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Abstract
BACKGROUND 
As human placenta-derived mesenchymal stem cells (hP-MSCs) exist in a 
physiologically hypoxic microenvironment, various studies have focused on the 
influence of hypoxia. However, the underlying mechanisms remain to be further 
explored.

AIM 
The aim was to reveal the possible mechanisms by which hypoxia enhances the 
proliferation of hP-MSCs.

METHODS 
A hypoxic cell incubator (2.5% O2) was used to mimic a hypoxic micro-
environment. Cell counting kit-8 and 5-ethynyl-20-deoxyuridine incorporation 
assays were used to assay the proliferation of hP-MSCs. The cell cycle was 
profiled by flow cytometry. Transcriptome profiling of hP-MSCs under hypoxia 
was performed by RNA sequencing. CD99 mRNA expression was assayed by 
reverse transcription-polymerase chain reaction. Small interfering RNA-mediated 
hypoxia-inducible factor 1α (HIF-1α) or CD99 knockdown of hP-MSCs, luciferase 
reporter assays, and the ERK1/2 signaling inhibitor PD98059 were used in the 
mechanistic analysis. Protein expression was assayed by western blotting; 
immunofluorescence assays were conducted to evaluate changes in expression 
levels.
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RESULTS 
Hypoxia enhanced hP-MSC proliferation, increased the expression of cyclin E1, 
cyclin-dependent kinase 2, and cyclin A2, and decreased the expression of p21. 
Under hypoxia, CD99 expression was increased by HIF-1α. CD99-specific small 
interfering RNA or the ERK1/2 signaling inhibitor PD98059 abrogated the 
hypoxia-induced increase in cell proliferation.

CONCLUSION 
Hypoxia promoted hP-MSCs proliferation in a manner dependent on CD99 
regulation of the MAPK/ERK signaling pathway in vitro.

Key Words: Hypoxia-inducible factor 1α; Hypoxia; Mesenchymal stem cells; Proliferation; 
CD99; RNA sequencing assay; MAPK/ERK signaling pathway

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study demonstrated the potential of hypoxic conditions to enhance the 
proliferation capacity of human placenta-derived mesenchymal stem cells (hP-MSCs). 
RNA sequencing assays and molecular biology experiments found that a novel CD99 
gene was involved in hypoxia-mediated promotion of hP-MSC proliferation. 
Furthermore, CD99 activated pathways that transported ERK1/2 to the nucleus, 
increasing the activity of cell cycle-associated proteins. Hypoxia-inducible factor 1α-
mediated CD99 played a role in proliferation by regulating the MAPK/ERK signaling 
pathway.

Citation: Feng XD, Zhu JQ, Zhou JH, Lin FY, Feng B, Shi XW, Pan QL, Yu J, Li LJ, Cao HC. 
Hypoxia-inducible factor-1α–mediated upregulation of CD99 promotes the proliferation of 
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URL: https://www.wjgnet.com/1948-0210/full/v13/i4/317.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i4.317

INTRODUCTION
Mesenchymal stem cells (MSCs) are a heterogeneous subpopulation of stromal stem 
cells that can be isolated from bone marrow, adipose tissue, umbilical cord, and 
placenta[1-4]. The pluripotency and ease of extraction of MSCs makes them promising 
therapeutic agents in regenerative medicine[5]. In recent decades, many studies have 
focused on the biological properties of MSCs for the purpose of exploiting their 
therapeutic potential. A variety of animal and clinical studies of the therapeutic 
potential of MSCs for Parkinson disease, diabetes, and liver, kidney, lung, 
cardiovascular, bone, and cartilage conditions are underway. MSCs alleviate 
inflammation by releasing cytokines, repair tissue by expressing growth factors, 
regulate the immune response by secreting immunomodulatory proteins, enhance 
endogenous repair, and serve as mature functional cells in bone[6]. The biological 
characteristics and effects of MSCs can be improved by numerous factors[7], including 
hypoxia, which is a hot research topic.

