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Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue 
repair and functional recovery. However, transplanted stem cells show a high 
death percentage, creating challenges to successful transplantation and prognosis. 
Thus, it is necessary to investigate the mechanisms underlying stem cell death, 
such as apoptotic cascade activation, excessive autophagy, inflammatory 
response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. 
Targeting the molecular pathways involved may be an efficient strategy to 
enhance stem cell viability and maximize transplantation success. Notably, a more 
complex network of cell death receives more attention than one crucial pathway 
in determining stem cell fate, highlighting the challenges in exploring 
mechanisms and therapeutic targets. In this review, we focus on programmed cell 
death in transplanted stem cells. We also discuss some promising strategies and 
challenges in promoting survival for further study.

Key Words: Programmed cell death; Apoptosis; Autophagy; Stem cell; Therapeutic 
strategies
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INTRODUCTION
Cell-based therapies have raised tremendous expectations and presented favorable 
curative effects in repairing damaged tissue and enhancing functional repair[1-3]. 
Stem cells (SCs) could serve as a cellular reservoir to maintain, produce, repair, and 
even regenerate multiple tissues with the characteristic properties of self-renewal and 
differentiation. Thus, SCs are developed as the preferred sources for cell-based 
therapies due to their ability to differentiate into a wide range of cell types and their 
capacity of secretion regulated by the microenvironment, also termed the “niche”[4]. 
Based on the stage of development, SCs can be divided into three types: Embryonic 
SCs (ESCs), induced pluripotent SCs (IPSCs), and adult SCs (ASCs)[5]. ESCs are 
derived from the inner cell mass of a blastocyst[6]. There are ethical limitations to the 
use of ESCs in therapy[7]. Compared with ESCs, IPSCs derived from mature body cells 
could be regulated to dedifferentiate into pluripotent SCs as a renewable source of 
alternative cells and tissues[8]. ASCs or somatic SCs (SSCs) can be found in various 
adult tissues, including neural SCs (NSCs), hematopoietic SCs (HSCs), mesenchymal 
SCs (MSCs), and epidermal SCs. Many trials have shown that ASCs can be used to 
treat diseases[9,10]. For example, bone marrow mononuclear cells[11], NSCs[12], and 
MSCs[13] are usually used to treat stroke.

SCs-based therapies are widely used in the treatment of various diseases[14-18]. 
Limbal stem cell therapy is used for treating burn-related corneal destruction[19], 
NSCs in gastrointestinal tract disorders[20], bone marrow-derived mesenchymal SCs 
(BM-MSCs) in diabetic cardiomyopathy[21], and MSCs in multiple sclerosis[22] and 
several clinical conditions. However, SC-based therapies also have limitations. 
Impaired cell homing regulated via various factors (such as chemokines) causes in situ 
tissue regeneration failure[23]. Also, a high death rate of transplanted SCs limits the 
therapies[24,25]. After MSC injection, over 99% of injected cells die in the left 
ventricular myocardium within 4 d[26].

Accumulated evidence shows a close tie between multiple types of programmed cell 
death (PCD) and SCs, including apoptosis, autophagy, ferroptosis, pyroptosis, and 
necroptosis. Studies demonstrate that p53 induces apoptosis of human ESCs (hESCs) 
through a mitochondrial pathway shown to be extremely sensitive to FasL-induced 
cell death in MSCs[27,28]. Ohgushi et al[29] observed that Rho-associated coiled-coil-
containing protein kinase (ROCK)-dependent hyperactivation of myosin directly 
caused dissociation-induced apoptosis in hESCs and immediate activation of the 
Rho/ROCK/MLC2 signaling cascade. In 2010, the María group found that inhibitors 
of apoptosis proteins (IAPs) could promote the numbers of hematopoietic stem and 
progenitor cells and improve resistance to cell death[30]. Moreover, reports suggest 
that high levels of pro-apoptotic B-cell lymphoma 2 (Bcl-2) family members were 
overexpressed in hESCs[31]. Autophagy in SCs traces its history to 1980 where 
marrow cells revealed several abnormalities within an intrinsic myeloid precursor cell 
defect[32]. Lately, the role of autophagy in SC fate and aging is drawing attention due 
to the ability of the autophagy activator rapamycin to restore the biological properties 
of aged SCs by increasing their differentiation and proliferation capacity and 
decreasing adipogenic differentiation capacity, including the molecular mechanisms 
targeting 5′ AMP-activated protein kinase (AMPK) and rapamycin (mTOR)[33,34]. 
Research on necroptosis in SCs started relatively late but progressed rapidly to show 
that tumor necrosis factor α (TNF-α) could act on HSCs and progenitors for facilitating 
hematopoietic clearance and promoting regeneration. Furthermore, pharmaceutical 
inhibition of receptor-interacting protein kinase-3 (RIP3) showed a curative effect in 
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promoting SCs, such as targeting necroptosis of intestinal SCs[35]. Some other cell 
death-related molecules have been increasingly recognized in SCs, such as the 
PI3K/AKT signaling pathway[36], MAP kinases ERK[37], JNK, and p38[38].

Some methods have been used to control programmed cell death in SCs. The 
concept of preconditioning was proposed by Charles E. Murry in 1986[39]. Presently, 
several strategies, such as using heat shock, free radical scavengers, over-expressing 
anti-apoptotic proteins, anti-inflammatory therapy, and co-delivery of extracellular 
matrix molecules, have been introduced[40-45]. Besides genetic strategies, three-
dimensional culture technology and co-transplantation are novel ideas to enhance SC-
based therapies.

Exploring cell death mechanisms in SCs and targeting these potential therapeutic 
molecules are vital to successful SC-based therapies (shown in Table 1[19-21,46-92]). In 
this review, we highlight the conditions or reasons leading to cell death in SC-based 
therapeutic approaches. Also, we demonstrate the cell death mechanism in SCs, which 
may provide a novel, efficient, reliable, and potential strategy in promoting SC-based 
therapy.

A QUICK LOOK AT PCD
According to the death inducers, cell morphologic changes, and molecular 
mechanisms, cell death can be divided into two types: Non-programmed cell death 
caused by an external injury leading to instantaneous and irreversible cell 
damage[93,94], and PCD (e.g., apoptosis, autophagy, necroptosis, and pyroptosis), a 
common occurrence in the development of organisms without strong immune 
responses[95].

PCD occurs extensively during the development of pathology in various tissues. It 
is closely related to the therapeutic efficacy and prognosis of SC-based treatment. 
Robey et al[25] indicated that most cell death occurs in the first week post-
transplantation. In NSC transplantation for neurological disorders in the brain, less 
than 4%-10% of primary NSCs survived within the first few days[96]. Similarly, 
Yasuda and Hayashi’s groups showed that 15% of transplanted cells survived at 1 wk 
and 9% at 4 wk in a rat infarction model[97]. A significantly high death rate occurred, 
and over 99% of MSCs died within 4 d after transplantation into the left ventricular 
myocardium of mice[26]. Thus, cell death may be a significant concern that needs 
attention.

Apoptosis
Apoptosis is the classic form of PCD without spillage of contents into the surrounding 
environment[98]. Apoptosis plays an important role in the orderly and efficient 
removal of damaged SCs to prevent cancer through two classical apoptotic pathways: 
The intrinsic pathway and the extrinsic pathway[99]. The intrinsic pathway, also called 
the mitochondrial pathway, shows a close relation with SCs[100,101]. It is closely 
regulated by a group of cytokines, especially the Bcl-2 family[102,103]. The extrinsic 
pathway is triggered by ligand-receptor binding. TNF-family receptors and cysteine-
aspartic proteases, known as caspases, play a vital role in the extrinsic pathway[104].

