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Abstract
Current research data reveal microenvironment as a significant modifier of 
physical functions, pathologic changes, as well as the therapeutic effects of stem 
cells. When comparing regeneration potential of various stem cell types used for 
cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently 
the most attractive cell source for bone and tooth regeneration due to their differ-
entiation and immunomodulatory potential and lack of ethical issues associated 
with their use. The microenvironment of donors and recipients selected in 
cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, 
indicating interactions of cells with their microenvironment indispensable in 
MSC-mediated bone and dental regeneration. Since a variety of MSC populations 
have been procured from different parts of the tooth and tooth-supporting tissues, 
MSCs of dental origin and their achievements in capacity to reconstitute various 
dental tissues have gained attention of many research groups over the years. This 
review discusses recent advances in comparative analyses of dental MSC 
regeneration potential with regards to their tissue origin and specific microenvir-
onmental conditions, giving additional insight into the current clinical application 
of these cells.

Key Words: Microenvironment; Dental mesenchymal stem cells; Modulation of 
regenerative potential; Tissue origin; Hypoxia microenvironment; Inflammatory 
microenvironment; Clinical application
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Core Tip: This review discusses recent advances in comparative analyses of dental 
mesenchymal stem cell (MSC) regeneration potential. We have summarized the 
available research evidence concerning the effects of hypoxic and inflammatory 
microenvironmental factors on dental MSC differentiation capacity. Existing investig-
ations indicate the very important aspect of the recipient microenvironment niche in 
terms of therapeutic efficacy of transplanted dental MSCs. However, some of the data 
for the same cell type (especially in hypoxic in vitro conditions) are conflicting, so it is 
important to point out that the biology of MSCs is not yet fully known, and further 
research in this area is needed.
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INTRODUCTION
Bone defects and dental loss connected with either disease or trauma seriously 
influence the quality of life of the whole population, including emotional, physical, 
and financial load on the society. For the medical treatment of oral diseases, 
periodontal treatment, dental implants, and dental protheses are the gold standards
[1]. Since these oral therapies can only maintain the current state and stop further 
complications of the disease, failing to influence complete tissue regeneration, new 
technologies are needed to overcome these limitations at various tissue regeneration 
steps[2]. Currently, tissue engineering represents a promising future approach for 
recovering the function and integrity of tooth’s hard tissue[3]. The microenvironment 
of dental tissues, containing dental immune cells, blood vessels, extracellular matrix 
(ECM), numerous secreted soluble mediators, and various stromal cells, essentially 
influences the healing process of diseased dental tissue[4,5]. In terms of regenerative 
features, mesenchymal stem cells (MSCs) are the most prominent among stromal cells. 
Their clinical application in the treatment of dental diseases is still at the beginning 
since the exact mechanism of their therapeutic properties is not yet clear.

MSCs are the population of multipotent stromal cells present in many adults, 
perinatal and fetal tissues, where they participate in homeostasis maintenance. They 
were initially isolated from bone marrow and characterized as fibroblast-like cells[6]. 
After a while, their presence has been demonstrated in various fetal and adult tissues, 
such as peripheral blood, umbilical cord, placenta, adipose tissue, and others[7,8]. In 
the past two decades, a variety of MSC populations have also been procured from 
different parts of the tooth and tooth-supporting tissues (Figure 1): Dental pulp stem 
cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal 
ligament stem cells (PDLSCs), dental follicle stem cells (DFSCs), gingival MSCs 
(GMSCs), and stem cells from the dental apical papilla (SCAPs)[9]. These cells are 
particularly suitable for research, given the easy availability of tissues through non-
invasive dental procedures and simple methods for their isolation. According to the 
International Society for Cellular Therapy, minimal criteria to characterize MSC 
population consider the positive expression of surface markers CD73, CD90, and 
CD105 and negative expression of CD11b, CD19, CD79α, CD34, CD31, CD45, and 
human leukocyte antigen-DR isotype, along with their self-renewal and multilineage 
differentiation capacity into cells of osteogenic, chondrogenic, and adipogenic lineages
[10] (Figure 2). Yet, the defining characteristics of MSCs are inconsistent among 
researchers. In addition to their regenerative role, MSCs exert immunomodulatory 
properties by affecting cells of the innate and adaptive immune system through direct 
intercellular contacts and/or secretion of soluble mediators (Figure 2). Moreover, 
MSCs express multiple paracrine functions, thus modulating surrounding microenvir-
onment response to numerous autoimmune and inflammatory diseases[11]. Previous 
research has shown that MSCs suppress activation and proliferation of CD4+ helper 
and CD8+ cytotoxic T lymphocytes, B lymphocytes[12,13], dendritic cells, and natural 
killer cells[14], while increasing the production of regulatory T-lymphocytes[15]. In 
addition, it has been determined that MSCs modulate microenvironment in the injured 

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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Okić-Đorđević I et al. Comparison of dental MSCs regenerative potential

WJSC https://www.wjgnet.com 1865 December 26, 2021 Volume 13 Issue 12

Figure 1 Schematic drawing illustrating sources of human dental tissue-derived mesenchymal stem cells. DFSCs: Dental follicle stem cells; 
DPSCs: Dental pulp stem cells; GMSCs: Gingival mesenchymal stem cells; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from the dental apical 
papilla; SHEDs: Stem cells from human exfoliated deciduous teeth.

Figure 2 Properties of mesenchymal stem cells. mesenchymal stem cells are the population of multipotent stromal cells present in adult and perinatal 
tissues where they participate in maintaining of homeostasis. Due to their self-renewal capacity, differentiation potential into specialized cells of mesodermal origin 
and immunomodulatory features, these undifferentiated cells can be potentially applied in regenerative medicine and cell therapy.

tissue by releasing anti-inflammatory and anti-apoptotic molecules[16].
It is well known that MSCs’ behavior depends on the context of the microenvir-

onment in which they reside and function. These physiologically defined comp-
artments, named stem cell niches, are the sites of external cues integration that 
determine the fate of MSCs and govern them towards specific functions[17]. Therefore, 
a better understanding of the effects of specific microenvironmental conditions on 
MSCs’ fate is of great importance for getting a real insight into their biology and 
optimizing the conditions for their successful use.

