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Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily 
conserved adaptive mechanism for improving cell survival under mitochondrial 
stress. Under physiological and pathological conditions, the UPRmt is the key to 
maintaining intracellular homeostasis and proteostasis. Important roles of the 
UPRmt have been demonstrated in a variety of cell types and in cell development, 
metabolism, and immune processes. UPRmt dysfunction leads to a variety of 
pathologies, including cancer, inflammation, neurodegenerative disease, 
metabolic disease, and immune disease. Stem cells have a special ability to self-
renew and differentiate into a variety of somatic cells and have been shown to 
exist in a variety of tissues. These cells are involved in development, tissue rene-
wal, and some disease processes. Although the roles and regulatory mechanisms 
of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in 
stem cells are not fully understood. The roles and functions of the UPRmt depend 
on stem cell type. Therefore, this paper summarizes the potential significance of 
the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced 
pluripotent stem cells. The purpose of this review is to provide new insights into 
stem cell differentiation and tumor pathogenesis.
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Core Tip: Mitochondrial unfolded protein response (UPRmt) is a newly discovered 
equilibrium stress mechanism of mitochondria in the stressed cells to maintain the 
stressed proteins. Stem cells are a group of cells that have an infinite or eternal ability 
to self-renew and affect cell differentiation, aging, cancer, etc. Here we discuss the 
potential significance of UPRmt in stem cells, with an aim to provide a new theoretical 
basis and therapeutic target for cell differentiation, senescence, and some diseases.

Citation: Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response 
in mammalian stem cells. World J Stem Cells 2021; 13(7): 737-752
URL: https://www.wjgnet.com/1948-0210/full/v13/i7/737.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i7.737

INTRODUCTION
Mitochondria are double-membrane-bound organelles composed of four 
compartments: The outer and inner membranes, the intermembrane space, and the 
matrix[1]. While mitochondria provide some metabolic advantages for eukaryotic 
cells, they may be detrimental in other ways[2]. For example, reactive oxygen species 
(ROS) produced by mitochondria damage the nucleus, cytoplasm, and mitochondria, 
leading to mutations, aging, and diseases[3]. The implication is that mitochondria may 
be significant to mammalian stem cell functions[4].

The normal functions of mitochondria (mitochondrial homeostasis) are very 
important for cells and individuals. Therefore, to maintain mitochondrial homeostasis, 
organisms have evolved a series of mitochondrial quality control pathways, one of 
which is the mitochondrial unfolded protein response (UPRmt)[5]. UPRmt is an adaptive 
transcriptional response that was initially described as a mechanism by which cells 
maintain mitochondrial protein homeostasis during mitochondrial dysfunction. The 
program includes genes that promote mitochondrial protein homeostasis and 
defective organelle recovery[6]. It transfers signals that are helpful for maintaining the 
homeostasis of mitochondria-related proteins and cell survival from the mitochon-
drion to the nucleus[7]. It can directly affect the occurrence and development of aging, 
neurodegenerative diseases, cancer, and other diseases[8].

The mitochondrial UPRmt pathways in mammalian cells are largely unknown. The 
following information on UPRmt pathways has been discovered thus far[9-11]:(1) The 
UPRmt pathway is induced by protein accumulation in the mitochondrial matrix; (2) 
The UPRmt pathway is induced by protein accumulation in the mitochondrial 
membrane gap; (3) The UPRmt pathway is regulated by the activating transcription 
factor associated with stress-1 (ATFS-1) homologous gene ATF5; and (4) The UPRmt 
pathway is regulated by the heat shock factor 1-single-stranded DNA-binding protein 
1 (HSF1-SSBP1) complex under heat stress.