Autophagy
Autophagy is a eukaryotic cell recycling process involving the degradation of 
cytoplasmic organelles, proteins, and macromolecules with the recycling of 
decomposition products via the mTOR/Ras-cAMP-PKA axis to maintain cellular 
homeostasis and enhance stem cell survival[105]. Autophagy is divided into three 
major types: Microautophagy, macroautophagy, and chaperone-mediated autophagy 
(CMA)[106]. During microautophagy, cargos are captured by lysosomal membrane 
invaginations or protrusions[107]. In macroautophagy, autophagosomes are regarded 
as typical signatures[108]. CMA focuses on molecular chaperones to identify cargo 
proteins containing specific pentapeptide sequences without using membrane 
structures to isolate cargo[109].

Necroptosis 
Necroptosis is a pro-inflammatory lytic form of PCD. Necroptosis could be induced 
through several innate immune signaling pathways triggered by stimulating RIG-I-
like receptors, TLRs, and death receptors[110,111]. Receptor-interacting serine-
threonine kinases 1 and 3 (RIPK1 and 3) are phosphorylated and activated through 
these signaling pathways[112]. Subsequently, mixed lineage kinase domain-like 
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Table 1 Summary of programmed cell deaths in stem cell-based therapy

Disease SCs Therapy models Therapeutic effects PCDs in SCs Ref.

Myocardial infarction MSCs Canine; porcine; 
mice; human

Inducing  cardiac regeneration; increasing 
angiogenesis; repair by differentiating into 
cardiomyocytes

Apoptosis, 
autophagy, 
pyroptosis

[46-48]

iPSCs Porcine; murine; 
rats; mice; non-
human primates

Showing heart regeneration potential; 
regenerating the injured tissues; promoting a 
cardiomyogenic and angiogenic response

Apoptosis, 
autophagy, 
ferroptosis

[48,49]

ESCs Non-human 
primates

Showing heart regeneration potential; increasing 
angiogenic differentiation

Apoptosis, 
autophagy, 
pyroptosis

[48,50]

Intracerebral hemorrhage MSCs Rats; primates; 
human

Repairing via differentiating into neurons or 
neuron-like cells; promoting axonal regeneration, 
neurogenesis, and angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[51-54]

NSCs Mice, rats Differentiating into neurons or glial cells; 
promoting neurogenesis and angiogenesis; 
promoting regeneration

Apoptosis, 
autophagy

[51,55-
57]

ESCs Rats Differentiating into neurons or glial cells; 
promoting neurogenesis and angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[51,58,
59]

iPSCs Rats Differentiating into neuroepithelium-
like/neuroepithelioid SCs and neural cells; 
promoting neurogenesis and angiogenesis

Apoptosis, 
autophagy, 
ferroptosis

[51,60-
62]

Corneal reconstruction LSCs Human Regenerating the corneal epithelium; 
differentiating into cells of the corneal epithelium

Apoptosis. [19]

MSCs Mice; rats; rabbits; 
human

Regenerating the corneal epithelium and corneal 
stroma; angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[63]

Neurodegenerative 
disorders of the 
gastrointestinal tract 

ESCs Mice Differentiating into enteric neuronal and glial 
cells

Apoptosis, 
autophagy, 
pyroptosis

[20,64]

iPSCs Rats, mice Differentiating into neural and glial cells Apoptosis, 
autophagy, 
ferroptosis

[20,65]

CNS-NSCs Mice Differentiating into neurons; regenerating and 
repairing ENS

Apoptosis, 
autophagy

[20,66,
67]

ENSCs Mice; rats Stimulating a local regenerative response; 
regenerating and repairing ENS; differentiating 
into new neurons

Apoptosis, 
autophagy

[20,68,
69]

Diabetic cardiomyopathy MSCs Mice; rats Promoting angiogenesis; regenerating tissues; 
differentiating into cardiomyocytes and 
vasculature cells

Apoptosis, 
autophagy, 
pyroptosis

[21,70]

EPCs Rats Differentiating into endothelial cells to form new 
blood vessels and promoting neovascularization

Apoptosis [70,71]

CSCs/CPCs Rats Differentiating into newborn cardiomyocyte; 
promoting heart regeneration

Apoptosis [70,72]

iPSCs Rats; mice Attenuating oxidative stress and fibrosis; 
diminishing pro-oxidant expression and 
enhancing antioxidant (catalase and MnSOD) 
concentration; promoting heart regeneration

Apoptosis, 
autophagy, 
ferroptosis

[70,73]

Diabetic retinopathy ASCs Rats; mice Promoting angiogenesis; improving ischemia; 
offering protection against nerve damage; 
differentiating into photoreceptor and glial-like 
cells in the retina

Apoptosis [74-77]

HSCs Murine; rats Promoting angiogenesis Apoptosis, 
autophagy

[74,78]

BM-MSCs Murine; rats; mice Differentiating into retinal glial cells; stimulating 
angiogenesis; promoting resident neural 
progenitors to regenerate neuro-retinal tissue

Apoptosis, 
autophagy, 
pyroptosis

[74,79,
80]

Differentiating into cells expressing features of 
retinal pigment epithelial cells, retinal progenitor 

Anti-apoptosis, 
autophagy, 

iPSCs Rats; mice [75,81]
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cells, and retinal ganglion cells, and slowing 
down retinal degeneration

ferroptosis

Neurological disorders NSCs Mice, rats, 
monkeys, pigs, 
human

Differentiating into neurons and supporting glial 
cells; releasing angiogenic factors to promote 
local tissue regeneration

Apoptosis, 
autophagy

[82-85]

HSCs Human Promoting cell survival; stimulating proliferation 
and migration of NSCs; inducing regeneration of 
damaged brain cells; promoting angiogenesis

Apoptosis, 
autophagy

[82,86]

MSCs Human Promoting neuronal regeneration; promoting 
angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[82,86]

Diabetes ESCs Mice, rats Differentiating into cluster of insulin producing 
beta cells

Apoptosis, 
autophagy, 
pyroptosis

[87-89]

Hepatic and 
intestinal stem 
cells

Mice Differentiating into beta cells in response to high 
glucose concentration

Apoptosis [87,90]

Spleen stem cells Mice Differentiating into insulin secreting beta cells; 
regenerating islet

Apoptosis [87,91]

HSCs Mice Differentiating into beta cells and vascular 
endothelial cells of the pancreas; inducing beta 
cell regeneration from the host cells residing in 
pancreas

Apoptosis, 
autophagy

[87,92]

SC: Stem cell; MSCs: Mesenchymal stem cells; NSCs: Neural stem cells; ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem cells; LSCs: Limbal 
stem cells; CNS-NSCs: CNS-derived NSCs; ENSCs: Enteric neural stem cells; CSCs/CPC: Cardiac stem/progenitor cells; ASCs: Adipose stem cells; HSCs: 
Hematopoietic stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells; ENS: Enteric nervous system; EPCs: Endothelial progenitor cells; 
PCD: Programmed cell death.

(MLKL) could be activated[113].

Others
Pyroptosis, dependent on multiple molecules, such as caspase-1 and caspase-11, is 
widely believed to play an important role in resisting the invasion of pathogens[114]. 
Ferroptosis, an iron-dependent form of regulated cell death (RCD), is induced through 
an excessive accumulation (e.g., ROS and lipid peroxidation products) characterized by 
mitochondria shrinkage or dysmorphic small mitochondria[115,116]. Moreover, other 
types of cell death are also crucial during a series of events, such as failures in SC-
based therapies. The biological correlations between the different PCD pathways are 
complex, where it is especially significant as a network among these pathways 
regarding PCD of transplanted SCs[117,118].

PCD AND ITS KEY MOLECULES IN STEM CELLS FOR TRANS-
PLANTATION THERAPY
PCD of SCs is usually caused by a hostile pathological environment created due to 
multiple conditions, including apoptotic cascade activation, excessive autophagy, 
inflammatory response, ROS, excitotoxicity, and ischemia/hypoxia[39]. This section 
systematically reviews the molecular mechanisms involved in cell death pathways and 
we also summarize these key molecules in Table 2[35,38,119-134].