Hypoxia is generally defined as an O2 level of 0.5% to 10% in the head space, 
whereas normoxia is defined as a 20% to 21% O2 level during cell culture. There are 
various types of MSCs in physiological microenvironments with low oxygen tension of 
1% to 5% O2) in vivo, but MSCs are typically expanded in vitro in the presence of 20% to 
21% O2

[8]. Efforts have been made to mimic the physiological conditions for in vitro 
culture of MSCs. However, the effect of hypoxia on MSCs is controversial. For 
example, hypoxia has been reported to enhance cell survival, proliferation, and 
metabolism, and low oxygen tension needed for self-renewal and maintaining the 
multipotency of human MSCs[9-12]. Further, growth under pro-oxidative conditions 
(20% to 21% oxygen) can lead to oxidative stress and genetic instability[13]. However, 
other studies have reached the opposite conclusion[14,15].

Here, we found that human placenta-derived MSCs (hP-MSCs) cultured under 
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hypoxia possessed a greater proliferation capacity than those cultured under 
normoxia. RNA sequencing (RNA-seq) was used to evaluate the role of CD99 in the 
hypoxia-mediated promotion of hP-MSCs proliferation. Hypoxia indirectly 
upregulated CD99 via hypoxia-inducible factor-1α (HIF-1α), leading to a significant 
increase in the proliferation of hP-MSCs. In addition, the regulation of hP-MSC 
proliferation under hypoxia was associated with the MAPK/ERK signaling pathway, 
particularly the expression of phosphorylated ERK in the nucleus.

MATERIALS AND METHODS
Isolation and hypoxic culture of hP-MSCs
Placentas were harvested from donors at The First Affiliated Hospital, School of 
Medicine, Zhejiang University. All protocols for handling human tissues and cells 
were approved by the Ethics Committee of The First Affiliated Hospital of Zhejiang 
University (No. 2013-272). The isolation and culture of hP-MSCs was performed as 
described previously[16,17]. The cells were stabilized in a standard humidified incubator 
(HERAcell150, Thermo Fisher Scientific Inc., Waltham, MA, United States) with a 21% 
O2 and 5% CO2 atmosphere. The hypoxic groups were placed in a humidified, water-
jacketed CO2 incubator with oxygen control (Forma™ Series II, Thermo Fisher 
Scientific Inc.) in an atmosphere containing 2.5% O2 and 5% CO2. The normoxia group 
continued to be incubated in the standard humidified incubator.

Immunophenotyping
Immunophenotyping of hP-MSCs was performed by flow cytometry as previously 
described [17]. Briefly, the cells were collected and washed with phosphate-buffered 
saline (PBS) supplemented with 0.5% bovine serum albumin (BSA). Next, a single-cell 
suspension (1 × 106 cells/mL) was stained for 30 min on ice with allophycocyanin-
tagged human CD105, CD11b, CD73, CD34, CD90, CD45, and HLA-DR (1:20; 
eBioscience Inc., San Diego, CA, United States) antibodies. Isotype-matched antibodies 
(1:20; eBioscience Inc.) were used as controls to exclude nonspecific binding. Finally, 
flow cytometry data were acquired on a BeamCyte-1026 flow cytometry (BeamDiag 
Inc., Changzhou, China).

Adipogenic differentiation and osteogenic differentiation
MSCs at passages two to five were seeded on cell culture plates (NunclonTM Delta 
Surface; Nunc A/S, Roskilde, Denmark) and cultured in adipogenic and osteogenic 
medium (OriCellTM hMSC Adipogenic and Osteogenic Differentiation Medium; 
Cyagen Biosciences, Guangzhou, China) per the manufacturer’s protocol. Three or 4 
wk later, adipogenesis was evaluated by staining with Oil Red O and osteogenic 
differentiation was assayed by Alizarin red staining (both Cyagen Biosciences).

Western blotting
Western blotting was conducted as previously described [17] using anti-HIF-1α (1:1000; 
Cell Signaling Technology, Danvers, MA, United States), anti-cyclin E1 (1:1000; 
Abcam, Cambridge, United Kingdom), anti-cyclin A2 (1:1000; Abcam), anti-CDK2 
(1:1000; Abcam), anti-p21 (1:1000; Abcam), anti-CD99 (1:1000; Abcam), anti-
ERK1+ERK2 (1:5000; Abcam), anti-ERK1 (phospho T202)+ERK2 (phospho T185) 
(1:1000; Abcam) and anti-GAPDH (1:1000; Sangon Biotech Corp., Shanghai, China) 
primary antibodies. The membranes were then incubated with secondary anti-rabbit 
antibodies conjugated to horseradish peroxidase (1:4,000; Abcam). Proteins were 
detected using PierceTM enhanced chemiluminescence (ECL) western blot analysis 
substrate (Thermo Fisher Scientific Inc.) and analyzed with ImageJ software (NIH, 
Bethesda, MD, United States).