Through these four pathways, the mitochondrial load is ameliorated by the 
following four methods: (1) When a large number of misfolded proteins accumulate in 
mitochondria, c-Jun N-terminal kinase 2 (JNK2) is activated, which promotes the 
phosphorylation of c-Jun[7]. Activated c-Jun binding at an AP-1 binding site induces 
CCAAT-enhancer binding protein (C/EBP) homologous protein (CHOP) and C/EBP 
expression. CHOP and C/EBP proteins form dimers that act as transcription factors by 
binding the promoter of UPRmt-related genes, thereby inducing the expression of 
mitochondrial heat shock proteins and proteases[12,13]; (2)When a large number of 
misfolded proteins accumulate in the mitochondrial membrane gap, a large number of 
ROS produced by mitochondria can activate AKT kinase. Phosphorylated AKT kinase 
promotes the estrogen receptor (ER)activity, induces the NRF1 gene to promote 
biosynthesis in mitochondria, and induces the expression of mitochondrial protease 
high temperature requirement protein A2 to restore mitochondrial function[11]; (3) 
ATF5 functions similarly to the ATFS-1 pathway induced in nematodes[14]. ATF5 
induces high expression of mitochondrial heat shock proteins (HSP60 and mtHSP70), 
the mitochondrial protease Lon, and the antimicrobial peptide HD-5 in mammalian 
cells and promotes cell proliferation and mitochondrial function recovery under stress
[14]; and (4) Under the condition of heat stress, the mitochondrial single-stranded 
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DNA-binding proteins SSBP1 and HSF1 jointly regulate the UPRmt pathway. Under the 
condition of heat stress or other protein-induced toxicity, mitochondrial membrane 
potential is decreased, and SSBP1 is discharged from the mitochondria by means of the 
ANT- VDAC1 complex. After binding with HSF1, SSBP1 is transported to the nucleus, 
and through the recruitment of chromatin regulators, open chromatin is formed to 
drive high levels of transcription. The HSF1-SSBP1 complex is associated with the 
expression of nuclear and cytoplasmic molecular chaperones (HSP70, etc.) and 
mitochondrial molecular chaperones (HSP60 and HSP10)[15].

Although the precise pathways and marker molecules of the UPRmt are not known, 
ATF4, CHOP, HSP60, HSP10, caseinolytic protease proteolytic subunit (CLPP), LON 
peptidase 1, mitochondrial (Lonp1), JNK2, c-Jun, C/EBP protein, Sirtuin3 (SIRT3), and 
ATF5 have been found to be important regulators of the UPRmt in mammals[16-19]. 
Most of these proteins are molecular chaperones and proteolytic enzymes that 
promote the correct folding of mitochondrial proteins, and the UPRmt is a protective 
program activated by the transcriptome of gene groups that include molecular 
chaperone and proteolytic enzyme genes with transcription initiated by mitochondria 
to maintain the homeostasis of their internal proteins[20].

Stem cells produce all the cells and build tissue structure in the body, and they are 
critical for maintaining tissue homeostasis. The characteristics of stem cells are hetero-
geneity and plasticity. Understanding the properties of stem cells improves our ability 
to maintain tissue homeostasis[21].

However, it is not clear whether the UPRmt is associated with mitochondrial 
dysfunction, protein homeostasis, oxidative stress, and/or autophagy in stem cells. 
Therefore, studying the link between the UPRmt and stem cells is crucial to 
understanding the development of human beings. UPRmt activation in stem cells may 
act as a sentinel against mitochondrial damage[22].

In this review, we discuss the roles of the UPRmt in stem cell proliferation, differen-
tiation, and aging in mammals (Figure 1), and the role of UPRmt-regulated genes in 
stem cells is summarized (Table 1). This work provides a novel perspective on the 
maintenance of cell homeostasis, life extension, stem cell therapy, and cancer.

MITOCHONDRIA UNFOLDED PROTEIN RESPONSE AND STEM CELLS
Embryonic stem cells and mitochondrial unfolded protein response
Embryonic stem cells (ESCs) are derived from the blastocyst inner cell mass (ICM). In 
vivo, ESCs differentiate into three primary germ layers: The ectoderm, endoderm, and 
mesoderm. In vitro differentiation of human ESCs can help with research into certain 
diseases, screenings for drug discovery, and identifying cells for regenerative use[22]. 
Mitochondria are essential for maintaining the properties of ESCs and regulate their 
subsequent differentiation into different cell lineages[23,24]. Studies have shown that 
the proliferation and differentiation of ESCs depend on the normal function of 
mitochondria[25].