Apoptosis 
Recently, an emerging body of evidence has highlighted a vital role of the apoptosis 
effect on several cell types, including SCs[135]. Hence, it is crucial to investigate and 
understand the mechanisms underlying apoptosis for analysis of SC transplantation 
and the development of drugs targeting specific apoptotic molecules. According to the 
inducing signaling, apoptosis could be divided into two types: Intrinsic pathway 
initiated by intracellular stresses (shown in Figure 1), and extrinsic pathway 
responding to extracellular cues (shown in Figure 2).

The intrinsic pathway of apoptosis: In the intrinsic pathway, the initiators (e.g., ROS 
and radiation induced DNA damage) cause various cascade reactions resulting in the 
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Table 2 Molecular mechanisms and therapeutic targets of programmed cell deaths in stem cells

PCDs SCs Molecular pathways of PCDs Therapeutic 
target(s) Therapeutic effects Ref.

Apoptosis hESCs Mitochondrial priming and p53 signaling 
pathway

Bcl-2 Preventing damaged cells from 
compromising the genomic 
integrity of the population

[119]

HSCs ASPP1 stimulated p53 signaling pathway ASPP1, RUNX1 Preventing hematological 
malignancies

[120]

ISCs ARTS/XIAP/caspase 9 axis XIAP Controlling ISC numbers and 
preventing the propagation of 
abnormal progeny

[121]

MSCs p38 MAPK regulated early apoptosis 
while JNK regulated late apoptosis

p38 Protecting MSCs from oxidative 
stress damage

[38]

NSCs p38 MAPK signaling TNF-α, p38 Impairing cell viability, decreasing 
therapeutic effects

[122]

Autophagy iPSCs AMPK/mTOR/ULK1 complex/PI3K 
complex/conjugation cascade complexes 
with LC3 and Atg9 during 
macroautophagy;KFERQ domain/Hsc 
70/LAMP2A during CMA

LC3 Removing unnecessary or 
dysfunctional components

[123]

HSCs type III PI3K mammalian 
Atg6/PIP3/(Atg12-Atg5-Atg16) or 
(Atg4/LC3-I/Atg7/Atg3/LC3-II/PE) axis

LC3-II Recycling cytoplasmic 
constituents and restoring 
metabolic homeostasis, and 
maintaining cells survival under 
harsh conditions

[124]

NSCs PI3K-AKT-mTOR/ULK1/the class III PI3-
kinase-Beclin1 complex/PI3/PI3P/ the 
complex of Atg12–Atg5–Atg16L1/LC3-
I/LC3-II axis

mTOR Being involved in modulation of 
the embryonic neurogenesis as 
well as the injury repair of adult 
brain

[125]

MSCs PI3K/AKT/mTOR/ULK1/the class III 
PI3-kinase-Beclin1 complex/PI3/PI3P/the 
complex of Atg12–Atg5–Atg16L1/LC3-
I/LC3-II axis

AKT, mTOR Eliminating damaged organelles 
and biomacromolecules to 
maintain cellular homeostasis

[126,127]

ESCs AMPK/ mTORC1/ULK1 axis Atg5, Atg12 Maintaining the undifferentiated 
state of ESCs in vitro

[128]

Necroptosis ISCs ZBP1/RIP3/MLKL axis ZBP1 Disrupting homeostasis of the 
epithelial barrier and promoting 
bowel inflammation

[35,129]

SSCs RIP1 signaling pathway RIP1 Using Nec-1 to target RIP1 for 
reducing both necroptosis and 
apoptosis, which benefits for 
recovery rate and proliferation 
potential

[130]

NPSCs RIPK1/RIPK3/MLKL axis HSP90 Protecting SCs from PCD via 
alleviating mitochondrial 
dysfunction (mitochondrial 
membrane potential loss and ATP 
depletion) and oxidative stress 
(production of mitochondrial 
ROS), cellular total ROS and 
MDA, and downregulation of 
superoxide dismutase

[131]

Pyroptosis MSCs Exosome/circHIPK3/ FOXO3a axis circHIPK3 Preventing pyroptosis and 
repairing ischemic muscle injury 
through a novel exosome

[132]

ESCs Caspase-1 signaling pathway N/A Embryonic stem cell-derived 
exosomes inhibit doxorubicin-
induced pyroptosis

[133]

Ferroptosis NPCs and 
IPSCs

Ferritin/ROS/lipid peroxidation axis NCOA4, p53 Decreasing stem cells and 
triggering neuronal death

[134]

ISCs: Intestinal stem cells; iPCs: Induced pluripotent stem cells; HSCs: Hematopoietic stem cells; ESCs: Embryonic stem cells; NSCs: Neural stem cells; 
MSCs: Mesenchymal stem cells; EPCs: Endothelial progenitor cells; CPCs: Cardiac progenitor cells; IPSC: Pluripotent stem cells; ZBP1: Z-DNA-binding 
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protein 1; RIP3: Receptor-interacting serine/threonine kinase 3; MLKL: Mixed lineage kinase domain like protein; PUMA: p53 upregulated modulator of 
apoptosis; NOXA: Known as PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; Bax: Bcl-2 associated X protein; Bak: Bcl-2 antagonist/killer 1 
protein; cyt c: Cytochrome C; Apaf-1: Apoptosis protease activating factor-1; casp: Caspase; FADD: Fas-associated death domain; Bcl-2: B-cell lymphoma 2; 
AMPK: AMP-activated protein kinase; mTOR: Mammalian target of rapamycin; ULK1: Unc-51-like kinase complex; ROS: Reactive oxygen species; MDA: 
Malondialdehyde; GPX4: Glutathione peroxidase 4; circHIPK3: One of the most abundant circRNA in muscle; FOXO3a: A transcription factor of the O 
subclass of the forkhead family; LncRNA: Long non-coding RNAs; KLF3-AS1: Localize at chromosome 4p14 according to the exocarta database; mTOR: 
Mammalian target of rapamycin; ULK1: Atg1/unc-51-like kinase; LC3: Light chain 3; PI3K: Beclin-1/class III phosphatidylinositol 3-kinase; CMA: 
Chaperone-mediated autophagy; Hsc 70: Heat shock cognate71 kDa protein; LAMP2A: Lysosomal-associated membrane protein type 2; Atg: 
Autophagyassociated gene; Atg6: Vps34/Beclin-1; PIP3: Phosphatidylinositol (3,4,5) P3; PE: Phosphatidyl ethanolamine; SSCs: Spermatogonial stem cells; 
Nec-1: Necrostatin-1, a necroptosis inhibitor; NPSCs: Nucleus pulposus-derived stem/progenitor cells; HSP90: Heat shock protein 90; ROS: Reactive 
oxygen species; PCD: Programmed cell death.

