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Abstract
Drug-induced liver injury (DILI), which refers to liver damage caused by a drug 
or its metabolites, has emerged as an important cause of acute liver failure (ALF) 
in recent years. Chemically-induced ALF in animal models mimics the pathology 
of DILI in humans; thus, these models are used to study the mechanism of 
potentially effective treatment strategies. Mesenchymal stromal cells (MSCs) 
possess immunomodulatory properties, and they alleviate acute liver injury and 
decrease the mortality of animals with chemically-induced ALF. Here, we 
summarize some of the existing research on the interaction between MSCs and 
immune cells, and discuss the possible mechanisms underlying the immuno-
modulatory activity of MSCs in chemically-induced ALF. We conclude that MSCs 
can impact the phenotype and function of macrophages, as well as the 
differentiation and maturation of dendritic cells, and inhibit the proliferation and 
activation of T lymphocytes or B lymphocytes. MSCs also have immuno-
modulatory effects on the production of cytokines, such as prostaglandin E2 and 
tumor necrosis factor-alpha-stimulated gene 6, in animal models. Thus, MSCs 
have significant benefits in the treatment of chemically-induced ALF by 
interacting with immune cells and they may be applied to DILI in humans in the 
near future.

Key Words: Mesenchymal stromal cell; Immune response; Drug-induced liver injury; 
Acute liver failure; Dendritic cell
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Core Tip: Drug-induced liver injury (DILI) is a crucial cause of acute liver failure 
(ALF). Although mesenchymal stromal cells (MSCs) have not been applied to DILI in 
clinical trials, their efficacy has been proven in various animal models of chemically-
induced ALF. Immune system disorders play key roles in chemically-induced ALF, 
and MSCs are able to regulate the immune system through soluble factors and cell-to-
cell contact, and eventually improve liver damage. We, herein, discuss the 
immunomodulatory properties of MSCs in different animal models that mimic the 
pathology of DILI in humans.

Citation: Zhou JH, Lu X, Yan CL, Sheng XY, Cao HC. Mesenchymal stromal cell-dependent 
immunoregulation in chemically-induced acute liver failure. World J Stem Cells 2021; 13(3): 
208-220
URL: https://www.wjgnet.com/1948-0210/full/v13/i3/208.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i3.208

INTRODUCTION
Drug-induced liver injury (DILI), the most common cause of acute liver failure (ALF) 
in developed countries, accounts for approximately 50% of ALF cases[1]. In patients 
with hypersensitivity or reduced tolerance due to special constitutions, the immune-
privileged state of the liver can be disrupted by drugs and chemicals or their 
metabolites, such as reactive intermediate species[2], resulting in unbalanced immune 
cell infiltration and liver injury[3].

Mesenchymal stromal cells (MSCs) are widely studied adult pluripotent stem cells. 
They possess not only all of the common characteristics of stem cells but also 
immunomodulatory properties. They have been extensively researched due to their 
wide range of sources and easy availability. Since the first MSC transplantation in a 
pediatric patient experiencing grade IV treatment-refractory acute graft vs host disease 
(GVHD) in 2004[4], there have been an increasing number of studies demonstrating that 
MSC transplantation can effectively modulate the immune system in several immune-
related disorders. In addition to the ability of MSCs to migrate to damaged liver sites 
and undergo proliferation and differentiation into hepatocytes, the therapeutic 
mechanism of MSCs in ALF mainly depends on their potential immunomodulatory 
nature[5].