Cell growth assay
Cells were seeded in 96-well plates at 1-2 × 103 per well. At 24, 48, 72, and 96 h, the 
cells were incubated with a CCK-8 reagent (10 µL/well; Dojindo, Kumamoto, Japan) 
for 2 h at 37 °C. The cell growth rate was determined by measuring the optical density 
at 450 nm using an Epoch 2 Microplate Reader (BioTek Instruments Inc., Winooski, 
VT, United States).

5-Ethynyl-20-deoxyuridine incorporation assay
5-Ethynyl-20-deoxyuridine (EdU) incorporation assays were performed using a Cell-
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Light EdU Apollo488 In Vitro Kit (RiboBio, Guangzhou, China). Cells were exposed to 
50 μmol/L EdU for 2 h at 37 °C and then processed according to the manufacturer’s 
protocol. After washing with PBS, cells were reacted with 300 μL of 1 × Apollo 
reaction cocktail for 30 min and analyzed by flow cytometry (BeamCyte-1026).

Cell cycle analysis
Cells were collected and fixed in 66% ethanol at 4 °C for at least 2 h. After fixation, 
cells were transferred from 4 °C to the bench top and equilibrated to room 
temperature. The cells were washed with cold PBS and incubated in the dark with 400 
µL staining buffer containing RNase A and propidium iodide at 37 °C for 30 min. A 
flow cytometer (BeamCyte-1026) was used to analyze the cell cycle distribution with 
ModFit LT ver. 5.0 (Verity Software House).

RNA-seq
Total RNA was extracted from cultured cells using TRIzol reagent (Invitrogen, 
Carlsbad, CA, United States) as described in the manufacturer’s instructions. RNA 
integrity was examined using an Agilent 2100 Bioanalyzer (Agilent Technologies, 
Santa Clara, CA, United States). Samples with RNA integrity numbers ≥ 7 were 
subjected to downstream analysis. Libraries were constructed using a TruSeq Stranded 
mRNA LT Sample Prep Kit (Illumina, San Diego, CA, United States) and sequenced on 
the Illumina HiSeqTM 2500 platform to generate 125/150 bp paired-end reads. 
Transcriptome sequencing and raw data analysis were conducted by OE biotech Co., 
Ltd. (Shanghai, China). Notably, P < 0.05 and fold change > 2 or < 0.5 were the criteria 
for identifying significant differentially expressed genes (DEGs). A hierarchical cluster 
analysis of the DEGs was performed to explore gene expression patterns.

Real-time quantitative polymerase chain reaction
Total RNA was isolated from cells using TRIzol reagent (Invitrogen) following the 
manufacturer’s protocol. The purity and concentration of total RNA were evaluated 
using a NanoDrop 2000 (Thermo Fisher Scientific, Inc.). Complementary DNA (cDNA) 
was synthesized from 0.5 μg of total RNA using HiScript II Q RT SuperMix for real-
time quantitative polymerase chain reaction (qPCR) (+gDNA wiper) (Vazyme Biotech 
Corp., Nanjing, China). cDNA was mixed with the primer and SYBR Premix Ex TaqTM 
II (TaKaRa Bio Inc., Shiga, Japan) according to the manufacturer’s instructions and 
subjected to qPCR on an ABI 7500 Real-Time PCR System (Thermo Fisher Scientific, 
Inc.) .  Oligonucleotide primers for human CD99 (forward 5′-GGTGG-
TTTCGATTTATCCGATG-3′ and reverse 5′-ACAACAGCATCTCCTAAGTCAA-3′) 
and GAPDH (forward 5′- ACAACTTTGGTATCGTGGAAGG-3′ and reverse 5′-
GCCATCACGCCACAGTTTC-3′) were synthesized by Sangon Biotech.