Figure 1 Mechanisms of intrinsic apoptotic pathways in stem cells. Cell stress from various damage causes a rapid response leading to apoptosis via 
BH3-only activator (Way I) or active Bax directly from the Golgi (Way II) to the mitochondria, which subsequently induces a co-pathway [MOMP, cytochrome C (cyt C) 
releasing, etc.]. I: Stress inducers, such as DNA damage could stabilize and activate p53, which leads to p53 nuclear translocation. Subsequently, p53 exerts an 
impact on transcription of apoptotic genes via DNA-binding activity and its transcriptional activity (e.g., PUMA, NOXA, and Bax); II: Bax, which is monomeric in the 
cytoplasm, could be activated via stabilized p53 and active-Bax translocates from the Golgi to the mitochondrion. Once instigated with the apoptotic signals, active-
Bax could lead to the alteration of MOMP, which undergoes dimerization and transfers to the OMM, so that relevant proteins (such as cyt C) are released into the 
cytosol usually confined in the intermembrane space. The released cyt C is involved in apoptosome formation via binding to the cytosolic Apaf-1. This complex 
recruits and activates initiator pro-casp-9, and then act-casp-9 activates downstream executor casp-3/-6/-7, leading to apoptotic cell death. In the cytoplasm, IAP 
antagonists (e.g., SMAC, ARTS, and HTRA2) could bind and suppress XIAP, causing the activation of casp-9 for the apoptotic pathway. The T-shaped lines indicate 
inhibitory interactions involved in this pathway, while the solid arrows indicate activating interactions. Bax: Apoptosis regulator Bcl-2 associated X protein; OMM: 
Outer membrane permeabilization; MOMP: Mitochondrial outer membrane permeabilization, cyt C: Cytochrome C; PUMA: p53 upregulated modulator of apoptosis, 
NOXA: Pro-apoptotic BH3-only protein, also known as PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; Apaf-1: Apoptosis protease activating factor-1; 
IAP: Inhibitor of apoptosis; SMAC: Second mitochondria-derived activator of caspase; ARTS: Apoptosis-related protein in the transforming growth factor-β signaling 
pathway; HTRA2: High-temperature-required protein A2.

release of cytochrome C (cyt C), p53, and mitochondrial outer membrane permeabil-
ization (MOMP). For example, hematopoietic stem and progenitor cells (HSPCs) are 
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Figure 2 Mechanisms of extrinsic apoptotic pathways in stem cells. The extrinsic apoptotic pathway (also known as the death receptor-dependent 
pathway) is induced by the connection between death receptors exposed on the cell surface [tumor necrosis factor (TNF) receptor] and the specific TNF family 
ligands. Subsequently, this signaling causes a conformational change leading to the recruitment of Fas-associated death domain (FADD) and allows interactions 
between FADD and casp-8 and/or the casp-10, resulting in the cleavage and activation of casp-3 and casp-7 through their death domain. Finally, the active and 
cleaved casp-3 induces changes in phosphatidylserine exposure, DNA fragmentation, and the formation of apoptotic bodies. Also, casp-8 can target the BH3-only 
protein Bid and cleave Bid to a truncated fragment t-Bid, which could connect to the extrinsic apoptotic pathways. The T-shaped lines indicate inhibitory interactions 
involved in this pathway, while the solid arrows indicate activating interactions. FADD: Fas-associated death domain.

used for treating acquired and primary immunodeficiencies, thalassemia, and sickle 
cell disease. However, the presence of intrinsic apoptosis is shown in HSPC-based 
therapy in which excess DNA damage can trigger cumulative p53 pathway, 
constraining proliferation, yield, and engraftment of HSPCs, while moderate damage 
can lead to reversible function impairment by transient p53 inhibition[136]. According 
to the downstream activators of p53, two main pathways could be described: BH3-
only activator (Way I shown in the left part of Figure 1) and active BAX from the Golgi 
(Way II shown in the right part of Figure 1) to the mitochondria.

Part I during the intrinsic pathway: During the intrinsic pathways, DNA damage, as a 
significant inducer, can stabilize and activate p53 by phosphorylation (for example, the 
phosphorylation of p53 at Ser46 can induce the p53-dependent apoptotic pathway 
caused by DNA damage[137]) ,  leading to p53 nuclear translocation[119]. 
Subsequently, p53 exerts an impact on transcription of apoptotic proteins (namely, the 
related proteins) via DNA-binding activity and its transcriptional activity, such as the 
pro-apoptotic proteins p53 upregulated modulator of apoptosis (PUMA), NOXA (the 
pro-apoptotic BH3-only proteins, also known as PMAIP1 [phorbol-12-myristate-13-
acetate-induced protein 1]), and apoptosis regulator Bcl-2 associated X protein 
(Bax)[138,139].

PUMA and NOXA can bind and activate Bax and Bcl-2 antagonist/killer-1 protein 
(Bak) in the cytoplasm, resulting in MOMP and release of cyt C[140]. Further, p53 can 
directly interact with Bax and Bak to modulate MOMP[141,142]. Of note, in the 
absence of cellular stress, p53 could rapidly produce and degrade in human 
pluripotent SCs (hPSCs), and the stabilization of p53 occurred upon DNA damage or 
via inhibition of MDM2 (the E3 ubiquitin ligase mouse double minute 2 homolog, 
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which maintains low p53 levels through triggering p53 degradation)[143,144]. 
Interestingly, the activation of p53 is also involved in other types of cell death, such as 
ferroptosis[134].

Part II during the intrinsic pathway: Typically, Bax is monomeric in the cytoplasm. 
Studies show that active Bax localized to the Golgi held away from the mitochondrion 
in some hPSC lines, whereas active BAX could transform the mitochondria after cell 
stress as DNA damage via a rapid p53-dependent pathway during apoptosis[145]. 
Once instigated with the apoptotic signals, Bax could undergo dimerization and 
transfer to the outer membrane of mitochondria, leading to the alteration of 
MOMP[146], so that relevant proteins (such as cyt C) were released into the cytosol 
usually confined in the intermembrane space[147]. The released cyt C is involved in 
apoptosome formation via binding to the cytosolic apoptosis protease activating factor-
1 (Apaf-1)[148]. This complex recruits and activates initiator pro-caspase-9, and then 
act-caspase-9 activates downstream executor caspases-3/-6/-7, leading to apoptotic 
cell death[148,149]. In the cytoplasm, the inhibitor of apoptosis (IAP) antagonists could 
bind and suppress XIAP (X-linked inhibitor of apoptosis, E3 ubiquitin-protein ligase), 
causing the activation of caspase-9 for the apoptotic pathway[121]. These IAP 
antagonists include second mitochondria-derived activator of caspase (SMAC), 
apoptosis-related protein in the transforming growth factor-β signaling pathway 
(ARTS), and mitochondrial serine protease high-temperature-required protein A2 
(HTRA2)[121,148]. Koren et al[121] found highly expressed ARTS in cells comprising 
the intestinal SC niche, which protects Paneth cells from undergoing apoptosis.

The extrinsic pathway of apoptosis: The extrinsic apoptotic pathway is also known as 
the death receptor-dependent pathway induced via the connection between death 
receptors exposed on the cell surface (one of the numbers in the tumor necrosis factor 
receptor (TNFR) family) and the specific TNF family ligands mentioned above[150]. 
Previous research reported the effect of TNFα on the development of human 
hematopoietic progenitors in vitro within the role of inhibition[151] or promotion[152]. 
These TNFα-driven mechanisms play a vital role in HSC response to inflammatory 
stress for removing damaged cells and activating SCs[153]. Recently, HSC 
transplantation for malignancy has shown anti-tumor activity via TNFα-driven 
pathways[153,154]. Death receptors and their ligands cause a conformational change, 
which leads to the recruitment of Fas-associated death domain (FADD)[155] and 
allows interactions between FADD and caspase-8 and/or the caspase-10, resulting in 
the cleavage and activation of caspase-3 and caspase-7 through interactions between 
their death domain (DD)[156]. Finally, the active and cleaved caspase-3 induces 
changes in phosphatidylserine exposure, DNA fragmentation, and the formation of 
apoptotic bodies. However, reports suggest that caspase-3 activity could be elevated in 
nonapoptotic pathways in neural SCs[157].

Remarkably, caspase-8 can target the BH3-only protein Bid (BH3-interacting 
domain death agonist) and cleave Bid to a truncated fragment t-Bid[158]. Capper 
et al[159] and Jia et al[160] showed that decreased Bid could inhibit apoptosis, promote 
proliferation, and delay senescence in human periodontal ligament SCs (h-PDLSCs) 
via activated Yes-associated protein, and low levels of caspase-8 were detected in stem 
cell features through hypermethylation. Subsequently, t-Bid could directly translocate 
to the outer mitochondrial membrane after activating apoptotic regulator Bax and 
inhibiting Bcl-2, leading to co-engages between the intrinsic apoptotic pathway and 
the extrinsic apoptotic pathway[158]. Some evidence shows that activation of the 
extrinsic pathway and inhibition of caspase-8 can induce necroptosis[161,162].