The main immune cells consist of neutrophils, T cells, B cells, natural killer (NK) 
cells, monocytes/macrophages, and dendritic cells (DCs). MSCs alter macrophages 
from a regularly activated (M1) phenotype to an either/or activated (M2) phenotype, 
resulting in reduced secretion of the proinflammatory cytokines, such as tumor 
necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-1, and 
increased secretion of the anti-inflammatory cytokine IL-10, which to a great extent is 
dependent on cell-to-cell contact or soluble factors, such as prostaglandin E2 (PGE2), 
indoleamine 2,3-dioxygenase (IDO), and TNF-α-stimulated gene 6 (TSG-6)[6]. MSCs 
impact two stages of DCs: differentiation and maturation. When co-cultured with 
MSCs, DC precursors and immature DCs express lower levels of major 
histocompatibility complex class II (MHCII) and costimulatory molecules cluster of 
differentiation (CD) 86, CD80, and CD40, which result in a weakened ability to 
stimulate T cell proliferation. However, the immunosuppressive capacity of MSCs in 
mature DCs remains controversial[7].

Several studies have shown the inhibitory effects of MSCs on T cell activation, 
proliferation, and differentiation to T helper 17 (Th17) cells through PGE2, 
programmed cell death protein 1 (referred to as PD-1), and IL-10[8]. Additionally, MSCs 
can stimulate the generation and proliferation of immunosuppressive regulatory T 
cells (Tregs)[9]. Similarly, MSCs suppress the proliferation, activation, and antibody 
production ability of B cells and induce the B regulatory cells (Bregs)[10].

MSCs have been studied as a prospective therapy for the treatment of DILI and ALF 
due to their immunomodulatory ability. Several animal models of chemically-induced 
ALF have been used to study the mechanisms of DILI and the mechanisms of 
potentially novel therapies[3]. MSCs can alleviate ALF by interacting with different 

http://creativecommons.org/Licenses/by-nc/4.0/
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immune cells because the main pathogenic immune cells differ in these animal models, 
and these discoveries in animal models will contribute to the clinical application of 
MSC-based strategies for the treatment of human DILI.

In this review, we summarize a number of existing studies on the interplay of MSCs 
and the immune system, and discuss some possible mechanisms underlying the 
immunomodulatory ability of MSCs in chemically-induced ALF. MSC-based therapy 
may be applied to DILI in humans in the near future.

IMMUNE SYSTEM RESPONSE TO CHEMICALLY-INDUCED ALF
The liver is an organ that is dominated by metabolic functions. It is inevitably exposed 
to the metabolites of various foods or drugs in the blood from the portal vein, which 
requires this organ to have high immune tolerance and self-repair abilities[2]. 
Chemically-induced liver injuries refer to liver damage caused by chemical 
hepatotoxic substances, including alcohol, drugs, traditional Chinese medicines, 
chemical poisons from food, and organic and inorganic poisons in industrial 
production. On the one hand, the immune system of the liver has to tolerate the heavy 
antigenic load of daily food residues from the portal vein in a healthy state; on the 
other hand, it must respond efficiently to numerous viruses, bacteria, parasites, and 
chemical hepatotoxic substances[11]. Excessive inflammation often contributes to 
morbidity and mortality in chemically-induced ALF (Figure 1).

Innate immune cells in response to chemically-induced ALF
In DILI, necrotic hepatocytes show many damage-associated molecular patterns 
(referred to as DAMPs), such as high-mobility group box-1 protein, DNA fragments, 
and heat shock proteins[12], and these factors can be identified by Toll-like receptors 
(commonly known as TLRs) on innate immune cells. Then, proinflammatory factors 
recruit inflammatory immune cells into the liver, activating them to remove necrotic 
cell debris[13].

Liver macrophages mainly include two cell types: resident Kupffer cells and 
infiltrating monocyte-derived macrophages. Although of different cellular origins, 
both types of macrophages can phagocytose microorganisms and metabolic waste in 
liver sinusoids. The numbers of liver macrophages become greatly increased in any 
type of liver injury, due to the self-renewal ability of Kupffer cells and the infiltration 
of monocyte-derived macrophages[14]. In the early stages of liver injury, Kupffer cells 
recognize DAMPs derived from damaged hepatocytes and then secrete several 
proinflammatory cytokines and chemokines to attract neutrophils, NK cells, and bone-
marrow-derived monocytes to the regions of inflammation[15]. Ly6C+ monocytes and 
Ly6C- monocytes exist in the blood of mice, and can differentiate into hepatic 
macrophages. Infiltrating Ly6C+ monocytes promote inflammation and induce organ 
impairment, but eventually maturate with the downregulation of Ly6C expression, at 
which point they acquire the ability to restore liver integrity[16].