Oxygen (O2) represents an important factor in the stem cell niche necessary for cell 
activity and metabolism. Unlike laboratory standard conditions that correspond to the 
atmospheric (21%) O2 levels, physiological oxygenation in tissues is hypoxic, ranging 
from 1%-14% with an average of about 5%[18]. Response to O2 level changes in 
mammals is mainly regulated by hypoxia-inducible factor 1 (HIF-1)-α, an ubiquitously 
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expressed transcription factor subunit that translocates to the nucleus under hypoxic 
conditions where it binds to HIF-1β to regulate target genes[19]. Different O2 levels 
affect various MSCs features[20,21]. Moreover, the hypoxia effects depend on cell type, 
oxygen concentration, and experimental design; thus, many studies gave contradictory 
results, especially considering short-term exposure to hypoxia[20]. In dental and 
dental-supporting tissue derived cells, low oxygen levels (1%) increase the formation 
of reactive oxygen species, leading to oxidative stress, specifically in periodontal 
ligament (PDL) cells[22]. The reactive oxygen species level multiplies when the 
bacterial inflammation occurs within a hypoxic environment[23]. A unique feature of 
the oral cavity is the presence of plenty of microorganisms such as bacteria, fungi, 
protozoa, or viruses, organized in the complex communities, termed as oral 
microbiome. These microorganisms coexist with the host in a symbiotic way. 
Depending on the mouth area, the microbiome's composition is diverse, with the 
dental tissues (including teeth and teeth supportive tissues) being the habitat of many 
microorganisms (dental plaque). As the composition of the oral microbiome changes 
dynamically[24,25], physiological balance can be disrupted, consequently encouraging 
the infection development in the host[26,27].

This review provides a detailed summary of currently available data concerning 
dental MSC regeneration potential in terms of the tissue origin and influence of 
hypoxic and proinflammatory microenvironments. Furthermore, it analyzes current 
evidence regarding clinical applicability of dental MSCs.

DENTAL MSCS REGENERATIVE PROPERTIES WITH REGARDS TO THEIR 
TISSUE ORIGIN
The term dental tissue refers to the tooth and tooth-supporting tissues (periodontium). 
There are two major constitutive parts of the tooth, a crown (mostly visible part of the 
tooth) and a root. The crown is formed of three hard tissues, enamel, dentin, and 
cementum, and one soft tissue, dental pulp[28]. Enamel, dentin, and cementum are 
tissues with limited or no possibility to regenerate[29], while the dental pulp is a loose 
connective tissue profusely vascularized and innervated. Structurally, dental pulp is 
divided into three main regions that form a continuum: The peripheral odontoblastic 
and the sub-odontoblastic layer and the central pulp[30,31]. In terms of cellularity, the 
most common dental pulp cell types are fibroblasts, peripheral odontoblasts, and 
DPSCs, whereas collagens I and III represent extracellular pulpal matrix key protein 
components[32]. Moreover, the proportion of cellularity to collagen with aging favors 
collagen[30].

Dental pulp MSCs, with their extensive proliferation and multipotential differen-
tiation capability, have an intrinsic role in dental pulp regeneration potential 
(Figure 3). They were first discovered by Gronthos et al[33] in 2000 as MSCs derived 
from the pulp of the permanent, impacted third molars and supernumerary teeth, 
commonly considered as medical waste. Like other dental MSCs, DPSCs express 
osteoblastic markers such as alkaline phosphatase (ALP), collagen type I (COL1A1), 
and osteocalcin (OCN) and are able to differentiate into osteoblast-like cells. 
Furthermore, DPSCs are essential for postnatal tooth homeostasis through 
implementation of odontoblasts in the dentin restoration process. When dental injuries 
or odontoblast apoptosis occur, DPSCs rapidly proliferate, migrate, and differentiate 
into odontoblast cells. Moreover, being of neural crest origin, DPSCs can differentiate 
into functionally active neurons and glial cells[34]. Importantly, recent studies have 
revealed that DPSCs reside in neurovascular niche where they secrete an array of 
angiogenic regulatory factors and generate capillary-like structures demonstrating 
strong angiogenic ability[35]. Overall, neurovascular and MSC-like properties make 
DPSCs good candidates for bone and tooth regeneration.

Stem cells from the pulp tissue of human exfoliated deciduous teeth (Figure 3), 
firstly isolated by Miura et al[36] in 2003, are capable of forming dentin-like structures. 
Moreover, they show higher proliferative, odontogenic, and osteogenic differentiation 
potential than DPSCs[37]. Furthermore, these cells have a higher doubling time[38] 
than DPSCs and higher expression of collagens I and III as well as of pluripotency 
markers such as octamer-binding transcription factor-3/4, sex determining region Y-
box-2, and Nanog homeobox[39]. SHEDs are also able to differentiate into neural and 
glial cells under appropriate conditions. Being able to demonstrate regenerative 
potential even 2 years after cryopreservation[40] and, because of their easy access-
ibility, SHEDs represent good candidates for bone and tooth regeneration.
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Figure 3 Functional properties and differences among dental mesenchymal stem cells. Dental mesenchymal stem cells (MSCs) are involved in 
dental tissues regeneration which is influenced by local microenvironment of the tissues they reside in. Overall, all dental MSCs represent good candidates for tissue 
regeneration, however their capacities differ (shown in table on the right). > , < and ~ represent higher, lower or similar capacity/rate respectively; The numbers in 
square brackets indicate the references. DFSCs: Dental follicle stem cells; DPSCs: Dental pulp stem cells; GMSCs: Gingival mesenchymal stem cells; PDLSCs: 
Periodontal ligament stem cells; SCAPs: Stem cells from the dental apical papilla; SHEDs: Stem cells from human exfoliated deciduous teeth.