Emerging findings indicate that Bcl-2 family proteins play a vital role in SCs (e.g., 
overexpression of Bcl-2 in MSCs[163], ESCs[164], and neuroepithelial SCs 
(NESCs)[165] improved their survival). The three functional groups Bak and Bax, BH3-
only proteins, and Bcl-2 maintain a balance between SC survival and death. For 
example, high levels of Bcl-2 were measured in HFSCs for antiapoptosis in contrast to 
differentiated cells[166,167]. In the SCs, Bax performs as an activated conformation 
sequestered in the Golgi apparatus held away from the mitochondrion. Following 
stresses such as DNA damage, active Bax translocates to the mitochondrial outer 
membrane to initiate MOMP and the apoptotic cascade, which bypasses the conven-
tional intrinsic and extrinsic apoptotic pathways[168,169]. However, the mechanism 
underlying the localization of active Bax at the Golgi and active Bax-induced pore 
formation in the Golgi stacks is unclear.

Autophagy 
As a self-protective catabolic mechanism within the cells, autophagy exerts a key 
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influence in sustaining SC homeostasis by maintaining stemness, upregulating 
quiescence, managing differentiation via remodeling, and self-renewal via metabolic 
reprogramming[170-173]. Autophagy contributes to metabolic regulation through 
increased glycolysis to generate ATP in the hypoxic milieu for balancing SC 
fate[174,175]. For example, autophagy plays a vital role in maintaining the quiescence 
of SCs (e.g., HSCs and muscle SCs (MuSCs)) via rejuvenating aged quiescent SCs 
controlled by various autophagy pathways such as the p38/mitogen-activated protein 
kinase (MAPK) signaling pathway[176,177]. Uncovering the autophagy mechanisms 
underlying SC quiescence presents novel therapeutic strategies to release the cells out 
of the quiescent state, promoting their proliferation and differentiation (such as 
induced activation of quiescent NSCs for neuron injury), or re-establishing quiescence 
to prevent aberrant proliferation and differentiation or premature senescence (such as 
anti-cancer therapeutics), which carry the risk of cancer SCs (CSCs)[178,179]. These 
stressors (e.g., starvation, oxidative stress, infection, and hypoxia) stimulate the 
cascade of autophagy as follows (shown in Figure 3)[180].

During autophagy, the formation of multi-protein complexes is associated with 
morphologic changes (shown in Figure 3). Initiation of autophagy is controlled by 
nutrient sensors, namely, mTOR and AMPK[173,181]. Typically, the mTORC1 complex 
functions as an inhibitor for autophagy. Under environmental stresses and 
physiological stressors, AMPK is activated to inhibit the activity of mTORC1, leading 
to a release of the ULK1 (Unc-51-like kinase complex, also known as ATG1) complex to 
induce autophagy, which is usually inhibited by mTORC1[182]. This initiation process 
is known as the phagophore assembly site (PAS) formation, which is regarded as 
indispensable for nucleation in the next stage. Compared with somatic mouse 
embryonic fibroblasts, whole-cell extracts of iPSCs and ESCs express high levels of 
AMPK and phosphorylated AMPK[183]. Interestingly, AMPK inhibition in mouse 
bone marrow-derived MSCs can upregulate both autophagy and apoptosis in hypoxia 
and serum deprivation conditions, suggesting crosstalk between autophagy and 
apoptosis through AMPK-ULK1 pathways[184,185]. Mutations in mTOR lead to 
smaller brains in mouse cortical development, and fewer proliferating neural 
progenitors result from disruption of NSC self-renewal[181].

Next, PI3 is phosphorylated to PI3P via the class III PI3-kinase-Beclin1 complex 
formed by core subunits of Beclin1 (Atg6), Atg14 L, and Vps34-Vps15, resulting in 
autophagosome formation[186,187]. The Atg12-Atg5-Atg16L1 complex acts as a 
regulator for enveloping and translocating the cytoplasmic cargo to the lysosome 
within misfolded-protein degradation[188]. Atg4 can cleave LC3 (Atg8) to generate 
cytosolic LC3-I. Atg3 (E2 enzymes) and Atg7 (E1-like enzymes) can lead the 
conjugation of PE to LC3-I to form lipidated LC3-II, which is combined with the 
autophagosome membrane to complete and elongate autophagosome formation[189]. 
Finally, the autophagosome contents undergo degradation due to low lysosomal pH. 
Some evidence demonstrates that autophagy plays an important role in 
reprogramming to form iPSCs, while iPSCs colony formation shows reprogramming 
failure due to the lack of Atg3, Atg5, or Atg7[190,191]. Autophagy is necessary for SC 
survival and sustenance. It is critical for SC differentiation in which co-localized dots 
of Tuj1-positive and GFP-LC3-positive cells are monitored and progress increasingly 
during NSC differentiation[192].

In microautophagy, misfolded or/and toxic proteins can be directly engulfed by the 
lysosomal membrane and degraded in the lysosome[193]. During chaperone-mediated 
autophagy, the heat shock cognate 70 kDa protein (HSC70) chaperones attach to the 
pentapeptide motif KFERQ (namely Lys-Phe-Glu-Arg-Gln) for delivery to lysosomes 
via a specific receptor LAMP2A. Reports suggest that targeting peptide HSC70 during 
autophagy can dramatically decrease amyloid-β (Aβ) oligomers in iPSCs with superior 
neuroprotective activity[194]. However, the molecular mechanism between autophagy 
and SCs is still unclear and remains to be further explored.

Apart from these vital targets, key transcription factors are closely linked to the 
stem cell state and the occurrence of autophagy (shown in Figure 3). For example, 
FOXO3A can enhance autophagosome formation via autophagy gene expression in 
hematopoietic SCs and breast cancer stem-like cells, which is needed to mitigate an 
energy crisis and allow cell survival[182,195]. Moreover, an elevated level of SOX2 is 
detected in NSCs, which is important for self-renewal; downregulation of SOX2 is 
observed in differentiated neurons and glia[196]. Besides SOX2, other transcription 
factors such as STAT3, OCT4, KLF4, and c-Myc are also vital for reprogramming in the 
initial creation of iPSCs at the genetic level[197].



Hu XM et al. Overview of PCD in SC-based therapy

WJSC https://www.wjgnet.com 396 May 26, 2021 Volume 13 Issue 5

Figure 3 Overview of the mechanisms during autophagy in stem cells. There are three types of autophagy [macroautophagy (section a), 
microautophagy (section b), and chaperone-mediated autophagy (section c)] based on different pathways; however, they produce the same results. Besides these 
proteins, key transcription factors closely related to autophagy are shown. The T-shaped lines indicate inhibitory interactions involved in this pathway, while the solid 
arrows indicate activating interactions. A: Typically, the mTORC1 complex functions as an inhibitor to control the initiation of autophagy. Under environmental 
stresses and physiological stressors, AMPK is activated to inhibit the activity of mTORC1, leading to a release of the ULK1 (Unc-51-like kinase complex, also known 
as ATG1) complex to induce autophagy. This initiation process is known as the phagophore assembly site (PAS) formation. Next, PI3 is phosphorylated to PI3P via 
the class III PI3-kinase-Beclin1 complex formed by core subunits of Beclin1 (Atg6), Atg14 L, and Vps34-Vps15, resulting in autophagosome formation. The Atg12-
Atg5-Atg16L1 complex acts as a regulator for enveloping and translocating the cytoplasmic cargo to the lysosome in misfolded-protein degradation. Atg4 can cleave 
LC3 (Atg8) to generate cytosolic LC3-I. Atg3 (E2 enzymes) and Atg7 (E1-like enzymes) can lead the conjugation of PE to LC3-I to form lipidated LC3-II, which is 
combined with the autophagosome membrane to complete and elongate autophagosome formation. Finally, the autophagosome contents undergo degradation due 
to low lysosomal pH; B: In microautophagy, misfolded or/and toxic proteins can be directly engulfed by the lysosomal membrane and degraded in the lysosome; C: 
During chaperone-mediated autophagy, the heat shock cognate 70 kDa protein (HSC70) chaperones attach to the pentapeptide motif KFERQ (namely Lys-Phe-Glu-
Arg-Gln) for delivery to lysosomes via a specific receptor LAMP2A. Also, some of the key transcription factors are closely linked to the stem cell state and the 
occurrence of autophagy (bottom). FOXO3A can enhance autophagosome formation via autophagy gene expression in hematopoietic stem cells and breast cancer 
stem-like cells, which is needed to mitigate an energy crisis and allow cell survival. Besides FOXO3A, other transcription factors such as SOX2, STAT3, OCT4, KLF4, 
and c-Myc are also vital for reprogramming in the initial creation of stem cells at the genetic level during autophagy.