Neutrophils are the first-line immune cells that have the fastest response when 
inflammation occurs. However, uncontrolled neutrophil infiltration and activation 
lead to excessive inflammation in chemically-induced liver injuries. The expression 
levels of C-X-C motif chemokine ligand (referred to as CXCL) 1, IL-6, TNF-α, and 
monocyte chemoattractant protein-1 in the injured liver are significantly increased to 
regulate the infiltration and activation of neutrophils[17]. Tissue-resident phagocytes, 
including macrophages and DCs, release a variety of proinflammatory mediators and 
establish a chemoattractant gradient, triggering neutrophil recruitment into tissues. 
Neutrophils express receptors (G protein-coupled receptor, Fc-receptors, adhesion 
molecules, TLRs, C-type lectins) that can recognize these signals and then release 
granules (myeloperoxidase), generate reactive oxygen species, and form neutrophil 
extracellular traps[18,19].

DCs in ALF engage in the innate immune response involving macrophages and 
neutrophils, with antigen recognition by pattern-recognition receptors. However, the 
most important effect of DCs is initiation of the adaptive immune response. DCs reside 
in organs such as the liver as immature cells, which are very effective at antigen 
recognition, capture and processing, and then circulate in the blood or lymph fluid to 
peripheral immune organs where they can achieve terminal maturation with the 
ability of efficient antigen presentation as well as activation of T cells[20].

In the healthy state, hepatocytes express MHC-I, which binds to inhibitory receptors 
on NK cells, preventing NK cell activation[21]. In contrast, infected hepatocytes lacking 
MHC-I can be recognized and eliminated by NK cells[22].
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Figure 1 Regulation of immune cells in response to chemically-induced acute liver failure. Necrotic hepatocytes release many damage-associated 
molecular patterns (DAMPs), such as high-motility group box-1 (HMGB-1), DNA fragments, and heat shock proteins (HSPs), and pathogen-associated molecular 
patterns (PAMPs) from the blood can be identified by Toll-like receptors on innate immune cells. Proinflammatory factors recruit inflammatory immune cells, such as 
monocytes, into the liver. On the one hand, macrophages and dendritic cells are activated and produce tumor necrosis factor (TNF), interleukin (IL)-1β, and IL-6 to 
recruit more neutrophils to remove necrotic cell debris. On the other hand, the two types of antigen presenting cells can present antigens to T cells and B cells to 
activate acquired immunity. LPS: Lipopolysaccharide; LSECs: Liver sinusoidal endothelial cells.