However, the possibility of dental pulp tissue regeneration is restricted by several 
factors. Since dental pulp has collateral blood circulation due to the anatomical 
organization of the pulp chamber, the efficacy of the immune response to infection is 
limited[41]. Thus, the localization of DPSCs in perivascular and perineural pulp 
regions and consequent contacts with different microenvironments, along with their 
high immunomodulatory activity[42], makes them good candidates for modulating 
the immune response to infection. Furthermore, when comparing cellular density in 
specific tooth regions of dental pulp tissue from different teeth, higher density was 
observed in the coronal region of deciduous and premolar teeth compared with 
supernumerary and third molars. In contrast, a high cell density was observed in the 
apical region of supernumeraries and premolars compared with third molar teeth[43]. 
Overall, supernumerary dental pulp as source for DPSCs has the best morphometric 
parameters, and its cell density is comparable to that of deciduous tooth pulp.

Periodontium is a specialized connective tooth-supporting tissue that surrounds the 
root of the tooth. It has the role of attaching the tooth to the jawbone, amortizing the 
mechanical pressure that occurs during chewing and speech but also in the formation 
and resorption of bone tissue. Periodontium involves two soft tissues—PDL and gums, 
and two hard tissues—alveolar bone and cementum[44]. The PDL is a connective 
tissue with high cellularity and amount of ECM components. As for cellular con-
stituents, PDL consists mainly of fibroblasts, osteoblasts, osteoclasts, cementoblasts, 
and cementocytes. Other cells present in PDL include epithelial cell rests of Malassez, 
macrophages, nerve cells, endothelial cells, as well as MSCs. PDLSCs represent a 
unique population of somatic stem cells of mesenchymal origin with the regenerative 
potential reflected by self-renewal and multipotent differentiation ability as well as 
potency for the formation of tissues that support the teeth, including the PDL and 
cement (Figure 3). On the other hand, the rich ECM of PDL is formed of collagen type 
I, II, and XII fibers, proteoglycans, and a vast vascular network[45]. Interestingly, 
collagen type I is the most widely used scaffold material for dental pulp regeneration
[46], and PDLSCs have shown higher expression of COL1A1 compared to DPSCs[47]. 
Taken together, these features qualify PDLSCs for use in the regeneration/reco-
nstruction of tooth-supporting tissue in periodontal disease.

Like PDL, the gingival connective tissue also has a rich ECM. Collagen fibers and 
ground substances make up 60% and 35% of gingival ECM, respectively, and only 
about 5% of gingival connective tissue consists of various cells like fibroblasts, mast 
cells, macrophages, and inflammatory cells[48]. Structurally and functionally, the 
gingiva is different from PDL, displaying an even higher collagen turnover rate than 
PDL and having a distinct composition and organization of ECM. It was noticed that 
compared to PDL fibroblasts, gingival fibroblasts have a significantly lower level of 
ALP expression, an increased potential to stimulate epithelial growth, as well as a 
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distinctive property of regulating cytokeratin expression by epithelial cells[49]. 
Furthermore, the gingival tissue is highly vascularized, thanks to the high number of 
anastomoses[50]. Moreover, due to the activities of local microenvironment factors, 
including transforming growth factor-α, transforming growth factor-β, insulin-like 
growth factor, nerve growth factor, epidermal growth factor, and fibroblast growth 
factor, gingiva has a particularly high wound-healing capacity. Other local factors, 
such as mechanical signals from the ECM to the cells, may be involved as well[49]. All 
of these structural characteristics provide gingival tissue with a great therapeutic 
potential in regenerative therapy especially in terms of GMSCs. In contrast to MSCs 
from other sources, GMSCs isolated from the gingival lamina propria are profuse and 
easily procured cells through minimally invasive cell isolation techniques, which make 
them suitable cells for regenerative purposes[51]. Compared to PDLSCs, GMSCs have 
a higher rate of proliferation while also exerting a higher capacity to proliferate, 
migrate, and form angiogenic tubules in comparison to DPSCs (Figure 3)[52].

The alveolar bone is located on the jaw bones that hold the teeth, and it arises in the 
process of immature tooth root development from the dental follicle (DF), one of the 
multipotent tissues[53]. The DF is made up of MSCs and fibers surrounding the 
enamel organ and dental papilla of a developing tooth[54]. It is a vascular fibrous sac 
of ectomesenchymal origin. Histologically, DF is characterized by fibrous connective 
tissue with variable amounts of lining epithelium, including enamel, cuboidal, 
squamous, and, rarely, respiratory epithelium. The type of lining epithelium seems to 
be related to the patient’s age[55]. DFSCs, originating from this developing tissue, 
possess higher plasticity than other dental stem cells[56]. Recently, isolated DFSCs 
were also found to have the ability to form salivary gland cells and ductal cells[56] 
(Figure 3).

Another immature dental tissue is the apical papilla, a tissue only present during 
root development before the tooth erupts into the oral cavity[57]. In comparison to the 
dental pulp, the apical papilla has less cellular and vascular components[57], and the 
tissue is more immature since it contains a higher number of MSCs than mature dental 
pulp tissue. Moreover, the apical papilla performs a key role in the differentiation of 
odontoblasts into cells capable of secreting the primary dentin matrix[58] . 
Furthermore, the localization of the apical papilla in the apical root of the tooth can 
benefit by its apical collateral circulation and thus survive during the pulp necrosis 
process, which additionally explains why immature teeth with necrotic pulps can 
undergo completion of root development[59]. SCAPs reside in the apical papilla of 
permanent immature teeth and appear to be the source of odontoblasts that are 
responsible for the formation of root dentin (Figure 3). Conservation of SCAPs when 
treating immature teeth may allow the continuous formation of the root to completion.

Overall, among adult tissues easily available through non-invasive dental 
procedures, SHEDs have a higher doubling time than DPSCs[39]. However, PDLSCs 
showed a significantly higher in vitro osteogenic differentiation potential than both 
SHEDs and DPSCs (Figure 3), as evidenced by functional studies and gene expression 
indicating the complex influence of stem cell origin on their regenerative potential[60].

