPSC-MSCs have the capacity for 

periodontal regeneration. When transplanted into periodontal defects, iPSC-MSCs 
formed new mineralized tissues and significantly improved regeneration, suggesting 
that iPSC-MSCs represent a promising stem cell source for clinical application in 
periodontitis[68].

Cartilage repair
Articular cartilage has limited intrinsic healing potential, leading to a loss of joint 
function. Like BM-MSCs, iPSC-MSCs can differentiate into chondrocytes in vitro[69]. In 
view that autologous chondrocytes and primary MSCs are limited in cell number, 
iPSC-MSCs are gaining attention as a new cell therapy for cartilage regeneration due 
to unlimited cells and chondrogenic differentiation potential. Our previous data 
showed that primary BM-MSCs were able to repair cartilage defects effectively[70]. 
Multiple injections of hESC-MSCs into knee joint of osteoarthritis (OA) rats induced by 
anterior cruciate ligament transection repaired cartilage better than the single dose and 
negative control groups in a rat OA model[71]. hESC-MSCs also ameliorated collagen-
induced arthritis by inducing indoleamine 2,3-dioxygenase 1 (IDO1) in mice[72]. In 
addition, exosomes from hESC-MSCs prevented cartilage destruction by maintaining 
the chondrocyte function[73]. By our defined, step-wise and chemically defined 
protocol, we generated iPSC-MSCs via lateral plate mesoderm and have shown that 
iPSC-MSCs repaired osteochondral defects similar to BM-MSCs[17].

Lung repair 
As an attractive candidate for cell-based therapy, MSCs are therapeutically beneficial 
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to improving lung disease or repairing lung damage. iPSC-MSCs protected lung cells 
against mitochondrial dysfunction and apoptosis induced by oxidative stress to reduce 
lung injury and inflammation in in vivo models of lung disease[74]. iPSC-MSCs 
reduced airway inflammation and hyperresponsiveness to protect against lung 
diseases induced by oxidative stress, such as chronic obstructive pulmonary disease
[75]. iPSC-MSCs protected the lung against ischemia-reperfusion injury (IRI) by 
suppressing the inflammatory, oxidative stress, and autophagic signalling pathways
[76]. Treatment with iPSC-MSCs also significantly prevented airway allergic inflam-
mation, decreased Th2 cytokine levels, and changed long non-coding RNAs profiles
[77]. iPSC-MSCs ameliorated cigarette smoke (CS)-induced apoptosis and proliferation 
imbalance of airway cells partly through the paracrine section of stem cell factor (SCF)
[78]. Asthma is a chronic disease with inflamed airways. iPSC-MSCs were able to 
prevent chronic allergic airway inflammation[79]. Compared with BM-MSCs, iPSC-
MSCs transferred mitochondria to bronchial epithelial cells more effectively via 
tunnelling nanotubes. Therefore, iPSC-MSCs were superior to BM-MSCs in 
attenuating CS-induced airspace enlargement[80].

Kidney disease
hPSC-MSCs improved both acute and chronic adriamycin nephropathy (AN) by 
preventing renal function loss. hESC-MSCs prevented the progression of fatal lupus 
nephritis in a mouse model by significantly decreasing two inflammatory cytokines 
associated with systemic lupus erythematosus, tumour necrosis factor α (TNFα) and 
IL-6[81]. iPSC-MSCs prevented the apoptosis of tubular cells by downregulating B-cell 
lymphoma 2 associated X (Bax) and Bax/B-cell lymphoma 2 and upregulating 
survivin in the short-term AN model whereas iPSC-MSCs inhibited fibrosis via 
hedgehog signalling in the long-term AN model[82]. iPSC-MSCs also ameliorated 
palmitic acid-induced lipotoxic kidney injury by alleviating endoplasmic reticulum 
(ER) stress, inflammation, and apoptosis to suppress ER stress and its downstream 
pro-inflammatory and pro-apoptotic effects via hepatocyte growth factor (HGF)/c-Met 
signalling[83]. Chronic kidney disease (CKD) is characterized by a gradual loss of 
kidney function over time due to renal fibrosis[84]. Intravenously administrated iPSC-
MSCs effectively protected the kidney against CKD injury in CKD parenchyma[85]. 
iPSC-MSCs were also able to effectively protect kidney from acute ischemia-
reperfusion injury[86]. hPSC-MSC-derived exosomes reduced the renal fibrosis, 
decreased inflammatory reactions, and improved renal function in unilateral ureteral 
obstruction mice by increasing SIRT6 and decreasing β-catenin[84] (Figure 1).