Adaptive immune cells in response to chemically-induced ALF
Contrary to innate immune responses, which induce acute liver injury (ALI) in 
experimental animal models[13], adaptive immune responses play an undefined 
secondary role in DILI[23]. In homeostasis, liver sinusoidal endothelial cells and Kupffer 
cells constitutively express IL-10, prostaglandins, TNF-α, and transforming growth 
factor-beta (TGF-β) to expand Tregs, attenuate T cell activation, and induce liver 
immune tolerance[12]. In some ALI models induced by some special types of drugs or 
chemicals, T cells are important. Yu et al[24] found that IL-1β is upregulated in the 
AAGL (Agrocybe aegerita galectin) model and is crucial to recruit T cells from 
peripheral blood into the injured liver; treatment with IL-1β antibody can significantly 
alleviate hepatocyte damage. The possible mechanism may be inhibition of p38 or 
nuclear factor-kappa B (NF-κB) signaling pathways and subsequently reduced 
infiltration of T cells into the liver. Heymann et al[25] applied a concanavalin A (Con A)-
induced liver injury model to mimic immune reactions observed in humans, trigger an 
inflammatory cascade by activating resident Kupffer cells, initiate neutrophil 
infiltration, and increase CD4+ T cell infiltration and activation[26]. Although Tiegs 
et al[27] showed that CD4+ T cells play a more critical role than CD8+ T cells in Con A-
induced liver injury in wild-type mice, CD8+ T cells played an important role in T cell-
transferred Rag2-knockout mouse (in which T cells cannot mature) challenged with 
Con A. Both IL-33 released by the injured liver and perforin secreted by CD8+ T cells 
were crucial components in their study.
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INTERACTION BETWEEN MSCS AND IMMUNE CELLS
Immune characteristics of MSCs
Quiescent MSCs display immune homeostatic features biased towards suppression. 
When MSCs are induced by various proinflammatory cytokines, these immuno-
suppressive properties can be considerably enhanced, resulting in polarization to 
immunosuppressive phenotypes of MSCs. IDO and inducible nitric oxide synthase 
(referred to as iNOS) are the key to the immune regulatory functions of MSCs, with a 
series of potential complementary suppressor pathways, including heme oxygenase-1, 
soluble human leukocyte antigen-G5, TGF-β, PGE2, galectin, and TSG-6[28]. MSCs 
possess a pro-inflammatory or anti-inflammatory phenotype by contacting immune 
cell responses in different situations, and regulate the immune response by secreting 
soluble factors or direct cell contact[6].

Potential mechanisms underlying the immunoregulatory properties of MSCs 
through innate immune cells
MSCs can regulate the proliferation and activation of Kupffer cells, macrophages, DCs, 
neutrophils, and NK cells (Figure 2). MSCs reportedly transfer to injury sites in 
response to large amounts of inflammatory factors, such as IL-6 and TNF-α secreted by 
activated Kupffer cells[29]. MSCs, in turn, inhibit the phenotype transition of activated 
Kupffer cells to M1 and stimulation of the NF-κB pathway in lipopolysaccharide 
(commonly known as LPS)-treated Kupffer cells[30]. Several studies have revealed the 
mechanism by which MSCs cause immunosuppression via the interaction of 
macrophages. MSCs can interact directly and physically with innate immune cells. 
Upregulated CD54 on human MSCs (referred to here as hMSCs) co-cultured with M1 
macrophages in an in vitro co-culture system increased IDO activity and inhibited the 
proliferation of T cells[31]. Similarly, upregulated CD200 on mouse bone marrow 
stromal cells (BMSCs) in contact with M1 macrophages can also enhance the 
immunotherapeutic effects of MSCs to reprogram proinflammatory macrophages[32]. 
On the other hand, soluble factors secreted by MSCs can contribute to the 
immunoregulatory properties of MSCs. Corneal-derived MSCs can secrete pigment 
epithelium-derived factor and then modulate the immunophenotype and angiogenic 
function of macrophages[33]. TSG-6 and PGE2 secreted by MSCs have also been widely 
studied, due to their immunoregulatory effects on MSCs and macrophages[32,34].

In addition, MSC-derived exosomes, which are rich in proteins, mRNAs, and 
microRNAs (designated as miRs), have been used as a therapy for liver diseases in 
recent years. In a study of experimental autoimmune hepatitis, BMSC-derived 
exosomes, which are rich in miR-223, effectively alleviated liver injury by 
downregulating formation of the NLR family pyrin domain containing 3 (referred to 
as NLRP3) inflammasome[35]. In another study, miR-17 derived from adipose tissue-
derived MSC (AMSC)-derived exosomes was shown to ameliorate LPS/D-
galactosamine-induced ALI by inhibiting activation of the TXNIP/NLRP3 
inflammasome of macrophages[36]. MSCs can limit neutrophil recruitment or 
infiltration and inhibit neutrophil activation to prevent an excessive inflammatory 
response. MSCs ameliorate the hepatic inflammatory response by reducing the release 
of neutrophil chemoattractant CXCL2 and attenuating neutrophil chemotaxis via 
downregulation of C-X-C motif chemokine receptor 2 expression in neutrophils[37]. In a 
septic mouse model, MSCs optimally balanced the distribution of circulating and 
tissue-infiltrated neutrophils, maximizing bacterial killing and minimizing liver 
injury[34].