Necroptosis
The occurrence of necroptosis in SCs has recently been reported. Wang et al[35] found 
that gut stem cell necroptosis resulting from genome instability triggered bowel 
inflammation. Moreover, TNF-α could promote the survival and myeloid differen-
tiation of HSC via activating a strong and specific p65-nuclear factor κB (NF-κB)-
dependent gene program that prevents necroptosis rather than apoptosis to poise 
HSCs for myeloid cell production[153].

Others 
In addition to apoptosis and autophagy (mentioned above), reports on other cell death 
types have led to studies exploring cell death mechanisms, such as ferroptosis and 
pyroptosis[35,132,198-203]. Notably, different cell death mechanisms can simultan-
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eously occur in disease (termed as ‘PANoptosis’), suggesting a complex but practical 
integrated network between various cell death mechanisms in SCs[204,205].

Ferroptosis had been observed in SCs with an imbalance of iron homeostasis, a 
significant upregulation of cytosolic free iron content, and DNA/protein/lipid 
oxidative damage, leading to an obvious senescence phenotype and spontaneous 
death in iPSC-derived neuronal precursor cells (NPCs)[134,206]. iPSCs and gene-
correction are used for treating Pelizaeus-Merzbacher disease (PMD) but subsequently 
undergo cell death after the pre-myelinating stage with evidence for caspase-3-
dependent apoptosis in approximately 40% of cells and ferroptosis[205]. Thus, iron 
chelators and lipophilic antioxidants can lead to downregulation of apoptosis and 
ferroptosis[205]. Further, transfusional iron overload (IOL) may have clinical 
importance as a character close to transplant-related mortality in hematopoietic stem 
cell transplantation (SCT) for hematologic malignancies (HM)[198].

For pyroptosis (TLR4-NLRP3-mediated cell death pathway), a large body of 
evidence shows that stem cell transplantation can function as an inhibitor for 
pyroptosis, suggesting a novel approach called stem cell-derived exosome 
treatment[207,208], and numerous molecular pathways, such as exosome/LncRNA 
KLF3-AS1/miR-138-5p/Sirt1 axis and exosome/circHIPK3/FOXO3a axis, are 
presented[132,133,209].

All kinds of RCDs contribute to making a constant effort to maintain a homoeostatic 
balance, in which it is especially significant for the therapeutic effects of SC-based 
therapy. As for apoptosis in SCs, the intrinsic and extrinsic pathways play a synergistic 
role in ensuring the multi-cellular organisms to keep normal cells, and remove 
abnormally proliferating cells or other defective cells. Failure to regulate apoptosis 
would lead to the uncontrolled growth and division of cells during pathological 
process. In this regard, whether the SCs that we utilized in transplantation would be 
uncontrolled someday is also a potential challenge. Compared with apoptosis, 
autophagy could be regarded as a source of energy through digestion of cellular 
structures and/or organelles against multiple stresses such as nutrient deprivation 
(caloric restriction). These two main RCD pathways are widely studied and also some 
novel ways such as active-Bax in Golgi to inducing apoptosis will be further dug out. 
Remarkably, Bcl-2 as a co-regulator during these two pathways might be a potential 
target not only for apoptosis but also for autophagy. Others RCDs such as neroptosis, 
pyroptosis, and ferroptosis are also found in transplanted SCs, but their detail 
signaling and application need to keep digging. All in all, various cell death 
mechanisms are under investigation (apart from the cell death types described). 
Notably, it is necessary to focus on the overall network between different molecular 
cell death pathways.

STRATEGIES TO PROMOTE STEM CELL SURVIVAL FOR TRANS-
PLANTATION THERAPY
As mentioned above, the microenvironment exerts a vital role in the survival of SCs. 
Many studies have contributed to providing a wide range of strategies to enhance 
stem cell transplantation therapy via improving the microenvironment, including 
preconditioning strategy (e.g., exposure to oxidative stress, heat shock, and 
ischemic/hypoxic injury), pretreatment (e.g., drug treatment, cytokines, antioxidants, 
nitric oxide, glucose deprivation, growth factors, miRNAs, and exosomes), genetic 
modification, and co-transplantation of different cell types (shown in Figure 4 and 
Table 3[210-228).

Preconditioning strategy
Preconditioning strategies mainly help to promote tolerance of SCs and progenitor 
cells derived from SCs. These triggers aim to alter cell signaling and metabolism for 
adaptation to appropriate and mild stress conditions and sublethal insults [e.g., 
ischemic preconditioning (IPC), hypoxia, anoxia, hydrogen sulfide (H2S), hydrogen 
dioxide (H2O2), and carbon monoxide (CO)].

In detail, IPC of SCs is considered an efficient method to promote cell survival. After 
a repeated short cycle of ischemic/reperfusion (I/R), some of the chemical signals (
e.g., ROS, NO, and adenosine) can release and trigger cell protection via a cascade of 
survival factors such as the activation of protein kinase C (PKC), protective protein 
kinase B (PKB or Akt), nuclear factor κB (NF-κB), and Src protein tyrosine kinases, and 
subsequent upregulation of cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), 
heme oxygenase-1 [HO-1], Mn superoxide dismutase, aldose reductase, and anti-
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Table 3 Strategies to enhance stem cell transplantation therapy

Strategy Method Target Effects Molecular mechanisms Ref.
Preconditioning Short repeated 

ischemia/reperfusion 
ESCs Enhancing the tolerance of subsequent prolonged lethal 

ischemia
Promoting the expression of trophic factors, inducing the release and activation 
of PKC, PKB, or Akt, NF-κB and Src protein tyrosine kinases, and subsequently 
upregulating COX-2, iNOS, HO-1, Mn superoxide dismutase, aldose reductase, 
and antiapoptotic genes

[210-212]

Hypoxia MSCs Promoting mesenchymal stem cell migration and survival Increasing the expression of lncRNA-p21, HIF-1α, and CXCR4/7(both were 
chemokine SDF-1 receptors)

[213]

CSCs Promoting survival and cardiogenic differentiation Inducing the activation of the HIF-1α/apelin/APJ axis [214]

NSCs Promoting survival and neuroprotective properties, and 
facilitating functional recovery in vivo

Upregulating HIF1-α and HIF target genes such as EPO and VEGF and 
neurotrophic, and growth factors

[215]

Hydrogen peroxide 
preconditioning

BMSCs Improving the therapeutic potential for wound healing Upregulating cyclin D1, SDF-1, and its receptors CXCR4/7 expression, and 
activating the PI3K/Akt/mTOR pathway, but inhibiting the expression of p16 
and GSK-3β

[216]

Nitric oxide donor 
preconditioning

hCSCs Enhancing survival Upregulating phosphorylation of NRF2, NFκB, STAT3, ERK, and AKT, as well 
as increasing the protein expression of HO-1 and COX2

[217]

Heat shocking MSCs Promoting migration Triggering the activation of ERK and PI3K/Akt signaling pathways via HSP90 [218]