MODULATION OF DENTAL MSCS REGENERATIVE PROPERTIES IN 
HYPOXIC MICROENVIRONMENT
In the oral cavity, O2 levels are shown to range from 0.7% and 3.8% in human per-
iodontal pockets[61] and approximately 3% O2 in the pulp tissue of rats[62]; therefore, 
given the therapeutic potential of dental MSCs, a number of studies have focused on 
examining their functions in such microenvironments. According to the published 
data, dental MSCs have been intensively investigated with regard to different O2 

levels, and detailed outcomes are shown in Table 1.
Although most studies showed that hypoxia stimulated proliferation of DPSCs[63], 

PDLSCs[64-67], SHEDs[68,69], and SCAPs[70], some reported it had no[71,72] or a 
negative effect[73,74]. Also, results concerning the influence of hypoxia on differen-
tiation capacity of MSCs derived from dental and dental supportive tissues are 
diverse. It was shown that under hypoxia, osteogenic differentiation of DPSCs was 
strongly suppressed compared to normoxia[75]; however, there are studies showing 
increased osteogenic[63,71], adipogenic and chondrogenic differentiation[71] at low O2 
levels. In order to mimic the native microenvironment of DPSCs, Labedz-Maslowska et 
al[73] grew hydrogel-encapsulated cells in the presence of 2% O2. They showed up-
regulation of osteogenic differentiation in hypoxic conditions, but calcium deposition 
was, in the case of two-dimensional culture, more prominent under normoxia. 
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Table 1 Effects of different oxygen levels on regenerative potential of human dental mesenchymal stem cells

Hypoxia level Outcome Ref.

DPSCs

< 1% O2 Weak ALP activity, weak calcium deposition Janjić et al[75], 2019

Proliferation↑; odontogenic differentiation↑; angiogenesis↑; in vivo: 
Angiogenesis inside the pulp chamber↑, the formation of odontoblast-like 
cells lining along the dentin–pulp interface↑

Kuang et al[76], 2016

No change in proliferation; calcium deposits↑; proteoglycan deposition↑; 
lipid droplets↑; PPAR𝛾2 mRNA↑

Zhou et al[71], 2014

2% O2

Proliferation↓; Runx2 mRNA expression↑ (both 2D and 3D conditions); 
Runx2 and Col1A mRNA expression, osteopontin in 2D culture↑, calcium 
deposition in 3D culture↑, calcium deposition in 2D culture↓

Labedz-Maslowska et al[73], 2020

3% O2 BMP2, OCN and RUNX2 protein expression↑; calcium deposits↑; RunX2 
and Sp-7 mRNA expression↑; in vivo: In a mouse apical periodontitis bone 
destruction model, hDPSC recruitment and recovery of alveolar bone mass 
in infected periapical tissue↑, osteogenesis and bone mineralization↑

Wu et al[77], 2016

5% O2 Proliferation↑; mineralization↑ Kwon et al[63], 2017

PDLSCs

1.5%-2% O2 ALP activity↓; SPARC protein expression↓; ALP, OCN, and BMP-2 mRNA 
expression↓; proliferation↓

Hou et al[79], 2009

Calcium deposition, proteoglycan deposition↑; lipid droplets↑; Runx2, 
Sox9 mRNA expression↑

Zhou et al[71], 2014 

ALP activity↑; Runx2 and Sp7 mRNA and protein expression↑; 
mineralization↑

Wu et al[80], 2013

SPP1, RUNX2, SP7 mRNAs and protein expression↑ Li et al[65], 2014

Proliferation↑; RUNX-2 and ALP protein expression↑; no effect on 
adipogenic differentiation; in vivo: Stronger bone regeneration region in 
male nude mice, more mineralized tissue in a periodontal defect model

Yu et al[64], 2016

Proliferation↑; Runx2, osteopontin and osteocalcin mRNA expression↑; in 
vivo: After 12 wk of transplantation, hypoxia-treated cells differentiated 
into osteoblast-like cells that formed bone-like structures

Zhang et al[66], 2014

2% O2

ALP activity↑; Runx2 mRNA expression↑ Chen et al[81], 2017

Proliferation↑; osteogenic and adipogenic differentiation↓; chondrogenic 
differentiation↑; preconditioning: Osteogenic and adipogenic 
differentiation↑

Murabayashi et al[72], 20173% O2

Runx2, Alp, Col1, and Ocn mRNA expression↑; RUNX2 protein ex vivo and 
in situ↑

Xu et al[82], 2019

5% O2 ALP activity↓ Matsuda et al[78], 1998

5% O2; 1% O2 Proliferation↓; ALP activity↑; Opn, Alp mRNA expression↑; Cemp1, Cap 
mRNA expression↑

Xiao et al[74], 2017

8% O2 Proliferation↑; Cemp1, Ocn mRNA expression↑; CEMP protein expression
↑; mineral deposition↑; ALP activity↑; in vivo: CEMP1 protein expression in 
mouse PDL spaces↑

Choi et al[67], 2014

SHEDs

1% O2 Proliferation↑; mineralization↑; ALP activity↑; OPN and DMP1 protein 
expression↑; in vivo: After implantation in immunodeficient mice, the 
tissue-engineered constructs seeded with hypoxia primed SHED mediated 
faster intramembranous bone formation into critical size calvarial defects

Novais et al[69], 2019

2.3% O2 Proliferation↑; no effect on adipogenic and osteogenic differentiation Kanafi et al[68], 2013

SCAPs

1% O2 No effect on proliferation; RunX2, Alp, TGF-1↑; neuronal differentiation 
(CNP, NSE, and SNAIL mRNA expression↑; angiogenesis (VEGF A and B)
↑; adipocyte lipid binding protein (ALBP)↓

Vanacker et al[70], 2014

3% O2 ALP activity↑; mineralization↑; Dspp, Dmp1 and Bsp mRNA expression↑ Yang et al[83], 2020

Chemical hypoxia
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DPSCs

100 μM CoCl2 No effect on proliferation; SOX9 and VCAN; no expression Col2a1, Acan↑, 
Col 10 mRNA expression↓; proteoglycans↓