Many studies have focused on the effects of MSCs on DCs in vitro, especially 
through soluble factors. One showed that TSG-6 secreted by mouse BMSCs suppressed 
the maturation and activation of DCs by inactivating mitogen-activated protein kinase 
and NF-κB signaling pathways[38]. In addition, IL-6 reportedly participates in the 
immune regulation mechanism mediated by the murine MSC line via inhibition of 
DCs[39]. Regarding hMSCs, Spaggiari et al[40] demonstrated that human BMSCs can 
secrete PGE2 to inhibit differentiation of monocyte-derived DCs. Selleri et al[41] showed 
that human umbilical-cord-derived MSCs can secrete lactate to induce granulocyte-
macrophage colony-stimulating factor/IL-4-treated monocytes to differentiate into M2 
macrophages rather than DCs by metabolic reprogramming. A study by Liu et al[42] 
showed that MSCs derived from mouse embryonic fibroblasts can induce a type of 
novel regulatory DCs that express low levels of CD11c and Ia and are phenotypically 
different from immature and mature DCs via IL-10.

In addition, direct cell contacts are as important as soluble molecules in MSC/DC 
interactions. hMSCs can inhibit the proliferation ability and differentiation capability 
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Figure 2 Mesenchymal stromal cells regulate innate and adaptive immune cells. Mesenchymal stromal cells (MSCs) regulate innate and adaptive 
immune cells through soluble factors and direct cell-to-cell contact. Breg: Regulatory B cell; CXCL2: C-X-C motif chemokine ligand 2; CXCR2: C-X-C motif chemokine 
receptor 2; IDO: Indoleamine 2,3-dioxygenase; IL: Interleukin; PEDF: Pigment epithelium-derived factor; PGE2: Prostaglandin E2; Treg: Regulatory T cell; TSG-6: 
Tumor necrosis factor-alpha-stimulated gene-6.

of CD34+ hemopoietic progenitor cells into interstitial DCs but cannot inhibit 
maturation of CD34+ hemopoietic progenitor cell-derived DCs, and the inhibitory 
effect is associated with the Notch pathway[43]. Cahill et al[44] demonstrated that mouse 
MSC induction of functional tolerogenic DCs that can induce Tregs in vitro requires 
Notch signaling. This hypothesis was confirmed in an animal model treated with 
Jagged-1 knockdown MSCs. In another study, mature DCs cocultured with MSCs 
expressing Jagged-2 acquired tolerogenic properties[45]. MSCs can influence the 
proliferation capacity, cytokine release, phenotypic conversion, and cytotoxicity of IL-
2-induced NK cells[46]. The mechanism may include TGF-β[47], PGE2[48], IDO[49] and 
exosomes[50]. Moreover, NK cells can stimulate MSC recruitment by secreting 
neutrophil-activating peptide 2[51], and activated NK cells can efficiently lyse MSCs[46].