AKT1 is activated and transferred to mitochondria after stimulation by growth 
factors in ESCs. Genes that promote the proliferation and survival of ESCs are 
upregulated, while genes that promote differentiation are downregulated[26]. CHOP 
activates UPRmt-related genes, and its expression is induced via activation of Jun, 
which is mediated by c-Jun N-terminal kinase 2[12,13]. Interestingly, the growth of 
ESCs was not affected by c-Jun deficiency, but c-Jun-deficient fibroblasts was arrested 
in the G1 phase of the cell cycle, suggesting that the effect of c-Jun on cell proliferation 
is cell type-dependent[27].Does the absence of c-Jun in ESCs affect fibroblast differen-
tiation? Pharmacological and genetic evidence supports the supposition that c-Jun 
plays an important role in neural induction of ESCs[28]. The effect of UPRmt-induced c-
Jun in intestinal epithelial cells (IECs) depends on the activity of the mitochondrial 
protease CLPP and cytoplasmic kinase PKR[29]. Indeed, c-Jun is a vital regulatory 
factor of the UPRmt[16-19].

Studies have shown that ESCs have only a small number of immature mitochondria, 
and additional mitochondria with mature characteristics, such as fully developed 
cristae, dense matrix, and higher oxidation capacity, are evident during the process of 
differentiation[30,31]. It is speculated that the UPRmt may be involved in the differen-
tiation process of ESCs.

HSP60 is a mitochondrial protein important for folding key proteins after its 
introduction into the mitochondrion. In the heart, the binding of HSP60 to Bax in the 
cytoplasm plays a key role in the regulation of apoptosis[32]. Overexpression of HSP60 
increased the expression of the antiapoptotic Bcl-2 gene and decreased the level of the 
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Table 1 List of mitochondrial stress and mitochondrial unfolded protein response modulators in stem cells

Modulator Functions Ref.

ATF5 A transcription factor that is highly expressed in undifferentiated neural progenitor cells/stem cells and in a 
variety of human cancers, including gliomas.

[132]

HD Antimicrobial peptide. [14]

CHOP A transcription factor that is upregulated in response to ER stress and the mitochondrial unfolded protein 
response, and results in impaired wound healing and reduced IEC proliferation.

[133]

LONP1 The mitochondrial matrix proteases. [134]

HSP60 A mitochondrion-localized chaperone that is responsible for maintenance of the mitochondrial proteome 
and is upregulated as a part of the mitochondrial unfolded protein response.

[135]

AKT A serine-threonine kinase that maintains stem cells by promoting viability and proliferation. [136]

CLPP A mitochondrial matrix protease and mitochondrion-localized chaperone that is responsible for maintenance 
of the mitochondrial proteome and is upregulated as a part of the mitochondrial unfolded protein response.

[134,135]

SIRT3 SIRT3 has been reported to be a tumor suppressor and mitochondrial stress stimulates SIRT3 activity, raising 
the possibility that SIRT3 plays a dual role in tumorigenesis.

[16]

SIRT7 The strongest deacetylase activity, found in the nucleus, which can result in increased mitochondrial stress 
and increased tendency to proliferate.

[137]

JNK New target protein in mitochondrial dependent apoptosis. [84]

HSP70 Mitochondrial chaperone. [14]

HSP60 Stem cells without HSP60 lose their ability to self-renew. [71]

UPRmt: Mitochondrial unfolded protein response; ER: Endoplasmic reticulum; IEC: Intestinal epithelial cell; CHOP: CCAAT-enhancer binding protein 
homologous protein; HSP: Heat shock protein; SIRT: Sirtuin; JNK: c-Jun N-terminal kinase; CLPP: Caseinolytic protease proteolytic subunit; LONP1: LON 
peptidase 1, mitochondrial.