Teti et al[85], 2018

Short term: RUNX2, ALP, OCN, COL1A1 mRNA and protein expression↑; 
long term: RUNX2, ALP, OCN, COL1A1 mRNA and protein expression↓

Zheng et al[89], 2021100 mM CoCl2

ALP activity↓; Alp, Ocn, and Runx2 mRNA expression↓; mineralization↓ Osathanon et al[86], 2014

200 μM CoCl2 ALP activity↓; Runx2, Alp, Ocn and Col-1 mRNA and protein expression↓; 
mineralization↓

Song et al[87], 2017

PDLCs

200 μM; 400 μM CoCl2 Proliferation↓; ALP, RUNX2, collagen I↓ Dong et al[88], 2014

1 mM DMOG No effect on proliferation; COL1, RUNX2 and CEMP1 protein expression↑ Li et al[92], 2016

0, 5, 10, 20 μM deferoxamine Proliferation↓; Runx2, Opn and Col1 mRNA expression↑; calcium 
deposition↑

Mu et al[91], 2017

SHED

50 or 100 μM CoCl2 ALP activity↓; calcium deposition↓; Alp, Runx2, and ColI mRNA 
expression↓

Chen et al[90], 2019

↑ and ↓ represent increasing or decreasing effect, respectively. ACAN: Aggrecan; ALBP: Adipocyte lipid binding protein; ALP: Alkaline phosphatase; 
BMP-2: Bone morphogenetic protein 2; BSP: Bone sialoprotein; CEMP 1: Cementum protein 1; COL-1: Collagen-1; DMOG: Dimethyloxalylglycine; DMP1: 
Dentin matrix protein 1; DPSCs: Dental pulp stem cells; DSPP: Dentin sialophosphoprotein; OCN: Osteocalcin; OPN: Osteopontin; PDLSCs: Periodontal 
ligament stem cells; PPAR𝛾2: Peroxisome proliferator-activated receptor gamma; RunX2: Runt-related transcription factor 2; SCAPs: Stem cells from the 
dental apical papilla; SHEDs: Stem cells from human exfoliated deciduous teeth; Sox-9: SRY-box transcription factor 9; Sp-7: Osterix; SPARC: Secreted 
protein acidic and rich in cysteine; TGF-β: Transforming growth factor-beta; VEGF: Vascular endothelial growth factor.

Another study seeded DPSCs into nanofibrous spongy microspheres and showed that 
their priming at 2% O2 prior to implantation significantly promoted the formation of 
odontoblast-like cells lining along the dentin–pulp interface of mice[76]. On the other 
hand, Wu et al[77] showed that preconditioning of cells at 3% O2 enhanced DPSC 
osteogenic differentiation in vitro and more importantly upregulated their recruitment 
in mouse apical periodontitis bone destruction model and enhanced osteogenesis and 
bone mineralization.

While there is evidence that hypoxia decreased osteogenic differentiation of 
PDLSCs[65,78,79], it was demonstrated that it can also increase it[66,71,74,80,81] as 
well as adipogenic and chondrogenic differentiation[71]. Interesting observations in 
some of these studies were that HIF1α promoted osteogenic differentiation of PDLSCs, 
while HIF1A antisense long noncoding RNA 2 had a negative effect on it[81] and that 
the stimulative effect of 2% O2 on osteogenic differentiation of PDLSCs was mediated 
by extracellular signal-regulated kinase and even more rapidly and vigorously by p38 
mitogen-activated protein kinase[80]. The 24 h long pretreatment of PDLSCs under 2% 
O2 increased osteogenesis, whereas cotreatment with tumor necrosis factor (TNF)-α 
and interleukin (IL)-β significantly reduced this effect, and no significant effects on 
adipogenic differentiation were observed[64]. Importantly, the transplants containing 
hypoxic pretreated-PDLSCs led to significantly stronger bone regeneration when 
subcutaneously placed into the dorsal region of male nude mice as well as more 
mineralized tissue in a periodontal defect model[64]. Similarly, PDLSCs grown at 2% 
O2 differentiated into osteoblast-like cells that formed bone-like structures after 
transplantation into the backs of mice[66]. Cultivation of these cells at 3% O2 inhibited 
their differentiation capacity to osteogenic and adipogenic lineages, whereas it 
enhanced chondrogenic differentiation[72]. However, the authors indicated that 
subsequent switch of 2 wk hypoxic preconditioned PDLSCs to normoxia allowed 
successful differentiation into osteogenic and adipogenic lineages. In contrast, Xu et al
[82] found that 3% O2 increased osteogenic markers expression in vitro and augmented 
runt-related transcription factor (RUNX) 2 protein expression ex vivo and in situ via 
HIF-1α-induced vascular endothelial growth factor, suggesting a positive role for HIF-
1α in the early stage of osteogenesis of PDLSCs. Reduced O2 tension besides oste-
ogenic, increased cementogenic differentiation capability of PDLSCs[67,74], probably 
via the Wnt/b-catenin signaling pathway[74]. It was found that HIF-1 activity is 
required to stimulate the differentiation response in vitro and, more importantly, 
cementum protein 1 expression in mouse PDL spaces in vivo[67].
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Although no difference in adipogenic and osteogenic differentiation potential of 
SHEDs was detected at 2.3% O2 in comparison to normoxia[68], significantly higher 
osteogenesis was documented at 1% O2 compared to control in SHEDs incorporated 
into plastically compressed collagen hydrogels[69]. Moreover, after implantation in 
immunodeficient mice, these hypoxia-primed SHED constructs mediated faster 
intramembranous bone formation into critical size calvaria defects. Hypoxia 
significantly increased the osteogenic[70,83], neural, and angiogenic marker expression 
in SCAPs and suppressed their adipogenic differentiation[70].