Cardiovascular diseases
MSCs have the potential to improve cardiovascular diseases. Coculture with hESC-
MSCs promoted the maturation of hESC-derived cardiomyocyte microtissues[87]. 
iPSC-MSCs increased the level of M2 macrophages and deceased the level of M1 
macrophages after cardiac arrest (Figure 1), suggesting that iPSC-MSCs play a crucial 
role in immunomodulation during cardiopulmonary resuscitation[88]. iPSC-MSCs 
improved CS-induced cardiac remodelling and dysfunction better than BM-MSCs as 
shown by an increase in percentage of left ventricular ejection fraction and fractional 
shortening. iPSC-MSCs attenuated cardiac pro-inflammatory cytokines and restored 
anti-inflammatory cytokines[89]. Conditioned medium from iPSC-MSCs alleviated 
heart failure and reduced cardiomyocyte apoptosis and fibrosis better than that from 
BM-MSCs, showing that iPSC-MSCs could provide cell-free therapeutic cardio-
protection[90]. Extracellular vesicles (EVs) of iPSC-MSCs mitigated arterial ageing by 
attenuating ageing-associated vascular endothelial dysfunction, arterial stiffness, and 
hypertension[91]. In addition, overexpression of myocardin in iPSC-MSCs resulted in 
partial transdifferentiation into cardiomyocyte phenotype[92].

Neurological diseases
MSCs demonstrate significant neuroprotection and promote functional recoveries of 
the pathological nervous system. MSCs were shown to secret brain-derived 
neurotrophic factor and nerve growth factor, which supported neuronal cell survival 
and induced nerve regeneration (Figure 1). Conditional medium of hESC-MSCs could 
significantly ameliorate neurological deficits and infarct volume in middle cerebral 
artery occlusion (MCAO) rats[93]. hESC-MSCs differentiated into neural-like cells in 
standard neurogenic differentiation medium, and hESC-MSCs in sphere secreted more 
HGF and IGFBP1 than those in single-cell suspension[94] (Figure 1). hPSC-MSCs 
expressed higher levels of neural genes than BM-MSCs and rapidly differentiated into 
neural-like cells when differentiated into neural lineage[95]. Although ESC-MSCs 
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induced autophagy similar to BM-MSCs, ESC-MSCs survived better in amyloid-β (Aβ) 
-induced cellular models and reduced more intracellular Aβ levels compared with BM-
MSCs. ESC-MSCs significantly decreased Aβ-induced cell death and promoted 
autophagolysosomal clearance of Aβ in a rat model of Alzheimer's disease, leading to 
higher memory performance. Intra-arterially transplanted ESC-MSCs were safe and 
free from cerebral ischemia[96]. iPSC-MSCs markedly decreased brain-infarct volume 
and improved neurological function mainly by inhibiting inflammation[97]. ESC-
MSCs had a superior neuroprotective capacity over fetal MSCs in mouse hypoxic-
ischemic brains[98].

In addition, hESC-MSC EVs also protected retinal ganglion cells and preserved 
retinal function in a mouse model of optic nerve injury by improving retinal ganglion 
cell (RGC) survival and preventing retinal nerve fiber layer degeneration. iPSC-MSCs 
significantly reduced corneal opacity by reducing inflammation similar to BM-MSCs
[99]. Transplanted iPSC-MSCs significantly improved the survival of RGCs by 
effectively transferring functional mitochondria to RGCs[100].