Figure 1 Roles of the UPRmt in stem cells. The activation of the mitochondrial unfolded protein response is involved in stem cell survival, self-renewal, 
proliferation, differentiation, and apoptosis to maintain multipotency.

proapoptotic Bax protein[33]. The apoptosis induced by mycotoxin citrinin in ESCs 
was induced by ROS production, which also increased the cytoplasmic free calcium 
level, intracellular nitric oxide production, the Bax/Bcl-2 ratio, the loss of mitochon-
drial membrane potential, the release of cytochrome c, the activation of caspase-9 and 
caspase-3[34], and the levels of p21-activated protein kinase 2 and c-Jun N-terminal 
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protein kinase. The UPRmt can protect ESCs against apoptosis. Other studies with ESCs 
suggested that SIRT1 downregulation can lead to the acetylation/ phosphorylation of 
forkhead transcription factor pathways such as FOXO1 and, in association with PTEN 
and JNK, block oxidative stress-induced apoptosis[35]. Mitochondrial HSP60 plays an 
important role in maintaining cell viability. HSPD1 encodes HSP60, and embryos with 
homologous HSPD1mutations die after implantation[36]. Changes in key UPRmt-
related genes may be the reason for the failure of ESCs to survive.

However, evidence showing that mitochondrial homeostasis regulates the 
pluripotency of ESCs remains to be seen[37], and the exact role of the UPRmt needs to 
be explored in future studies.

GERMLINE STEM CELLS AND MITOCHONDRIA UNFOLDED PROTEIN 
RESPONSE
Germline stem cells (GSCs) were categorized into female GSCs (FGSCs) and spermato-
gonial stem cells (SSCs). Research on human GSCs was originally on SSCs. The role of 
the UPRmt in SSCs has rarely been reported, but the role of the UPRmt in sperm has 
been discussed. Male mammals are able to continuously produce sperm due to the 
self-renewal and differentiation abilities of SSCs[38]. The conventional wisdom is that 
the number of follicles in mammals ceases to increase once a primal follicular pool is 
formed after birth. With development, maturation, and atresia, follicles are constantly 
depleted, ovarian function gradually declines, and women gradually enter menopause
[39]. However, the discovery of FGSCs, which are derived from primitive germline 
cells and have the ability to differentiate into oocytes in a directional manner, is 
expected to lead to the replenishment of depleting primal follicular pools[40]. 
Although the role of the UPRmt in FGSCs has rarely been reported, the roles of the 
UPRmt in follicular development and atresia have been discussed.

The differentiation of GSCs is characterized by gradual changes in the structure of 
multiple organelles, among which the mitochondrion plays unique roles[41]. During 
oocyte maturation and senescence, mitochondrial aggregation is related to germ cell 
formation and epigenetic regulation[42].

More recently, the absence of CLPP, a mitochondrial stress response gene, has been 
shown to cause female infertility and accelerate ovarian follicular failure[43]. CLPP 
mutation was observed in Perrault syndrome, which is associated with defects in 
human ovaries[44]. The study of CLPP-null mice (using CLPP gene ablation) showed 
complete female and male infertility[45]. CLPP deletion caused selective profound 
vulnerability of specific cells in testes and ovaries. Therefore, mutations in CLPP may 
be related to the survival of GSCs. C/EBPβ is a transcriptional activator of PGC-1α in 
developing embryos, whereas CHOP blocks the DNA-binding ability of C/EBPβ by 
forming a CHOP/C/EBP heterodimer and repressing PGC-1α expression[46]. In 
mouse GC culture, upregulated CHOP expression was induced, leading to apoptosis. 
ATF4 and CHOP expression was higher in the GCs of goats with follicular atresia[46]. 
This suggests that the UPRmt may be related to GC apoptosis, which damages the 
viability of oocytes and embryos.