When establishing hypoxic conditions in the laboratory, researchers sometimes 
encounter lots of technical difficulties (e.g., media changes), especially in long-term 
cultures, and therefore the use of chemical mimetic to induce hypoxic response has 
been an attractive alternative. Cobalt chloride (CoCl2) stabilizes HIF-1α and HIF-2α 
under normoxic conditions, and it is the most investigated hypoxia-mimetic agent[84]. 
Supplementation of DPSCs with CoCl2 had no effect on cell proliferation and reduced 
their chondrogenic[85] and osteogenic differentiation[86-88]. Interestingly, it was 
observed that enamel matrix proteins[87] or apigenin, an HIF-1a inhibitor[86], could 
reverse the effect of CoCl2 on osteogenic differentiation. Zheng et al[89] demonstrated 
that osteogenic differentiation of PDLSCs was activated by short-term exposure to 
CoCl2 but was inhibited following prolonged exposure, which might be mediated by 
circular RNA circCDK8. CoCl2 had the same osteo-reducing effect on SHEDs given the 
significantly decreased ALP activity, calcium deposition, and osteogenic marker 
messenger RNA expression[90]. It was confirmed that deferoxamine[91] and dimethyl-
oxalylglycine[92] promoted HIF1α expression in PDLSCs, and it was demonstrated 
that while proliferation was inhibited by deferoxamine, osteogenic differentiation was 
significantly promoted by both agents. The Wnt signaling pathways might be involved 
in dimethyloxalylglycine-induced differentiation of cells[92].

These findings provide important insights into capacity of dental MSCs to adapt to 
physiological conditions of low oxygenation in vitro by changing their regenerative 
properties.

MODULATION OF MSC REGENERATIVE PROPERTIES IN THE 
INFLAMMATORY MICROENVIRONMENT
In the human population, dental chronic inflammatory diseases are very common. For 
example, caries that cause progressive destruction of dental hard tissue[93] are one of 
the most frequent conditions in the oral cavity[94], particularly in childhood[95], while 
periodontal diseases—oral infections of tooth supportive tissue (gingivitis and period-
ontitis)—affect 20%-50% of the world population[96]. If left untreated, these conditions 
can cause significant damage to the oral cavity and consequently cause major 
problems in the processes of chewing, swallowing, digestion, and speech and create 
aesthetic problems[93]. Therefore, to consider the possibilities for regeneration and 
recovery of damaged oral tissue, it is necessary to perceive the regenerative potential 
of dental MSCs in the context of the inflammatory microenvironment.

Viewed from the perspective of physiological or pathological conditions, 
endogenous, resident MSCs respond to factors present in the immediate vicinity[57]. 
Thus, inflammation caused by caries or periodontal disease may significantly affect 
regenerative capacity of dental MSCs, including their proliferation, migration, colony 
forming capacity, and differentiation. However, data related to the properties of MSCs 
isolated form inflamed dental tissues are not consistent (Table 2). Namely, recent 
results of Inostroza et al[97] showed no significant differences between immu-
nophenotype, trilineage differentiation, colony-formation, and proliferation of the 
DPSCs derived from healthy and inflamed pulp, although immunomodulatory 
functions of DPSCs from inflamed pulp were altered—showing decreased capacity to 
suppress CD3 T cell proliferation. Absence of CD34 and CD45 markers, along with 
high expression of MSC-associated markers between DPSCs extracted from normal 
and diseased pulp, was also observed in Park et al[98]. Besides, in comparison to 
control cells, DPSCs from inflamed tissue manifested higher osteogenesis (stronger 
mineralization and expression of osteogenic markers OCN and RUNX2) but lower 
neurogenesis (decreased expression of neurogenic markers microtubule-associated 
protein 2, neuronal nuclear protein, and glutamate decarboxylase 6), along with higher 
level of IL-6 expression. This study also shows the significance of IL-6, as a strong 
inflammatory factor, to modulate DPSCs function. Namely, the IL-6 treatment of 
DPSCs derived from healthy tissue stimulated their osteogenic differentiation and 
reduced neurogenic differentiation, while IL-6 blocking in DPSCs of inflamed tissue 
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Table 2 Effects of inflammatory microenvironment on regenerative potential of human dental mesenchymal stem cells

Inflammation level Outcome Ref.

DPSCs

Irreversible pulpitis No change in proliferation; no change in differentiation; not being able to supress CD3 
proliferation; IDO activity↓

Inostroza et al[97], 2020

Decayed and pain affected tissue No change in immunophenotype; proliferation↓; Ca deposition↑, OCN and RunX2 
protein expression↑; MAP2 and NeuN protein expression↓; IL-6 expression and IL-6- 
induced osteogenesis↑

Park et al[98], 2019

Irreversible pulpitis Population doubling time↓; STRO 1, CD90, CD105 and CD146 levels↑; Ca deposition↓
; OCN and RUNX2 mRNA expression↓; LPL and PPARγ2 mRNA expression↓; in vivo: 
Retaining their stem cell potency

Alongi et al[99], 2010

Severe periodontal disease Proliferation↑; Stro-1+, CD146, SSEA-4 levels↑; Ca deposition↑, OCN, RUNX2 and 
mRNA expression↑ (also upon stimulation with proinflammatory cytokines IL-1β and 
TNF-α)

Tomasello et al[101], 2017

GMSCs

Severe periodontal disease Proliferation↑; Stro-1+, CD146, SSEA-4 levels↑; Ca deposition↑, OCN, RUNX2 and 
mRNA expression↑ (also upon stimulation with proinflammatory cytokines IL-1β and 
TNF-α)

Tomasello et al[101], 2017

Dental plaque-induced gingival 
hyperplasia

Proliferation↑; Runx2 and OCN mRNA expression↓; ALP activity↓; PPARγ mRNA 
expression↓

Li et al[102], 2013

PDLSCs

Chronic peridontitis No change in Runx2, OCN and ALP mRNA expression; no change in PPARγ and aP2 
mRNA expression; no change in proliferation; in vivo: Smaller newly formed 
cementum

Park et al[105], 2011

Chronic periodontitis Proliferation↑; migration↑; Ca deposition↓, Runx2, ALP and OCN mRNA expression↓; 
no change in lipid droplets level and PPARγ mRNA expression