Multiple sclerosis (MS) is a potentially disabling disease of the central nervous 
system caused by an attack of the protective sheath by the immune system, leading to 
communication problems between the brain and the rest of the body. As yet, there is 
no cure for MS, the most common demyelinating disease. Compared with BM-MSCs, 
hESC-MSCs improved efficacy in a mouse experimental autoimmune encephalitis 
(EAE) model of MS due to its lowered IL-6 expression. In addition, hESC-MSCs are 
less vulnerable than BM-MSCs in therapeutic capacity during in vitro culture[101]. 
After hESC-MSCs were intrathecally injected into the central nervous system of EAE-
induced monkeys, hESC-MSCs greatly decreased the clinical symptoms, brain lesions, 
and neuronal demyelination in the EAE monkeys. hESC-MSCs could transdifferentiate 
into neural cells in vivo in the CNS of the treated monkeys as shown by elevated 
expression of genes for neuronal markers, neurotrophic factors, and neuronal 
myelination[41].

Immune disease
hPSC-MSCs have a strong immune regulatory effect during anti-inflammation. 
Microphages serve as a bridge between innate and specific immune responses. hPSC-
MSCs altered macrophage polarization by suppressing the Notch-1 signalling 
pathway[102] (Figure 1). Due to the immunosuppression property of iPSC-MSCs, they 
have been used for the treatment of various immune diseases. hESC-MSCs slowed 
down the development of severe experimental autoimmune uveitis through systemic 
immune modulation[103], whereas iPSC-MSCs inhibited proliferation, shifted the 
secretome of peripheral blood mononuclear cells, and significantly suppressed CD8 T 
proliferation, activation, and differentiation[104]. iPSC-MSCs also suppressed T-cell 
effector cells of Th1/Th2 and increased regulatory T cell (Treg) response[105]. iPSC-
MSCs prolonged hind limb survival by reducing mononuclear cell infiltration, 
lowering TNFα and IFNγ, increasing interleukin 10, and thus protecting against acute 
rejection in a rat vascularized composite allotransplantation model[106] (Figure 1). 
iPSC-MSCs disrupted NK cell cytolytic machinery to prevent allograft rejection by 
decreasing activation markers and ERK1/2 signalling, leading to impaired 
immunologic synapses and secreted cytotoxic granules. However, iPSC-MSCs were 
more resistant than BM-MSCs to pro-activate NK cells[26]. hESC-MSCs could protect 
against an experimental model of inflammatory bowel disease[107]. iPSC-MSCs 
modulated T-cell phenotypes towards Th2 suppression by inhibiting lymphocyte 
proliferation and promoting Treg response, suggesting that iPSC-MSCs can treat 
allergic airway diseases[108]. iPSC-MSCs regulate T cell responses by decreasing 
secreted soluble factors[109]. iPSC-MSCs also improved asthma inflammation by 
connexin 43-mediated mitochondrial transfer[110]. iPSC-MSCs accelerated intestinal 
epithelial cell proliferation to promote intestinal repair in murine colitis through tumor 
necrosis factor-stimulated gene-6 (TSG-6) via Akt-dependent interaction between the 
extracellular matrix HA and CD44+ cells[111]. iPSC-MSC EVs prevented the 
progression of Sjogren’s syndrome (SS), a chronic autoimmune disease, by 
suppressing activation of immune cells and proinflammation factors essential for SS 
progression[112]. Due to intrinsic immunosuppression, MSCs significantly prolonged 
the survival of humanized mouse model of graft vs host disease (GvHD)[113]. The first 
iPSC-MSC clinical trial was reported in 2020. iPSC-MSCs were produced using an 
optimized and good manufacturing practice-compliant manufacturing process to treat 
steroid-resistant acute GvHD. Based on the complete response, overall response, and 
overall survival of participants, the higher dose level of iPSC-MSC showed better 
outcomes than the lower dose, and iPSC-MSCs were safe and well tolerated without 
serious adverse events reported[114].