Immunofluorescence analysis
Cells were grown on plates to about 70% confluence. After washing with PBS, the cells 
were fixed in 4% paraformaldehyde for 30 min in darkness and permeabilized with 
0.3% Triton X-100 (Sangon Biotech Corp.) in PBS. Next, cells were blocked with 5% 
BSA and incubated with anti-CD99 (1:100; Abcam) and anti-ERK1 (phospho T202) 
+ERK2 (phospho T185) (1:100; Abcam) antibodies at 4 °C overnight. Goat anti-rabbit 
immunoglobulin G (Alexa Fluor® 647, 1:200; Abcam) was incubated with the fixed cells 
at room temperature for 1 h and protected from light. 4′,6-Diamidino-2-phenylindole 
was used to counterstain nuclei. Stained slides were observed with a Zeiss LSM710 
confocal laser-scanning microscope (Carl Zeiss AG, Germany).

Small interfering RNA transfection
Transfection of small interfering RNAs (siRNAs) (Genomeditech, Shanghai, China) 
was performed with LipofectamineTM 3000 Transfection Reagent following the 
manufacturer’s protocols. Three short (50 nmol/L) siRNAs targeting specific gene 
sequences (Supplementary Table 1) were used to transfect cells. siRNAs that caused 
significant knockdown effects were used in subsequent analyses.

Luciferase activity assay
Firefly luciferase was used as a reporter of CD99 promoter activity by cloning the 
CD99 promoter upstream of the firefly luciferase-encoding gene. HEK293 cells were 
co-transfected with the constructed reporter vectors and HIF-1α overexpression 
vectors using HG Transgene Reagent (Genomeditech, Shanghai, China). Forty-eight h 
after transfection, cells were harvested in cell lysis buffer and luciferase activity was 
measured using a dual luciferase reporter system (Promega) according to the 

https://f6publishing.blob.core.windows.net/198f00dd-fbbd-43c4-80cf-152c14b79fa7/WJSC-13-317-supplementary-material.pdf
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manufacturer’s instructions. Renilla luciferase was used as the internal control and 
activity is expressed as a ratio to Renilla luciferase activity.

Effect of an ERK inhibitor
The ERK inhibitor PD98059 (50 μmol/L; MedChemExpress, Monmouth Junction, NJ, 
United States) was added to the medium. Inhibition of ERK1/2 activation was 
evaluated after 48 h by Western blotting, and the proliferation rate was assessed with a 
CCK-8 assay kit.

Nuclear and cytoplasmic protein separation
Nuclear and cytoplasmic proteins were extracted using Nuclear and Cytoplasmic 
Protein Extraction Kits (Beyotime Biotechnology, Shanghai, China). Briefly, cells were 
harvested in agent A to extract cytoplasmic protein and then with agent B to collect the 
supernatant. The nuclear pellet was resuspended in nuclear protein extraction buffer 
and harvested by high-speed centrifugation.

Statistical analysis
Statistical analysis was performed with Prism 7 (GraphPad Inc., San Diego, CA, 
United States). Numerical data were reported as means ± SD of three independent 
assays. Between-group differences were compared by two-tailed Student’s t-test. 
Multiple comparisons were tested for significance by one-way analysis of variance 
followed by Dunnett’s test when comparing each group to the control group. A two-
tailed P value of < 0.05 was deemed to indicate statistical significance.

RESULTS
Hypoxia promotes hP-MSC proliferation
The effects of hypoxia were investigated in hP-MSCs incubated in normoxic and 
hypoxic conditions. The immunophenotype and differentiation characteristics are 
shown in Supplementary Figures 1 and 2. We firstly examined the expression of HIF-
1α protein, a key transcription factor in hypoxic environments, by immunoblotting. As 
expected, culture under hypoxic conditions for 6 to 96 h significantly induced HIF-1α 
(Figure 1A). CCK8 assays showed that hypoxia significantly increased the 
proliferation rate of hP-MSCs (Figure 1B), which was confirmed by serial microscopic 
observation (Figure 1C). EdU incorporation assays found that 9.7% of hP-MSCs were 
EdU-positive under normoxia, compared with 17% under hypoxia, a 1.8-fold increase 
(Figure 1D). Taken together, the results indicate that a hypoxic environment was 
conducive to an increase in the proliferation of hP-MSCs.

Hypoxia promotes hP-MSCs proliferation by modulating cell cycle progression
To evaluate the mechanism underlying the effect of hypoxia on hP-MSCs proliferation, 
we performed cell cycle analysis by flow cytometry. The proportion of G0/G1-phase 
cells was smaller in the hypoxia than in the normoxia group, and the proportions of 
both S- and G2/M-phase cells were larger (Figure 2A and B). Next, we quantified the 
levels of the cell cycle-associated proteins cyclin E1, cyclin A2, CDK2, and p21 by 
Western blotting. Hypoxia increased the levels of cyclin E1, cyclin A2, and CDK2 and 
decreased that of p21, a key regulator of G0/G1 proliferative arrest (Figure 2C and D). 
These findings suggest that hypoxia promoted hP-MSCs proliferation by modulating 
cell cycle progression.