Potential mechanisms of the immunoregulatory properties of MSCs through 
adaptive immune cells
MSCs can inhibit proliferation, activation, and differentiation of T cells, induce 
apoptosis of T cells and induce recruitment of Tregs. MSCs can also induce cell cycle 
arrest by downregulating cyclin D2 and upregulating p27kip1 in T cells, resulting in 
division anergy of activated T cells[52]. Of note, MSCs can inhibit T cell function by 
inducing apoptosis of activated T cells. Plumas et al[53] showed that this apoptosis can 
be associated with transformation of tryptophan to kynurenine by IDO expressed by 
MSCs in the presence of IFN-γ. Akiyama et al[54] revealed that BMSCs may trigger 
apoptosis of transient T cells through the Fas ligand (FasL)-dependent pathway, and 
that apoptotic T cells can induce production of TGF-β in macrophages, thereby 
upregulating Tregs. In some experiments in vitro, MSCs were shown to inhibit 
allogeneic T cell responses in mixed lymphocyte reactions by IDO after MSCs were 
activated by IFN-γ[55]. Recently, MSCs were shown to inhibit activation of CD4+ T cells 
and reduce secretion of IL-2 via PD-1 ligands[56].
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Several investigators have highlighted that MSCs can effectively inhibit Th17 
differentiation. Duffy et al[57] demonstrated that this inhibition requires 
cyclooxygenase-2 induction, which is dependent on cell contact, leading to direct Th17 
inhibition by PGE2. Qu et al[58] also showed that MSCs inhibit Th17 cell differentiation, 
and suggested that increased secretion of IL-10 may play a role. One important aspect 
of the immunomodulatory effect of MSCs is the recruitment and influence of Tregs[59]. 
MSCs can reinforce the regulatory function of CD8+CD28- Treg cells by increasing 
expression of IL-10 and FasL[60]. They can also induce cell cycle arrest in the G0/G1 
phase instead of induction of B-cell apoptosis in a soluble factor-dependent manner[61]. 
Furthermore, MSCs inhibit proliferation and activation of B cells by modifying the 
phosphorylation levels of the extracellular signal-related kinase 1/2 or p38 
pathways[62]. Rafei et al[63] clarified that MSC-derived chemokine (C-C motif) ligand 2 
(referred to as CCL2) can suppress secretion of immunoglobulin (referred to as Ig) in 
plasma cells and induce proliferation of plasmablasts, leading to IL-10-mediated 
blockade via inactivation of signal transducer and activator of transcription 3 (referred 
to as STAT3) and induction of paired box 5 in vitro. MSCs can enhance the survival 
and proliferation rates of CD5+ Bregs in an IDO-dependent manner, increasing IL-10 
expression and ameliorating refractory, chronic GVHD[10]. Similarly, AMSCs reduce 
plasmablast formation or induce IL-10-producing CD19+CD24highCD38high B cells[64]. 
Park et al[65] elucidated the effect of human AMSCs on the proliferation of Bregs in an 
animal model of systemic lupus erythematosus.

MSC TRANSPLANTATION TO TREAT CHEMICALLY-INDUCED ALI
Viral infection remains the main cause of ALF in developing countries, whereas DILI 
is more common in developed countries[1]. DILI accounts for 50% of ALF cases in the 
United States[66] and Europe, and the main drug responsible is acetaminophen[67]. 
Several animal models induced by chemical substances have been used to study the 
mechanisms of ALF[3]. Chemical substances, such as Con A, α-galactosylceramide 
(commonly known as α-GalCer) and carbon tetrachloride (CCl4), have been used in 
ALF animal models in which MSCs have been demonstrated to alleviate the symptoms 
of liver injury effectively; although, the mechanisms are complex and not fully 
understood (Table 1).

Volarevic et al[68-70] conducted several studies on the immunoregulation of MSCs in 
ALF induced by Con A. Their previous studies showed that Con A-induced ALF is an 
excellent murine model of immune-mediated liver injury. CD8+ T cells, CD4+ T cells, 
NK T (NKT) cells, NK cells, and macrophages are reportedly related to this model and 
can be transferred to injured liver sites and secrete many cytokines. Meanwhile, the 
authors confirmed the efficacy of AMSCs for ALF induced by Con A[71]. Gazdic et al[72] 
researched the MSC-NKT cell interaction in Con A- and α-GalCer-induced murine 
models of ALF, and elucidated that MSCs protect hepatocytes from the cytotoxicity of 
liver NKT cells by attenuating their ability to produce inflammatory factors, such as 
TNF-α, IFN-γ and IL-4, in an iNOS- and IDO-dependent manner. In a recent study of 
α-GalCer-induced ALF, Ito et al[73] demonstrated that MSCs can increase IL-10 in Tregs, 
which in turn, attenuates the hepatotoxicity of liver NKT cells[9].