Liu TM. Application of hPSC-MSCs in regenerative medicine

WJSC https://www.wjgnet.com 1835 December 26, 2021 Volume 13 Issue 12

Cancer treatment
Like primary MSCs, hPSC-MSCs also have therapeutic potentials in treating cancer or 
repairing tissue damages caused by cancers. hPSC-MSCs can overcome the limitation 
of drug delivery. iPSC-MSCs expressing cytosine deaminase limited tumor growth 
and decreased lung metastases in a mouse xenogeneic model of human breast cancer
[115]. EVs from hPSC-MSCs also showed promising results to improve cancer 
treatment. hESC-MSC microvesicles decreased the proliferation of leukemia cells[116]. 
Treatment with iPSC-MSC nanovesicles showed no detectable immunogenicity and 
significantly decreased the incidence of metastases from triple-negative breast cancer 
in mouse models[117]. iPSC-MSC nanovesicles also significantly decreased tumor 
growth of metastatic prostate cancer[118]. These suggest that iPSC-MSC nanovesicle is 
a promising platform to improve the treatment of metastatic cancer. iPSC-MSCs can 
home to cancers with a similar efficiency as BM-MSCs. As compared with BM-MSCs, 
iPSC-MSCs expressed lower levels of interleukin-1 and TGFβ receptors, downstream 
pro-tumor factors, and hyaluronan and its cofactor TSG6, and therefore iPSC-MSCs 
have much less potential to promote tumours than BM-MSCs by promoting the EMT, 
invasion, stemness, and growth of cancer cells[119].

Other applications
hPSC-MSCs are also used for other applications. iPSC-MSC exosome improved 
cutaneous wound healing by promoting collagen synthesis and angiogenesis[120]. 
Furthermore, iPSC-MSC exosome via intramuscular injection could enhance micro-
vessel density and blood perfusion by activating angiogenesis-related molecule 
expression and promoting HUVEC migration, proliferation, and tube formation[121]. 
iPSC-MSCs supported the proliferation of hematopoietic stem and progenitor cells 
(HPCs), and maintained a primitive immunophenotype and colony forming unit of 
CD34+ HPCs. Long-term culture initiating cell frequency was lower compared with 
primary MSCs, suggesting that iPSC-MSCs are less suitable than primary MSCs as 
feeder cells[44]. iPSC-MSCs also can be used as feeder cells to culture human iPSCs. 
Human iPSCs cultured on human iPSC-MSC feeder were slightly thinner and flatter 
than the other feeder system. However, iPSC-MSCs still maintain the proliferation and 
pluripotency of iPSCs[122]. hESC-MSCs restored the structure of the injured ovarian 
structure and function in premature ovarian failure via paracrine effect and ovarian 
cell survival to rescue fertility in mice[123,124]. hESC-MSC secreted trophic factors to 
support hepatocytes on an acute liver failure model[125]. hESC-MSC EVs ameliorated 
cirrhosis in thioacetamide-induced chronic liver injury[126].

DISCUSSION
Primary MSCs have drawbacks due to their limited scalability, interdonor variability, 
and inconsistent outcomes of clinical trials. iPSC-MSCs have the potential to overcome 
the fundamental limitations of conventional and donor-derived MSC production 
processes. The derivation of hPSC-MSCs has made substantial progress with an 
increasing number of reports on the use of hPSC-MSCs for regenerative medicine over 
the past years. However, the issues and challenges related to safety and efficacy of 
hPSC-MSCs remain to be understood and addressed. These include the effects of cell 
origins and derivation approaches on hPSC-MSCs, the understanding of difference 
between hPSC-MSCs and primary MSCs, MSC stemness/potency biomarkers, the 
differentiation potential of hPSC-MSCs, choice of autologous or allogeneic hPSC-MSC 
source, manufacturing of clinical grade hPSC-MSCs, etc.

Effects of cell origins and derivation approaches on the features of hPSC-MSCs
The use of MSCs is already in various phases of clinical applications. However, little is 
known about the difference in features of hPSC-MSCs from different origins, partic-
ularly in their differentiation potential, a critical feature to their clinical application. 
Although hPSC-MSCs derived from various approaches exhibit MSC morphology and 
express MSC surface antigens, their differentiation potential is not as efficient as BM-
MSCs, especially in adipogenesis[31,47]. Due to epigenetic memory or incomplete 
reprogramming, iPSC variations exist, and iPSC-MSCs exhibit preferential differen-
tiation into their original cell lineage. Eto et al[127] showed that iPSC-MSCs via the 
mesoderm and neuroepithelium had the capacity for self-renewal and multipotency as 
well as therapeutic potential in skin wounds, pressure ulcers, and OA in a mouse 
model. However, different therapeutic effects of iPSC-MSCs from different origins 
were also observed, suggesting that the therapeutic efficacy of hPSC-MSCs is 
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dependent on cell origins. In addition, hPSC-MSCs derived by differentiation 
approaches vary extensively in their quality and efficiency. The use of fibroblast 
growth factor in the differentiation medium[27,47,128] promotes MSC proliferation at 
the expense of its differentiation potential[129]. Therefore, the effects of cell origins 
and differentiation approaches on iPSC-MSCs need to be elucidated.