Pretreatment Oxytocin MSCs Antiapoptosis and cell protection Increasing the expression of Akt and phospho-ERK1/2 proteins, rapid calcium 
mobilization, and upregulation of antiapoptotic and angiogenic genes 
including HSP27/32/70, TIMP-1/2/3, VEGF, thrombospondin, and matrix 
metalloproteinase-2

[219]

Minocycline NSCs Increasing the capacity of migration, proliferation, and 
differentiation to improve neurological recovery

Increasing the expression of Nrf2 [220,221]

Melatonin MSCs Inducing fewer fibrotic damage Downregulating the levels of TNF-α, TGF-β, and α-SMA, and upregulating the 
expression of E-cadherin

[222]

Extremely low-level lasers MSCs Enhancing the migration of MSCs; promoting the 
proliferation rate of SCs

Allowing the FAK and ERK1/2 pathways and increasing PDGF and HGF; 
inducing the up-regulation of mitochondrial ROS and NO

[223,224]

Genetic strategies Overexpressing pro-survival 
factors 

hNSCs Improving short- and long-term survival Overexpression of Bcl-2, Bcl-xl, Hif1a, or/and Akt1 [225]

Genetic modification MSCs Potentiating MSC survival Overexpression of ERBB4 and ILK [226]

3D technology Hydrogels mimicking MSCs, ESCs, 
EPCs

Role in stem cell differentiation, changing matrix stiffness, 
mechanical stress and strain, nonlinear elastic, 
microenvironments and viscoelastic microenvironments

N/A [227]

Co-transplantation Co-transplantation of MSCs and 
HSCs

MSCs HSCs Enhancing therapeutic effects N/A [228]

ESCs: Embryonic stem cells; NSCs: Neural stem cells; MSCs: Mesenchymal stem cells; HSCs: Hematopoietic stem cells; EPCs: Endothelial progenitor cells; hNSCs: Human neural stem cells; SCs: Stem cells; Hsp70/90: Heat shock protein 
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70/90; ERK: Extracellular regulated protein kinases; Nrf2: Nuclear factor erythroid 2; TNF: Tumor necrosis factor; TGF: Tumor growth factor; SMA: Smooth muscle actin; HGF: Hepatocyte growth factor; ROS: Reactive oxygen species; Bcl-
2: B-cell lymphoma 2; ERBB4: Erb-b2 receptor tyrosine kinase 4; ILK: Integrin-linked kinase; SDF-1: Stromal-derived factor-1; EPO: Erythropoietin; VEGF: Vascular endothelial growth factor; TIMP: Tissue inhibitor of metalloproteinase; 
PDGF: Platelet-derived growth factor.

apoptotic genes (Bcl-xL, Mcl-1, c-FLIPS, and c-FLIPL)[210]. During ischemia/hypoxia 
or heat shock preconditioning, the level of Hsp70 and Hsp90 is upregulated. Reports 
suggest that Hsp70/90 can inhibit SMAC in the myocardium to prevent activation of 
caspase-3/9 (pathway described above)[211,212].

Similarly, hypoxia-inducible factor (HIF-1) is upregulated during hypoxia precondi-
tioning to inhibit tumor suppressor p53, reduce oxidative phosphorylation, upregulate 
VEGF receptor levels, and promote the activation of Akt to target caspases and Bcl-2 
for anti-apoptosis[229,230]. Recent findings reveal that OM-MSC (olfactory mucosa 
mesenchymal SC) with hypoxic preconditioning functions as an inhibitor for apoptosis 
and pyroptosis in microglial cells through activation of HIF-1α in vitro[231]. Hypoxia-
preconditioned SCs can also upregulate paracrine activity, and their exosomes are also 
considered a novel transplantation therapy. For example, MSC-derived exosomes with 
hypoxia preconditioning show promising potential as an effective means for 
optimized bone fracture healing via exosomal miR-126 and the SPRED1/Ras/Erk 
signaling pathway[232].

Besides preconditioning with ischemia and hypoxia, oxidative stress and heat 
shocking are also the most common preconditions for SCs within a similar rationale. 
Chronic exposure to oxidative stress (e.g., H2O2, H2S, and CO) produces protective 
effects by activating mitochondrial ROS production, resulting in ERK activation and 
anti-apoptotic protein expression for cell proliferation, migration, anoikis, autophagy, 
and survival[216,233,234]. Moreover, heat shocking precondition of mesenchymal SCs 
can induce HSPs to activate ERK and PI3K/Akt signaling pathways, resulting in 
increased expression of trophic factors, proteins, and genes for cell protection[218].

Pretreatment strategy
Pretreatment is a strategy for successfully protecting transplantable SCs, using various 
factors before implantation, whereas preconditioning refers to providing a specific 
environment within sublethal insults. These factors include antioxidants, cytokines, 
growth factors, and drug therapy (phosphodiesterase inhibitors, glucose deprivation, 
pro-survival protein expression, and anti-apoptotic proteins).

To date, various drugs have been developed for the pretreatment of SCs. 
Pretreatment with pharmacological inhibitors can result in increased expression of 
survival signaling and a high Bcl-2/Bax ratio in the early phase (2 h), and activation of 
the JAK/STAT signaling pathway in the late phase (24 h) for cardioprotection[210]. 
Also, Ji group has reported the protective effect of histochrome pretreatment against 
oxidative stress in cardiac progenitor cells (CPCs) via upregulating Bcl-2 and Bcl-xL 
and downregulating Bax and H2O2-induced cleaved caspase-3[235]. Moreover, short-
term incubation either with an antioxidant N-acetyl-L-cysteine (NAC) or a specific 
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Figure 4 Overview of key strategies to enhance stem cell transplantation therapy. The steps of stem cell-based transplantation therapy include 
drawing the materials, isolation, culture, proliferation, and transplantation. Compared with the classic approaches, pre-strategies could enhance survival of stem cells. 
These pre-strategies mainly include preconditioning, pretreatment, genetic strategies, and other methods. They can effectively activate various signaling pathways for 
protecting cells from injury and promoting survival.

inhibitor of TNFR 1 signaling can prevent TNF-α-mediated ROS accumulation in 
HSCs[154]. MSC pretreatment with oxytocin (OT) [10(-10) to 10(-6) M] in response to 
signaling events can induce Akt and phospho-Ras-dependent extracellular signal-
regulated kinase (ERK)1/2, rapid calcium mobilization, and upregulation of anti-
apoptotic and angiogenic genes, including HSP27/32/70, tissue inhibitor of metallo-
proteinase (TIMP)-1/2/3, vascular endothelial growth factor, thrombospondin, and 
matrix metalloproteinase-2[219]. Minocycline preconditioning increases Nrf2 
expression and neuroprotective paracrine secretion. It promotes migration, prolif-
eration, and differentiation of NSCs to improve neurological recovery after NSC 
transplantation[220,221]. The molecular mechanism involves upregulation of 
antioxidant genes and reduced oxidative stress grafted cell death following 
transplantation, resulting in low-rate cell death[221]. Some studies have shown the 
benefits of melatonin pretreatment on MSC-based therapy with a reduction in the 
levels of TNF-α, TGF-β, and α-SMA, and upregulation of E-cadherin expression that 
induces less fibrotic damage[222].

Trophic factors and cytokines are also considered effective pretreatment approaches 
for regulating MSC fate. For example, SC pretreatment with IL-1β can promote 
migration and survival of MSCs and improve function in type 2 diabetes, acute 
myocardial infarction, and neural disorders via upregulating the expression of various 
cytokines, chemokines, and adhesion molecules [e.g., IL-6/8/23A, TNF-α, CCL5/20, 
CXCL1/3/5/6/10/11, VCA-1 (vascular cell adhesion molecule 1), and ICAM-1/4 
(intercellular adhesion molecule 1 and 4)]. IL-1β can induce phosphorylation of NF-κB, 
but not PI3K/AKT and ERK1/2 pathways[236]. In the NSC pretreatment strategy, a 
series of experiments using IL-6 show that it can reprogram NSCs to tolerate hostile 
environments via activating STAT3 to increase the levels of superoxide dismutase 2 
(SOD2) for anti-apoptosis against inflammatory cytokines and oxidative stress via 
mitochondrial-dependent apoptotic pathways[237,238]. Some other molecular targets, 
including Rho-associated kinase inhibition, TGF-β2 treatment, SDF-1 signaling of 
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PI3K/Akt, and p38 MAPK inhibition via anti-apoptotic pathways, also enhanced SC 
survival during treatment[239].