Milosavljevic et al[74] revealed another mechanism of MSC-NKT cell interaction, 
specifically that MSCs can attenuate CCl4-induced ALF by downregulating IL-17 in 
liver NKT cells. Their findings highlighted the reduction of liver NKT cell cytotoxicity 
and the critical importance of increased regulatory cells (Tregs and NK Tregs) in MSC-
mediated attenuation of ALF, indicating the importance of MSC-induced regulatory 
cells as a prospective cell-based ALF therapy. Liu et al[75] demonstrated through a high-
dimensional analysis that MSCs significantly ameliorated CCl4-induced ALF and 
regulated the immune system of the liver. In this model, MSCs regulated different 
immune cells in two phases. During the injury stage, MSCs reduced the numbers of 
Ly6ClowCD8+ resident memory T cells (referred to as TRM) cells, conventional NK cells, 
and IgM+IgD+ B cells but increased the quantity of immunosuppressive monocyte-
derived macrophages. During the recovery stage, MSCs enhanced the retention of 
Ly6ClowCD8+ TRM cells and maintained the immunosuppressive ability of monocyte-
derived macrophages. To reveal alterations in immune cell subsets of CCl4-induced 
ALF after MSC transplantation, the authors detected the metabolomic profile of the 
immune system. Using high-performance chemical isotope labeling liquid 
chromatography-mass spectrometry, they confirmed 256 metabolites as candidate 
biomarkers of the immune response in CCl4-induced ALF animal models, and 114 
metabolites as candidate biomarkers of the immune response after MSC 
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Table 1 Immunoregulatory mechanisms of mesenchymal stromal cells in alleviating chemically-induced acute liver failure

Species of 
MSCs Source Dose Model Reagents 

for model Immune cell Mechanism Effect Ref.

Mouse Bone 
marrow

5 × 105 Mouse α-GalCer Treg Increase the population of 
Tregs and their capacity to 
produce IL-10; attenuate 
hepatotoxicity of NKT cells 
in an IDO-dependent 
manner

Attenuate ALF Gazdic et al[9]

Mouse Bone 
marrow

1 × 106 Mouse TAA Macrophage/T 
cell

Inhibit macrophage 
infiltration; reduce Th1 and 
Th17 cells and increase 
Tregs

Ameliorate FHF 
and reduces 
mortality

Huang et al[78]

Rat Bone 
marrow

1 × 107 Rat D-GalN/LPS Neutrophil Reduce the number and 
activity of neutrophils in 
both peripheral blood and 
liver

Improve the 
liver function

Zhao et al[77]

Mouse Bone 
marrow

5 × 105 Mouse Con A/α-
GalCer

NKT cell Attenuate the cytotoxicity 
and capacity of liver NKT in 
an iNOS- and IDO-
dependent manner

Attenuate ALF Gazdic et al[72]

Mouse Bone 
marrow

5 × 105 Mouse CCl4/a-
GalCer

NKT cell Reduce IL-17-producing 
NKT cells and increase the 
presence of IL-10-producing 
NKT regulatory cells in an 
IDO-dependent manner

Attenuate ALF Milosavljevic 
et al[74]

Mouse Adipose 
tissue

AMSC-
Exo, 400 
μg

Mouse LPS/D-GalN Macrophage Reduce NLRP3 
inflammasome activation in 
macrophages by targeting 
TXNIP