Hypoxia induces CD99 expression via HIF-1α
Subsequently, we analyzed the mRNA profile of hP-MSCs under hypoxia by RNA-
seq. A total of 113 DEGs was found in hP-MSCs grown in hypoxic and normoxic 
culture (Supplementary Table 2). Eighty DEGs were upregulated and 33 were 
downregulated (Figure 3A and B). We next verified the expression of CD99 mRNA by 
qPCR, which was consistent with the RNA-seq results (Figure 3C). Furthermore, CD99 
protein expression was upregulated by hypoxia, a finding that was confirmed by 
immunostaining (Figure 3D and E). However, the hypoxia-induced expression of 
CD99 was reduced by an HIF-1α-specific siRNA (Figure 3F). Furthermore, the 
luciferase reporter assay showed that CD99 was transcriptionally regulated by HIF-1α 
(Figure 3G and Supplementary Figure 3). Therefore, hypoxia upregulated CD99 by 
modulating HIF-1α expression.

https://f6publishing.blob.core.windows.net/198f00dd-fbbd-43c4-80cf-152c14b79fa7/WJSC-13-317-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/198f00dd-fbbd-43c4-80cf-152c14b79fa7/WJSC-13-317-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/198f00dd-fbbd-43c4-80cf-152c14b79fa7/WJSC-13-317-supplementary-material.pdf
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Figure 1 Effect of hypoxia on human placenta-derived mesenchymal stem cell proliferation. A: Western blotting of hypoxia-inducible factor 1α 
(HIF-1α) in human placenta-derived mesenchymal stem cells (hP-MSCs) exposed to hypoxia for 6, 12, 24, 48, 72, or 96 h with normalization against glyceraldehyde-
3-phosphate dehydrogenase (GAPDH); B: Proliferation of hP-MSCs under hypoxia and normoxia. Data are means ± SD (n = 4); C: Growth of hP-MSCs under 
hypoxia and normoxia as visualized by optical microscopy (× 4 magnification; scale bars, 100 μm); D: Proliferation rates of hP-MSCs determined by 5-ethynyl-20-
deoxyuridine flow cytometry in triplicate and repeated in three independent experiments. OD: Optical density; FITC: Fluorescein isothiocyanate.

Hypoxia-induced CD99 expression mediates the effect of hypoxia on hP-MSCs 
proliferation
Next, to explore whether hypoxia-induced CD99 had an effect on hP-MSCs 
proliferation, growth curves of hP-MSCs under hypoxia with or without CD99-specific 
siRNA were constructed. The results showed that the proliferation of hP-MSCs was 
reduced by the silencing of CD99 (Figure 4A). Moreover, the proportions of cells in the 
S- and G2/M-phases were significantly smaller in the CD99-knockdown group than 
the control group (Figure 4B and C). Cyclin E1, cyclin A2, and CDK2 expression in the 
CD99-knockdown group decreased significantly under hypoxia, but that of p21 
increased (Figure 4D and E). Overall, these data suggest that hypoxia-induced CD99 
expression promoted MSCs proliferation.
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Figure 2 Hypoxia promotes cell cycle progression in human placenta-derived mesenchymal stem cells. A: Cell cycle phase distribution of 
human placenta-derived mesenchymal stem cells (hP-MSCs) cultured under hypoxia and normoxia for 48 h and assayed by flow cytometry; B: Graph of the cell cycle 
distribution. Data are means ± SD (n = 3); Student’s t-test; C: Western blotting of cyclin E1, cyclin A2, CDK2, and p21 in hP-MSCs exposed to hypoxia for 24, 48, or 
72 h; D: Cyclin E1, cyclin A2, CDK2, and p21 expression levels normalized against glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data are means ± SD (n 
= 3). aP < 0.05 and bP < 0.01.