The UPRmt marker c-Jun is involved in a number of mammalian male reproductive 
processes, including spermatogenesis, sperm maturation and activation, and 
acrosomal responses prior to oocyte fertilization[47]. Therefore, the role of the UPRmt in 
GSCs in infancy might be explored in future studies.

HEMATOPOIETIC STEM CELLS AND MITOCHONDRIA UNFOLDED 
PROTEIN RESPONSE
Hematopoietic stem cells (HSCs) are adult stem cells in the blood system. HSCs form a 
heterogeneous population with the capacity for long-term self-renewal and the 
potential to differentiate into various mature blood cells. HSCs, similar to many types 
of stem cells, are particularly vulnerable to damage from ROS, and the damage may be 
transmitted to progenitor cells, leading to various pathological conditions[48,49]. The 
main sources of ROS in cells are mitochondria[50].

A study showed that the UPRmt is activated upon HSC transition from quiescence to 
proliferation[51]. Remodeling the activity of SIRT7, a component of the UPRmt, 
translates into a reduction in quiescence, and higher SIRT7 activation can rescue the 
reduced regenerative capacity of aged HSCs[17]. These findings suggest that inhibition 
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of SIRT7 can enhance the biological generation of mitochondria and activate the 
UPRmt, thereby reducing its quiescence and differentiation ability[4]. Thus, SIRT7-
mediated UPRmt may be important for cells that experience bursts of mitochondrial 
biogenesis and transition between growth states with markedly different bioenergetic 
demands and proliferative potentials, such as stem cells[52]. During osteogenic differ-
entiation, SIRT7 is downregulated, and Wnt/β-catenin signaling is activated[53]. 
Growth factor independence 1 (GFI1) may prevent the proliferation of HSCs, and GFI1 
is a downstream target of C/EBPα, which prevents cell proliferation when GFI1 levels 
are low; however, not all cells will become hematopoietic[54]. The differentiation of 
HSCs is controlled by a series of transcription factors (GATA-1, PU.1, and C/EBP)[55], 
and C/EBP is closely related to the UPRmt.

The interaction between SIRT7 and NRF1 is a regulatory branch of the UPRmt and is 
related to cell energy metabolism and proliferation. The expression of SIRT7 declines 
during the aging of HSCs, and its downregulation induces mitochondrial protein 
folding stress and contributes to the dysfunction of HSCs. SIRT7 inactivation reduces 
quiescence, increases mitochondrial protein folding stress, and compromises the 
regenerative capacity of HSCs. These findings characterize the deregulation of the 
UPRmt-mediated metabolic checkpoint as a reversible contributing factor to HSC aging
[52]. SIRT7 binds to the promoter of NRF1 target genes and thus represses transc-
ription of these genes to impair mitochondrial biogenesis and respiration[56]. 
Inhibition of CLPP was found to kill human leukemia cells because CLPP has a greater 
mitochondrial presence and is more dependent on oxidative phosphorylation[57]. 
Mice with SIRT7 knocked out showed hematopoietic stem cell aging[58].

SIRT3 is important in maintaining metabolic regulation, stem cell regeneration, and 
neuroprotection[59]. SIRT3 protects HSCs from the oxidative damage associated with 
stress or aging[60]. SIRT3-mediated mitochondrial homeostasis inhibition leads to 
increased oxidative stress in elderly HSCs, and upregulation of SIRT3 restores the 
vigor of elderly HSCs, suggesting that high oxidative stress may lead to stem cell 
senescence, which is reversible in stem cells[60]. Studies have shown that the plasticity 
of mitochondrial homeostasis controls the aging of HSCs, and the expression of SIRT3 
can rejuvenate aging HSCs[60].

Although it is unclear whether the specific loss of UPRmt regulators affects the 
maintenance of HSCs, studies have shown the importance of mitochondrial protein 
homeostasis to stem cell viability[61].