Attenuate ALF Liu et al[36]

α-GalCer: α-Galactosylceramide; ALF: Acute liver failure; AMSC-Exo: Adipose-derived mesenchymal stem cell-derived exosomes; CCl4: Carbon 
tetrachloride; Con A: Concanavalin A; D-GalN: D-galactosamine; FHF: Fulminant hepatic failure; IDO: Indoleamine 2,3-dioxygenase; IL: Interleukin; iNOS: 
Inducible nitric oxide synthase; LPS: Lipopolysaccharide; NKT: Natural killer T; NLRP3: NOD2 activates (NOD)-like receptor pyrin domain-containing 3; 
TAA: Thioacetamide; Th1: T helper 1; Th17: T helper 17; Treg: Regulatory T cell; TXNIP: Thioredoxin-interacting protein.

transplantation. However, the potential immunomodulatory role of metabolites needs 
further investigation[76]. MSCs have exhibited positive effects in a rat model of D-
GalN/LPS-induced ALF by inhibiting the recruitment and activity of neutrophils. 
Compared with monotherapy, combination of MSCs and anti-neutrophil serum can 
inhibit cell apoptosis more efficiently, ameliorate liver function, and reduce the 
mortality rate[77]. In a mouse model of thioacetamide-induced ALF, both MSCs and 
MSC-conditioned medium treatment reduced the incidence of death. MSC-treated 
livers showed less hepatocellular apoptosis and more liver regeneration, as well as 
downregulation of macrophage infiltration and alteration of CD4+ T cells to an anti-
inflammatory phenotype[78].

CONCLUSION
Increasing evidence has shown that MSCs have immunosuppressive capacities to 
regulate the function of immune cells in ALI as well as promote internal 
environmental homeostasis in chemically-induced ALF. MSCs can interact with both 
innate and adaptive immune systems via cell-to-cell interactions and the paracrine 
pathway, coordinating an integrated response to liver injury and preventing 
hepatocyte necrosis. However, there are still some deficiencies in the research of MSC-
dependent immunoregulation in chemically-induced ALF. For example, the 
pathogenesis of liver injury models and the role of the immune system are still 
unclear. There has not been enough extensive and in-depth research on MSC-
dependent immunoregulation in chemically-induced ALF.

Different sources and different pretreated MSCs have varying therapeutic effects on 
liver injury. To date, there is no uniform standard for MSC applications in animal 
models[79]. Thus, the results from different studies cannot be compared or repeated in 
different laboratories under different conditions[80].
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MSCs have been widely studied for their differentiation and immunomodulation 
abilities. However, in one study, researchers focused on a single capability of MSCs, 
ignoring comparisons of their various capabilities. Future studies are needed to 
determine which MSC capability dominates.

There have been no clinical trials on DILI treated by MSCs. Clinical trials on MSC 
treatment are often applied to chronic diseases such as GVHD, diabetes, and 
malignant blood disease[81]. MSCs are rarely used in DILI, which has a rapid onset and 
high mortality rate, and more conventional and conservative treatments tend to be 
used. Clinical trials can be conducted only if the efficacy and safety of MSCs are 
supported by sufficient research. The two main obstacles to translating the results 
from animal experiments into clinical practice are that the pathogenicity of ALI caused 
by clinical drugs differs from that of animal models[6], and that the immune system of 
animals, such as mice, is different from that of humans, so the results demonstrated in 
mice are not necessarily applicable to humans. Possible solutions to these issues are to 
verify the results obtained in animal experiments in organoids derived from human 
liver, and to identify animal models with similar pathogenicity to DILI in humans. 
Further studies are needed to reveal the therapeutic mechanisms of MSCs.

In conclusion, MSC transplantation can efficiently reduce the high mortality rate of 
chemically-induced ALF and may become a prospective therapy in clinical practice. 
More prospective randomized studies are needed to ensure the therapeutic effects of 
MSCs.
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