Tang et al[106], 2016

Periodontitis with alveolar bone 
loss

Proliferation↑; RUNX2 mRNA expression↓; PPARγ mRNA expression↓ Liu et al[107], 2011

Chronic periodontitis viability and proliferation↓ Soheilifar et al[108], 2016

↑ and ↓ represent increasing or decreasing effect, respectively. ALP: Alkaline phosphatase; aP2: Adipocyte protein 2; DPSCs: Dental pulp stem cells; 
GMSCs: Gingival mesenchymal stem cells; IDO: Indoleamine 2,3-dioxygenase; NeuN: Neuronal nuclei; OCN: Osteocalcin; PDLSCs: Periodontal ligament 
stem cells; PPAR𝛾2: Peroxisome proliferator-activated receptor gamma; RunX2: Runt-related transcription factor 2.

annulled their osteogenic/neurogenic capacity[98].
Contrary to these studies, compared to the control cells, DPSCs isolated from 

inflamed pulp expressed higher levels of MSC markers, while their capacity to 
proliferate was increased with reduced osteo/dentinogenic differentiation potential in 
vitro. Still, as well as DPSCs from healthy pulp, DPSCs of inflamed tissue retained their 
capacity to form pulp/dentin complexes after transplantation into immunocom-
promised mice, i.e. their regenerative capacity was preserved[99]. In the context of 
optimal dental MSC isolation, Tsai et al[100] demonstrated that dental diseases 
represent significant factors that affect MSC isolation and quality, given that successful 
MSCs yield was less pronounced from carious deciduous tooth or tooth with pulpitis. 
As for dental MSCs isolated from inflamed tooth supportive tissue, Tomasello et al
[101] showed that DPSCs and GMSCs derived from the tissue affected by periodontitis 
proliferate faster and possess more pronounced mineralization. Also, no changes in 
negative MSC marker expression or in high expression of a positive MSC marker 
(CD29) were detected, while expression of other positive MSCs markers, such as Stro-
1, CD146, and stage-specific embryonic antigen-4, was higher in DPSCs and GMSCs of 
inflamed tissues. In another study, increased proliferation, but with reduced 
osteogenic and adipogenic differentiation, of GMSCs under inflammatory conditions 
was observed[102]. Also, higher levels of matrix metalloproteinases (MMP)-1, MMP-2, 
IL-1, IL-6, TNF-α and type COL1A1 were detected in GMSCs collected from inflamed 
gingival tissues, indicating the potential of inflammatory environment to shift differ-
entiation capacity toward pro-fibrotic phenotype, thus representing possible 
mechanism of gingival hyperplasia development during inflammation[102].

A recently published article provided a comprehensive review of papers related to 
the characteristics of GMSCs from healthy and inflamed tissue, altogether suggesting 
that GMSCs of inflamed tissues could be a reliable source of MSCs when compared to 
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the healthy gingiva[103]. Inflammatory environment can also alter properties of 
PDLSCs[104], however findings are not clear since other publications suggest that 
there are no significant differences between PDLSCs of healthy and diseased 
periodontal tissue[105]. Enhanced proliferation but reduced differentiation of dental 
MSCs derived from inflamed tissue has been detected for PDLSCs isolated from 
diseased tooth supportive tissue[106,107], while the study of Tang et al[106] also 
demonstrated increased migration of PDLSCs originating from inflamed periodontal 
tissue. Higher migratory potential with preserved osteogenic/cementogenic and 
adipogenic differentiation was reported in Park et al[105], and in an in vivo 
transplantation model, they showed that PDLSCs from inflamed periodontal tissue 
possess a preserved ability to form new cementum-like tissue and related periodontal 
fibers. However, similar to the findings of Tsai et al[100], related to the yield of MSCs 
derived from diseased tooth, Soheilifar et al[108] reported that viability and prolif-
eration rate of PDLSCs isolated from the periodontitis-affected teeth were significantly 
lower in comparison to the control PDLSCs.

Having in mind that the regenerative ability of transplanted dental MSCs strongly 
depend on the donor/recipient microenvironment niche, gaining successful the-
rapeutic effect in diseased microenvironment is the biggest challenge[56]. Further 
understanding the influence of the diseased tissue microenvironment on MSC 
regenerative potential would help the establishment of healing procedures.

CLINICAL RELEVANCE OF DENTAL MSCS
Numerous in vivo studies on animals and human clinical trials with various types of 
dental stem cells show a way to encourage novel tissue engineering strategies for 
therapies of dental diseases[109]. However, a long road is still ahead, as clinical trials 
are in their early phases. Despite abundance of preclinical studies, only a few clinical 
trials have been completed and published. One of the main reasons that stalls 
successful clinical application of dental stem cells resides in the fact that the exact 
mechanism of their therapeutic properties is not yet clear. The other challenges for 
clinical use of dental stem cells are strict regulations, high costs of cell processing, and 
lack of uniformity in approaches for isolation, expansion, and application of these 
cells. The therapeutic efficacy of transplanted dental MSCs is also compromised by the 
diseased microenvironment of the recipients[56].

DPSCs, as the first discovered dental tissue-derived stem cells, are also the most 
studied stem cells for dental tissue reparation[110]. Even though there are many 
studies in large animal models showing promising results in dental tissue 
regeneration, especially in dentin and dental pulp regeneration[110], results of clinical 
studies are less conclusive. The first study to achieve successful reparation of alveolar 
bone defect in humans was done by d’Aquino et al[111]. They used autologous DPSCs 
from third maxillar molars seeded onto a collagen sponge scaffold to fill the space left 
after the extraction of an impacted mandibular molar from the same patient (7 patients 
in total). A contralateral extraction site filled with sponge without cells served as a 
control (a split-mouth study design). Clinical and radiographic assessment after 3 mo 
and 1 year revealed optimal vertical repair and complete restoration of periodontal 
tissue[111]. In a pilot clinical study, Nakashima et al[112] demonstrated a safe and 
efficacious method for complete pulp regeneration in 5 patients with irreversible 
pulpitis using autologous DPSCs transplanted with granulocyte colony-stimulating 
factor in atelocollagen into pulpectomized teeth. However, a split-mouth randomized 
clinical trial on 32 patients, aiming to assess the efficacy of autologous DPSCs 
delivered in a collagen matrix for post-extraction socket healing, failed to show 
significant reduction in the socket bone resorption in the treated group compared to 
control[113]. It is noteworthy that, unlike in the other cited studies, in this trial a 
proprietary medical device and protocol (Rigenera®) for direct isolation of DPSCs from 
dental pulp was used, without prior expansion in culture.