Hypoxia activates the MAPK/ERK signaling pathway to promote hP-MSCs 
proliferation
The MAPK/ERK signaling pathway is important for cell proliferation, transformation, 
differentiation, and apoptosis. The levels of downstream effectors of the MAPK/ERK 
pathway, phosphorylated ERK1 and ERK2 (p-ERK) were higher in the hypoxia group 
than in the normoxia group (Figure 5A and B). Also, addition of PD98059 decreased 
the proliferation of hP-MSCs compared with placebo (Figure 5C). Western blotting 
showed that the ERK inhibitor reduced cyclin E1, cyclin A2, and CDK2 expression and 
increased that of p21 (Figure 5D and E). These findings demonstrate that hypoxia 
promoted hP-MSC proliferation by modulating the MAPK/ERK signaling pathway 
(Figure 5).

Hypoxia-induced CD99 regulates hP-MSCs proliferation via the MAPK/ERK pathway
Because both CD99 and the MAPK/ERK signaling pathway promoted hP-MSC 
proliferation under hypoxia, we evaluated their functional connection. Western 
blotting and immunofluorescence revealed that hypoxia-induced phosphorylation of 
ERK1 and ERK2 was decreased by CD99-specific siRNA (siCD99#1, Figure 6A and B). 
Also, hypoxia increased the p-ERK level in cell lysates and in the cytoplasmic and 
nuclear fractions (Figure 6C). Moreover, the increase in phosphorylation in the 
nucleus, where p-ERK activates transcription factors and nuclear phosphatases, was 
significantly greater than that in the cytoplasm. Conversely, the reduction in p-ERK in 
the nucleus was greater than that in the cytoplasm (Figure 6C). Therefore, the effect of 
CD99 on hP-MSC proliferation under hypoxia was associated with nuclear p-ERK 
(Figure 7).
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Figure 3 Hypoxia induces hypoxia-inducible factor 1α-mediated CD99 expression. A: Heat map showing hierarchical clustering of differentially 
expressed genes (DEGs) human placenta-derived mesenchymal stem cells (hP-MSCs) cultured under hypoxia and normoxia for 48 h; B: Volcano plot of DEGs; C: 
Effect of hypoxia on CD99 expression in hP-MSCs by real-time quantitative polymerase chain reaction. Data are means ± SD (n = 3); Student’s t-test. bP < 0.01 vs 
normoxia; D: Western blotting of CD99 in hP-MSCs exposed to hypoxia for 24, 48, or 72 h with normalization against glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH). Data are means ± SD (n = 3). bP < 0.01 vs normoxia; E: Immunofluorescence microscopy of CD99 on hP-MSCs cultured under hypoxia and normoxia for 
48 h (× 20 magnification; scale bars, 50 μm); F: Western blotting of hypoxia-inducible factor 1α (HIF-1α) and CD99 expression in hP-MSCs exposed to hypoxia for 48 
h after pretreatment with HIF-1α-specific small interfering RNAs (si-HIF-1α#1 and si-HIF-1α#2) with normalization against GAPDH. Data are means ± SD (n = 3). aP < 
0.05 vs si-NC; G: Relative luciferase activity of a CD99 reporter plasmid in HEK-293 cells co-transfected with an HIF-1α activation vector after 48 h. Data are means 
± SD (n = 3). bP < 0.01. NC: Negative control.

DISCUSSION
Oxygen concentration is a key regulator of cell survival, proliferation, migration, 
differentiation, and metabolism[18-20]. However, the mechanisms underlying the effect 
of hypoxia on MSCs are unclear. hP-MSCs are exposed to a low oxygen concentration 
in vivo. We found that hP-MSCs cultured under hypoxia (2.5% O2) exhibited greater 
proliferation ability. This finding created a rationale to explore the underlying 
mechanisms of the increased proliferation of MSCs under hypoxia. RNA-seq revealed 
several significantly upregulated DEGs in hP-MSCs cultured under hypoxia, and those 
genes may play a role in enhancing cell proliferation.
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Figure 4 Effect of CD99 expression on human placenta-derived mesenchymal stem cells proliferation under hypoxia. A: Proliferation of 
human placenta-derived mesenchymal stem cells (hP-MSCs) cultured under hypoxia after pretreatment with CD99-specific small interfering RNAs (siCD99#1). Data 
are means ± SD (n = 4); B: Cell cycle phase distribution of hP-MSCs cultured under hypoxia after pretreatment with siCD99#1 and assayed by flow cytometry; C: 
Graph of the cell cycle distribution. Data are means ± SD (n = 3); Student’s t-test; D: Western blotting of CD99, cyclin E1, cyclin A2, CDK2, and p21 in hP-MSCs 
cultured under hypoxia for 48 h after pretreatment with siCD99#1; E: Expression levels of CD99, cyclin E1, cyclin A2, CDK2, and p21 normalized against that of 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data are means ± SD (n = 3). aP < 0.05 and bP < 0.01. NC: Negative control; OD: Optical density.