Nevertheless, several studies have shown that c-Jun is involved in the quiescence 
and self-renewal of HSCs[62].

Hematopoietic cells are precursors of a variety of non-hematopoietic tissues that can 
be differentiated laterally in a specific environment, such as liver cells. Enhancement of 
the UPRmt or restoration of CLPP levels not only reduces cellular senescence by 
preventing oxidative stress but also enhances hepatocyte function to prevent the 
functional decompensation associated with cirrhosis[63].

Although the roles of the UPRmt and UPRmt marker genes in HSCs have been invest-
igated, especially those involved in proliferation, differentiation, and aging, the 
mechanism by which the UPRmt affects the proliferation, differentiation, and aging of 
HSCs needs to be discovered, especially the interaction between the UPRmt and SIRT 
genes.

NEURONAL STEM CELLS AND MITOCHONDRIA UNFOLDED PROTEIN 
RESPONSE
Neural stem cells (NSCs) reside in the nervous system and have the potential to differ-
entiate into nerve neurons, astrocytes, and oligodendrocytes to produce a large 
number of brain cells that can self-renew and produce a large number of brain tissues
[64]. Mitochondria are central regulators of the fate of NSCs and are critical to both 
neurodevelopment and adult neurogenesis[65].

FBW7 is highly expressed in the nervous system and controls neural stem cell differ-
entiation and apoptosis via Notch and c-Jun during embryonic development[66]. The 
AP1-binding site plays an indispensable role in the UPRmt, and c-Jun, a member of the 
AP1 family of transcription factors, plays an important role in the regulation of the 
UPRmt.

In the brain, high levels of ATF5 are found in neuronal stem cells, the number of 
which needs to be reduced via their differentiation into mature neurons or glial cells
[67]. ATF5 heterotopic expression in NSCs induces the expression of several olfactory 
sensory neuron (OSN)-specific genes. ATF5 is expressed in immature OSNs and 



Gu LF et al. Mitochondrial unfolded protein response in stem cells

WJSC https://www.wjgnet.com 743 July 26, 2021 Volume 13 Issue 7

promotes their maturation into OSNs[68]. Therefore, ATF5 is important for the differ-
entiation of NSCs. In mammals, ATF5 has considerable homology with ATFS-1 in the 
bZIP domain. ATF5 knockdown impairs cell proliferation, especially in cells 
expressing an ornithine transcarbamylase-deficient mutant (ΔOTC)[14]. And ΔOTC 
causes changes in neurocognitive function. Therefore, the UPRmt is important for the 
differentiation of NSCs.

Wnt, an important developmental regulator, is involved in mediating the UPRmt in 
nerve cells and intestinal cells[69]. Moreover, the proliferation/differentiation of NSCs 
is affected by glucocorticoids because of the functions of intracellular signaling 
pathways such as Wnt[70]. In IEC-specific mouse models, loss of HSP60 chaperone 
activated the UPRmt and led to mitochondrial dysfunction. The release of Wnt-related 
paracrine factors from the affected IECs is controlled by factors involved in stem cell 
proliferation[71].

The genetic and idiopathic forms of Parkinson's disease (PD) are characterized by 
the loss of dopamine neurons, and the protein levels of CLPP are selectively reduced 
in the dopaminergic neurons in the brain of PD patients, as determined by post-
mortem examination[72]. CLPP, a marker of the UPRmt, may be a useful therapeutic 
target for PD.

Furthermore, the roles of Wnt genes and the UPRmt in NSCs are largely unknown 
and should be studied because the Wnt pathway and the UPRmt play vital roles in 
nervous system development and diseases.