Compared with chemical pretreatment methods discussed above, physical factors 
such as extremely low-level lasers, pulsed electromagnetic fields (PEMF), mechanical 
stretch, and nanochelating-based nanocomplexes (e.g., GFc7) are also used as 
pretreatment methods to enhance SC-based therapy[240-243]. For example, 
pretreatment with extremely low-level lasers improves the migration ability of MSCs 
via activation of FAK and ERK1/2 pathways and increased expression of platelet-
derived growth factor (PDGF) and HGF. Furthermore, it also promotes the prolif-
eration rate of SCs by inducing the upregulation of mitochondrial ROS and NO and 
enhancing the expression of the S-phase proportion in MSCs[223,224].

Genetic strategy
Genetic strategies have raised hopes for better SCs-based therapy since they were 
introduced more than a decade ago[244,245]. The core idea of this technology is to 
target key genes and the expression of factors related to the fate of SCs. Under 
different death stimuli, overexpression of various factors such as TNFR, Akt1, stromal 
cell-derived factor-1 (SDF-1), and hepatocyte growth factor (HGF) is beneficial for the 
repopulation of SCs[246]. Studies on modified transplanted hNSCs show improved 
short- and long-term survival of transplanted hNSCs via overexpression of these pro-
survival factors, including Bcl-2, Bcl-xl, Hif1a, or/and Akt1[225]. Genetic modification 
for ERBB4 (erb-b2 receptor tyrosine kinase 4) and ILK overexpression could potentiate 
MSC survival[226]. In recent years, the CRISPR/Cas9 system has been widely used for 
genome editing applied in genetic modification of SCs for in vivo applications such as 
neural regeneration, bone regeneration, treatment of blood disorders, and cartilage 
tissue engineering[247]. Although gene modification promises to enhance tolerance to 
damage "at the root," there are still formidable predictability challenges and potential 
long-term side effects.

Others
Recently, three-dimensional culture technologies (e.g., MSC encapsulation technique) 
mimicking the physical environment to sustain the viability of SCs to induce multi-
lineage differentiation are used to protect SCs from PCD as an innate immune system 
and provide favorable mediators such as cytokines and growth factors[227,248]. 
However, the time, cost, and labor efficiency of three-dimensional technologies for SCs 
may be non-negligible challenges, and a combination of biocompatible materials based 
on simple and easy methods is needed for SC-based therapy. Moreover, co-
transplantation of different cell types offers an alternative strategy to improve 
outcomes of SC-based treatment. Studies show promising results with co-
transplantation of human fetal mesenchymal and hematopoietic SCs in type 1 
diabetes, epidermal neural crest SCs (EPI-NCSC), and olfactory ensheathing cells 
(OEC)[228,249]. However, the significance of co-transplantation for SC-based therapy 
is still unclear[250,251].

As described above, these pre-strategies could provide transplanted stem cell with a 
certain microenvironment to improve the survival. The core ideas of these methods are 
to upregulate the survival factors (e.g., Bcl-2, Akt, SMAC, mTOR, SOD2, STAT3, HSC 
70, ERK, and Nrf2) and downregulate the death catalyzers (e.g., caspase, p53, TNFa, 
Bax, cyt C, XIAP, MAPK, and Atg) (shown in Figure 5). Bcl-2 might be regarded as a 
key molecule that raised tremendous expectations, which plays a vital role in both 
apoptotic and autophagy pathways. Given the fact that gene strategies seem to be 
hardly accepted in clinical trials to improve effectiveness of SC-based transplantation, 
preconditioning and pretreatment may provide a cost-effective and handy option. 
Remarkably, distinct types of transplanted cells or distinct aiming organs show 
noticeable differences not only in their signaling but also their response to the local 
area, so studies need to find a right composition as well as an effective target of any 
applied transplanted SC system.

CONCLUSION
The SC pool plays a driving role in tissue homeostasis and harm repair. Lately, SC-
based therapies may be regarded as a potential strategy that raised tremendous 
expectations and presented favorable curative effects in enhancing functional repair 
and repairing damaged tissue. Given the fact that a considerable number of studies on 
SC-based therapy verify that RCDs occur extensively during the development of the 
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Figure 5 Specific pre-strategies and their key molecule targets for enhancing stem cell transplantation therapy. These pre-strategies mainly 
include preconditioning (e.g., exposure to oxidative stress, heat shock, and ischemic/hypoxic injury), pretreatment (e.g., drug treatment, cytokines, antioxidants, nitric 
oxide, glucose deprivation, growth factors, miRNAs, and exosomes), genetic strategies (e.g., AAV vector mediated transfection, Liposome-based transfection, and 
CRISPR/Cas9-based genome editing), and other methods (e.g., 3D culture technologies, co-transplantation, and nanotechnology). The core ideas of these pre-
strategies are to upregulate the survival factors (e.g., Bcl-2, Akt, SMAC, mTOR, SOD2, STAT3, HSC 70, ERK, and Nrf2) and downregulate the death catalyzers (
e.g., caspase, p53, TNFa, Bax, Cyt c, XIAP, MAPK, and Atg). However, there are few methods targeting all of these molecules at the same time during the co-
network. Also, studies pay more attention to certain signaling such as Bcl-2 and mTOR, and other signals such as Atg or XIAP still need further mining.

transplanted SCs, RCDs show a crucial role in the therapeutic efficacy and progression 
of this treatment. Also, RCD interventions may offer opportunities for a better clinical 
application.

Recently, there have been tremendous strides in understanding the fate of SCs post-
transplantation related to self-condition and microenvironment. Along this line, 
targeting multiple signal transduction pathways in PCDs and survival processes 
would provide novel approaches for enhancing SC-based therapies. However, the 
interactions are complex and involve multiple networks rather than one crucial 
pathway (as the recent term ‘PANoptosis’), thus necessitating further research. 
Moreover, various factors involved in specific pathways may change during stem cell 
differentiation or show microenvironmental divergence in different cell types, stages 
of development, and stimuli.

Several approaches can prevent the loss of a vast majority of transplanted SCs, such 
as preconditioning, pretreatment, and genetic strategies. Important insights into the 
molecular pathways that control PCD of SCs may unlock novel and potential avenues 
for regenerative drugs and more efficient therapy. These pre-strategies provide SCs 
with harsh or nutrient-rich environment to improve the SCs via upregulating the 
survival factors and downregulating the death catalyzers. A summary diagram is 
shown in Figure 6. Recently, some of the novel technologies such as 3D culture techno-
logies, co-transplantation, and nanotechnology also show promising prospects. 
Furthermore, safer use, better results, and highly feasible and beneficial methods are 
required for clinical applications.
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Figure 6 Role of regulated cell deaths in stem cell-based transplantation and therapeutic pre-strategies to improve the therapy. Stem cell-
based therapy has been used in various diseases. A number of stimuli may induce regulated cell deaths (RCDs) in transplanted stem cells (SCs), which results in 
poorer outcomes. Different signals involved in distinct types of RCDs may provide some targets to improve SC-based transplantation. These therapeutic strategies 
include preconditioning, pretreatment, gene strategies, and so on. IPC: Ischemic preconditioning; PCD: Programmed cell death; MLKL: Mixed lineage kinase domain 
like protein; GSDME: Gasdermin E.
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