CD99 is a cell-surface glycoprotein with extracellular, transmembrane, and short 
intracytoplasmic domains. MSCs are reportedly negative or weakly positive for CD99, 
a multifunctional surface protein[21]. Husak and Dworzak[22] discovered a connection 
between CD99 and Hsp70, which is a major constituent of the stress response, 
implicating CD99 in stress-induced signaling. Moreover, Husak and Dworzak[23] 
subsequently reported that CD99 is involved in the prosurvival adaptation of bone 
marrow-derived MSCs (BM-MSCs), and that CD99 overexpression promoted their 
proliferation. Because CD99 was upregulated under hypoxia, we hypothesized its 
involvement in the promotion of hP-MSC proliferation by hypoxia. CD99 level is 
reportedly modulated by the HIF system, and by HIF-1a in particular, under 
hypoxia[24,25]. Indeed, the hypoxia-induced upregulation of CD99 was suppressed by 
HIF-1α-specific siRNAs. On this basis, we concluded that HIF-1α directly promoted 
the transcriptional activity of CD99. Also, the increased CD99 expression under 
hypoxia was, for unknown reasons, concentrated in the cytoplasm rather than on the 
membrane. In addition, the proliferation of hP-MSCs was decreased by CD99 
knockdown, suggesting that it has an important role in promoting hP-MSC 
proliferation.

Numerous signal transduction pathways are implicated in the responses of cells to 
changes in the external environment. The MAPK/ERK signaling pathway, which is 
activated by some stress conditions, modulates stem cell growth, proliferation, and 
differentiation[26,27]. For example, the MAPK/ERK signaling pathway drives MSC 
differentiation into the osteogenic lineage by activating osteogenesis-related 
transcription factors such as runt-related transcription factor 2 (RUNX2) and osterix[28]. 
In addition, integrin β1 promotes chondrogenic differentiation of human adipose-
derived MSCs by activating the ERK signaling pathway[29]. We reported previously 
that HIF-2α activates the MAPK/ERK pathway and interacts with its main signaling 
factors to promote hP-MSC proliferation[30]. Here we showed that the ERK signaling 
pathway was activated by hypoxia. Moreover, PD98059, an ERK1/2 signaling 
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Figure 5 Hypoxia activates MAPK/ERK signaling and promotes human placenta-derived mesenchymal stem cells proliferation. A: Western 
blotting of phosphorylated (p)-ERK) in human placenta-derived mesenchymal stem cells (hP-MSCs) exposed to hypoxia for 24, 48, or 72 h normalized against ERK; 
B: Immunofluorescence microscopy of p-ERK in hP-MSCs cultured under hypoxia and normoxia for 48 h (× 20 magnification; scale bars, 50 μm); C: Proliferation of 
hP-MSCs cultured under hypoxia after pretreatment with the ERK1/2 signaling inhibitor PD98059 (50 μmol/L). Data are means ± SD (n = 4); D: Western blotting of p-
ERK, ERK, cyclin E1, cyclin A2, CDK2, and p21 in hP-MSCs cultured under hypoxia for 48 h after pretreatment with PD98059; E: Expression of p-ERK normalized 
against that of ERK and cyclin E1, cyclin A2, CDK2, and p21 expression normalized against that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data are 
means ± SD (n = 3). aP < 0.05 and bP < 0.01. p-ERK: OD: Optical density.

inhibitor decreased the proliferation of hP-MSCs cultured under hypoxia.
Because of their similar effects on the proliferation of hP-MSCs, we explored the 

connection between CD99 and the MAPK/ERK signaling pathway. Hypoxia-induced 
phosphorylation of ERK1 and ERK2 was suppressed by CD99 knockdown. Notably, 
the reduction in the p-ERK level in the nucleus was greater than that in the cytoplasm, 
implicating that factor in the CD99-mediated regulation of hP-MSC proliferation 
under hypoxia. Sciandra et al[31] reported a correlation between CD99 and the 
MAPK/ERK signaling pathway, and concluded that CD99 promoted the activity of 
the major osteogenic transcription factors AP1 and RUNX2 by regulating cytoplasmic 
ERK.