INTESTINAL STEM CELLS AND MITOCHONDRIA UNFOLDED PROTEIN 
RESPONSE
IECs are the most active metabolic site in the body of mammals. IECs constantly renew 
themselves throughout the life cycle because the stem cells located in intestinal crypts 
maintain vigorous proliferation and differentiation abilities. Intestinal stem cells 
(ISCs), located near the base of crypts, terminally differentiate near the crypt opening 
and produce a variety of intestinal epithelial cell types[73]. ISCs play important roles 
in maintaining the structural and functional integrity of the intestinal barrier and 
repair after injury[74]. Under different stress or diet conditions, the proliferation 
capacity of ISCs is very important for maintaining intestinal integrity. Mitochondrial 
dysfunction leads to tissue degradation and aging by affecting the homeostasis of 
somatic cells[75,76]. Therefore, it is very important to understand the biological charac-
teristics of ISCs.

In an IEC-specific mouse model, the deletion of HSP60 activated the UPRmt, 
resulting in mitochondrial dysfunction, stem cell loss, and impaired intestinal 
epithelial cell proliferation through CHOP-independent signaling pathways[71]. 
However, overexpression of epithelial-specific CHOP induced cell cycle arrest in the 
mice, resulting in impaired wound healing and reduced proliferation of IECs[77]. 
UPRmt signaling is important to the localization of intestinal epithelial stem cells and 
their differentiation and lineage commitment[78].

PKR integrates the UPRmt in inflammatory bowel disease (IBD). The endoplasmic 
reticulum (ER) UPR is initiated via eIF2α phosphorylation and AP1 activation[29]. 
There may be a connection between mitochondria and the ER with respect to the UPR 
in IBD.

Hence, the role of the UPRmt in ISCs is poorly understood, and the roles of the UPRmt 
in the proliferation, differentiation, and aging of ISCs need to be further explored.

PERIODONTAL LIGAMENT STEM CELLS AND MITOCHONDRIA 
UNFOLDED PROTEIN RESPONSE
Periodontal ligament stem cells (PDLSCs) are undifferentiated mesenchymal cells that 
remain in the periodontal membrane after the development of periodontal tissue[79].

ROS generated by mitochondria are produced as byproducts of normal oxidative 
metabolism[80]. In mammals, ROS are also invoked as agents important in processes 
triggered in cells undergoing apoptosis. Increases in the levels of ROS activate the 
CHOP branch of the UPRmt and increase the levels of CLPP and HSP10[81]. A study 
found that the JNK/mitochondrial pathway regulates glycation end products, causing 
damage and inducing the apoptosis of periodontal membrane stem cells. This 
pathway is activated by excessive ROS as induced by JNK, known as a stress-activated 
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protein kinase[82]. The phosphorylation activation of JNK induces a decrease in 
mitochondrial membrane potential, which changes the permeability of the 
mitochondrial membrane and causes the small-molecule solutes in the cytoplasm to 
flood into the mitochondrial matrix, resulting in mitochondrial swelling and rupture, 
triggering the mitochondria-mediated endogenous cell apoptosis pathway, regulating 
the expression of Bax and Bcl-2, and inducing the apoptosis of PDLSCs. The JNK 
signaling pathway can activate the proapoptotic protein Bax, inhibit the activity of the 
antiapoptotic protein Bcl-2, activate c-Jun/AP1 to upregulate proapoptotic proteins, 
and activate P53 family proteins, thus inducing apoptosis of different stem cells[83,84].

Therefore, many more roles for mitochondria and the UPRmt have been discovered 
in PDLSCs and are interesting and worthy of further exploration.

CANCER STEM CELLS AND MITOCHONDRIA UNFOLDED PROTEIN 
RESPONSE
Cancer stem cells (CSCs) represent a highly tumorigenic subset of cells in primary 
tumors[85]. They play important roles in tumorigenesis and tumor progression and 
recurrence[86]. Mitochondrial changes in CSCs, including morphological changes, 
abnormal activation of signaling pathways, dysfunction, production of ROS and 
mitochondrial autophagy, and the UPRmt, are key to the regulation of CSC prolif-
eration and apoptosis and are also among the reasons for the failure of tumor 
treatment[87]. Therefore, targeting CSCs is crucial for the effective treatment of cancer
[88] and finding an attractive target for the development of therapeutics for CSCs.

c-Myc is an important transcriptional regulator in cancer, somatic cell reprog-
ramming, and ESCs[89]. A previous study found that Myc was located in the 
mitochondrion[90]. ATF4 is the main coordinating factor for cell survival under 
nucleolar stress and is generally overexpressed in cancer[91]. The mechanism by 
which Myc sensitizes cells to apoptosis involves an ATF4 agonist, which may be a 
potential Myc-selective cancer treatment[92].