DPSCs from deciduous teeth are also frequently used in dental tissue regeneration 
studies. In a randomized control clinical trial, Xuan et al[114] isolated autologous 
SHEDs from deciduous canine tooth pulp and implanted them in the form of 
aggregates, into an injured incisor of the patient with pulp necrosis secondary to 
trauma. Control patients were treated with standard apexification (a procedure that 
induces tooth root development and closure of the root apex through hard tissue 
deposition). After 12 mo follow-up, SHED implantation treatment led to regeneration 
of functional dental pulp with blood vessels and sensory nerves. In another study, 
Tanikawa et al[115] used SHEDs associated with HA-collagen sponge for closing 
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alveolar defects in patients with unilateral alveolar cleft defects and demonstrated that 
this therapy leads to bone regeneration with dental eruption and reduced morbidity 
compared to traditional iliac crest bone grafting and rhBMP-2.

Among other dental stem cells, alveolar bone derived MSCs also represent great 
promise in regenerative therapy. A pilot clinical trial evaluated treatment of maxillary 
radicular cysts in 9 patients using autologous alveolar bone-derived MSCs seeded onto 
a glutaraldehyde-cross-linked autologous serum scaffold and subjected to osteogenic 
differentiation[116]. It demonstrated a significant promotion of bone growth in all 
MSC-treated cysts.

In addition to osteal defects and pulp necrosis, periodontal diseases make up a large 
proportion of dental ailments targeted for regenerative therapy. A retrospective pilot 
study examined feasibility and safety of reconstructing the periodontal intrabony 
defects in 16 teeth of 3 patients with implantation of autologous PDLSCs mixed with a 
HA-based bone-grafting material[117]. After 32-72 mo follow-up period, clinical 
examination indicated improvement of probing depth, clinical attachment level, and 
gingival recession. In a randomized controlled study, Ferrarotti et al[118] used a 
biocomplex of autologous dental pulp micrografts (Rigenera®) with collagen sponge to 
fill intrabony defects of 29 chronic periodontal patients randomly allocated to test (n = 
15) and control (n = 14) groups[118]. This treatment significantly improved clinical 
parameters of periodontal regeneration 1 year after the procedure. A novel approach 
using cell sheets of cultured autologous PDLSCs to treat periodontitis was assessed in 
a case series study involving 10 patients with chronic periodontitis[119]. Triple layered 
PDL-derived cell sheets with PGA mesh were transplanted on the root surface, and β-
tricalcium phosphate (β-TCP) granules were used to fill in bony defects. In all 10 cases, 
clinical as well as radiographic endpoint parameters improved 6 mo after the 
treatment. On the other hand, a randomized clinical trial on 30 patients, with 41 teeth 
in total, using autologous PDLSCs in combination with grafting materials to treat 
periodontal intraosseus defects, revealed radiologically and clinically greater, but not 
statistically significant, regeneration of alveolar bone in cell-treated group compared to 
control group[120].

A recent pilot trial evaluated the safety and efficacy of autologous PDLSC 
transplanted with a commercial xenogeneic (porcine) bone substitute as a matrix for 
the regeneration of intrabony defects of 19 patients with chronic periodontitis[121]. 
The study confirmed the safety of the treatment, but the results have not demonstrated 
a significant additional clinical benefit compared to control, after 12 mo follow-up. In a 
randomized clinical trial designed to investigate the use of gingival fibroblasts and 
GMSCs in the treatment of intrabony periodontal defects, a total of 20 patients with 
periodontitis were evenly assigned into two groups[122]. Experimental group received 
cultured autologous gingival fibroblasts/GMSCs on β-TCP scaffold, covered by a 
collagen membrane, and the control group received β-TCP without the cells. After 6 
mo, the study showed significant improvement of clinical and radiological parameters 
in comparison to the control group.

CONCLUSION
Dental tissues represent valuable sources of MSCs for possible use in regenerative 
therapy, especially of diseases associated with bone defects and dental loss. Given the 
different structures and compositions of the tissues they reside in, various dental 
MSCs exhibit diverse biological and functional features. Therefore, in this review, we 
have summarized the available research evidence concerning the effects of hypoxic 
and inflammatory microenvironmental factors on dental MSCs differentiation 
capacity. We can conclude that the existing investigations indicate very important 
aspects of the recipient microenvironment niche in terms of therapeutic efficacy of 
transplanted dental MSCs. Moreover, the therapeutic potential of dental MSCs in in 
vitro conditions mimicking native hypoxic and inflammatory microenvironment can 
lead to significant development of cell-based therapies.

However, some of the data for the same cell type (especially in hypoxic in vitro 
conditions) are conflicting, which is a trend noticed for other MSCs as well[20]. 
Therefore, it is important to point out that the biology of MSCs is not yet fully known. 
As MSC populations exhibit functional heterogeneity and a hierarchy in the terms of 
proliferative and differentiation potential and metabolic properties of the cells 
composing the tissues[123], they can behave differently even within the same tissue of 
healthy individuals. Moreover, the cultivation conditions affect their characteristics, 
and not all studies covered by this review used the same cell isolation methods and/or 
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the same cell passages. It should be also taken into account that inflammation doesn’t 
solely contribute to these contradictory findings, given the lack of data on specificity of 
the inflamed tissues in the terms of proinflammatory factors involved. In addition, the 
reason for inconsistencies in results related to the same O2 levels can be found in 
different experimental settings such as the duration of the hypoxic treatment. Taken 
together, we suggest further research in this area, but with synchronized cell isolation 
methods, cultivation conditions, and experimental designs among research groups.
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