CONCLUSION
Hypoxia enhanced hP-MSCs proliferation in a manner dependent on HIF-1α-mediated 
CD99 expression and the MAPK/ERK signaling pathway. CD99 activated pathways 
that transport ERK1/2 to the nucleus, resulting in increased activity of cell cycle-
associated proteins.
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Figure 6 Hypoxia-induced CD99 expression modulates human placenta-derived mesenchymal stem cells proliferation via the MAPK/ERK 
signaling pathway. A: Western blotting of phosphorylated (p)-ERK phosphorylation in human placenta-derived mesenchymal stem cells (hP-MSCs) exposed to 
hypoxia for 48 h and pretreated with siCD99#1; B: Immunofluorescence microscopy of (p-ERK) in hP-MSCs cultured under hypoxia for 48 h and pretreated with 
siCD99#1 (× 20 magnification; scale bars, 50 μm); C: Western blotting of cytoplasmic and nuclear fractions of hP-MSCs cultured under hypoxia for 48 h and 
pretreated with siCD99#1. p-ERK expression was normalized against that of ERK or histone H3. Data are means ± SD (n = 3). aP < 0.05 and bP < 0.01. OD: Optical 
density.

Figure 7 Schematic diagram of the mechanism of the promotion of human placenta-derived mesenchymal stem cell proliferation under 
hypoxia by the hypoxia-inducible factor 1α/CD99/ERK axis (created at BioRender.com). HIF-1α: Hypoxia-inducible factor 1α.
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ARTICLE HIGHLIGHTS
Research background
Mesenchymal stem cells (MSCs) are in a physiologically hypoxic microenvironment in 
the body, while the expansion of MSCs before cell therapy is typically performed at a 
20%-21% oxygen level. Thus, investigators have become increasingly aware of the 
effects of oxygen levels on MSCs biology and are investigating the natural niche of 
those cells in vitro for more detailed results.

Research motivation
Although some researches have focused on the effect of hypoxia on MSCs, the 
underlying mechanisms remain unclear. Thus, this study concentrated on the 
mechanism of MSC proliferation.

Research objectives
In this study, we aimed to explore the effect of hypoxia on the proliferation capacity of 
human placenta-derived MSCs (hP-MSCs) and to elucidate underlying mechanisms.

Research methods
Hypoxic (2.5% oxygen) incubation was used to simulate the hypoxic microen-
vironment. Cell counting kit-8, 5-ethynyl-20-deoxyuridine incorporation assays, and 
flow cytometry assay were performed to evaluate the proliferation rate and the cell 
cycle profile of hP-MSCs. Additionally, proliferation-related and MAPK/ERK 
signaling pathway-related proteins were evaluated by western blotting and 
immunofluorescence assays. Small interfering RNA-mediated hypoxia-inducible factor 
1α (HIF-1α) or CD99 knockdown in hP-MSCs, luciferase reporter assays, and the 
ERK1/2 signaling inhibitor PD98059 were used to elucidate the regulatory network of 
hypoxia on hP-MSCs proliferation.

Research results
Hypoxic culture enhanced the proliferation capacity of hP-MSCs by modulating cell 
cycle progression. Western blotting assay results further confirmed that hP-MSCs 
cultured under hypoxia exhibited increased cyclin E1, cyclin-dependent kinase 2, and 
cyclin A2 expression and decreased p21 expression. In addition, CD99 expression was 
directly regulated by HIF-1α under hypoxia. Also, CD99-specific small interfering 
RNAs or the ERK1/2 signaling inhibitor PD98059 abrogated the hypoxia-induced 
increase of cell proliferation, which further confirmed the influence of HIF-
1α/CD99/ERK axis on hP-MSC proliferation.

Research conclusions
Hypoxia promoted hP-MSC proliferation in vitro in a manner dependent on the HIF-
1α/CD99/ERK axis. In detail, CD99 activated pathways that transport ERK1/2 to the 
nucleus, resulting in increased activity of cell cycle-associated proteins.

Research perspectives
This study contributes to the understanding of MSC biology, especially the effect of 
hypoxia on MSC proliferation capacity.
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