Mechanisms underlying difference between hPSC-MSCs and primary MSCs
Compared with primary MSCs, hPSC-MSCs have advantages of faster proliferation, 
longer life span, more reliable and homogeneous cell source, but somehow immature 
differentiation potential and impaired immunosuppression. What are intrinsic and 
extrinsic mechanisms underlying the difference between iPSC-MSCs and primary 
MSCs?

The lack of MSC stemness/potency biomarkers to identify good quality of MSCs 
So far, little is known about regulators or biomarkers associated with MSC stemness/ 
potency, and there is no critical quality attribute available for use to distinguish good 
MSCs from bad ones before cellular manufacturing. The mechanism underlying MSC 
stemness or potency remains poorly understood, which greatly hampers the clinical 
application of hPSC-MSCs. It was shown that kindlin-2 increased the survival, prolif-
eration, stemness, and migration of iPSC-MSCs. Kindlin-2 knockdown increased 
apoptosis and differentiation response whereas kindlin-2 overexpression increased 
proliferation, decreased apoptosis, and slowed down trilineage differentiation. More 
significantly, kindlin-2 overexpression increased the migration of iPSC-MSCs in the 
wound-scratch assay[130]. In the future, substantial efforts are needed to explore MSC 
stemness/potency-related regulators or biomarkers for clinical application.

Differentiation potential of hPSC-MSCs
It is well accepted that MSCs have potential to differentiate into multiple mes-
enchymal lineages, such as osteoblasts, chondrocytes, and adipocytes. However, it is 
still controversial that MSCs can directly differentiate into other types of functional 
cells, such as cardiomyocytes-like cells[131], hepatocytes[132], neuron-like cells[133], 
and pancreatic β cells[134]. The underlying mechanism of iPSC-MSCs improving these 
conditions need to be elucidated.

Autologous vs allogeneic hPSC-MSCs
MSCs have anti-inflammatory and immune-modulatory properties. However, patient-
derived autologous hPSC-MSCs still represent a better option for regenerative 
medicine as there are lesser concern regarding the immune response compared with 
allogeneic MSCs.

Clinical grade hPSC-MSCs
Although iPSCs are generated by integration-free methods and iPSC-MSCs are 
derived by a number of approaches, there are few approaches available to regenerate 
clinical-grade hPSC-MSCs for clinical application. Most protocols have used undefined 
components, such as FBS, feeder cells, and other animal-derived components, which 
compromise the clinical application of iPSC-MSCs. To generate clinical grade iPSC-
MSCs, reliable, efficient, scalable, and clinically compliant approaches are required 
throughout the whole manufacturing process of iPSC-MSCs. These processes include 
generation and expansion of iPSCs, freezing and thawing of iPSCs, differentiation of 
iPSCs towards MSCs, expansion of iPSC-MSCs, freezing and thawing iPSC-MSCs, etc. 
In addition, comprehensive assays should be established to evaluate the safety, 
quality, or potency of hPSC-MSCs during cellular manufacturing for clinical 
application.

CONCLUSION
hPSC-MSCs have enormous potential for regenerative medicine, and can be used for 
disease modelling, drug screening, and treatment of various diseases in regenerative 
medicine. Although multiple approaches have been reported in deriving MSCs from 
hPSCs, the use of undefined and animal-derived components greatly compromises the 
clinical application of hPSC-MSCs. Much effort is needed to derive clinically relevant 
and sufficient hPSC-MSCs with good quality for clinical application, and criteria need 
be established to evaluate the safety and efficacy of hPSC-MSCs before clinical 
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application. In addition, many issues or challenges with hPSC-MSCs also need to be 
addressed.
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