In addition, the UPRmt is thought to improve the survival rate of cancer cells and 
thus promote tumor growth[93,94]. ATF5 is highly expressed in undifferentiated NSCs 
and in a variety of human cancers, including gliomas[95]. Similarities in the expression 
of ATF5 in rodent, dog, and human tumors and the cross-species efficacy of the CP-
d/n ATF5 peptide support the development of an ATF5-targeting approach as a novel 
and translational therapy for dog gliomas[94]. Analysis of human glioblastoma 
samples showed that ATF5 expression is negatively correlated with disease prognosis, 
and interference with ATF5 function can lead to glioma cell death in primary tumors 
without affecting normal cells surrounding the tumor, indicating that ATF5 is a 
therapeutic target for glioblastoma[96]. ATF5 may also be a potential therapeutic 
target for CSC treatments.

HSP70 elimination can lead to depletion of tumor stem cells[97]. Compared with its 
level in the non-neoplastic prostatic epithelium, HSP60 expression is significantly 
increased in both early and advanced prostate cancers and in malignant prostate 
cancer cell lines[98]. The HSP10 pathway is a very active cell signaling network that 
affects the cell cycle, nuclear and cytoplasmic molecule transport and metabolism, and 
is an important cause of cancer[99]. HSP10 is highly expressed in a variety of cancers, 
including lung, pancreatic, and bladder cancers[100]. HSP70, HSP60, and HSP10 play 
important roles in the UPRmt, maintaining mitochondrial function and quality control; 
therefore, the modification of HSPs may become a new target for tumor therapy[101].

LONP1 is a UPRmt effector. In mouse models of colorectal cancer and skin cancer, 
heterozygous LONP1 deficiency attenuated tumor formation[102]. Additionally, in 
human specimens, elevated LONP1 was associated with a poor cancer prognosis[103].

Mitochondrial CLPP is overexpressed in human cancer cells, which promotes 
metastasis, and inhibiting CLPP may bring hope for cancer treatment[104].

As a downstream target of the EPHA2 receptor in NSCLCs and in conjunction with 
EPHA2 in tumor stem cell-like cells, the JNK/C-Jun pathway provides an opportunity 
for CSC-targeted therapy[105].

Mitochondrial redox homeostasis plays a key role in many biological processes, 
including biosynthesis and apoptosis, and is therefore a potential target for cancer 
therapy[106].

Thapsigargin (TG) limits the accumulation of CSCs. The cytoskeleton is rearranged 
in the presence of TG, and cytoskeleton rearrangement is related to the regulation of 
the cytoplasm and the UPRmt[107], thus the UPRmt has the potential to treat cancer.
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Importantly, discovering the roles and pathways of the UPRmt in CSCs will be very 
significant for cancer prevention and treatment; thus, the UPRmt might be a novel drug 
target for cancer treatment.

OTHER STEM CELLS AND MITOCHONDRIA UNFOLDED PROTEIN 
RESPONSE
The UPRmt induces many stem cells, such as induced pluripotent stem cells, 
mesenchymal stem cells (MSCs), muscle stem cells, and skeletal muscle stem cells.

Compared with somatic cells, induced pluripotent stem cells have fewer 
mitochondria and undergo less oxidative phosphorylation[31]. There is increasing 
evidence that during somatic reprogramming, mitochondrial mass is significantly 
reduced and energy metabolism is switched from oxidative phosphorylation to 
glycolysis, but the exact molecular mechanisms for these changes remain unclear[108]. 
They are most likely related to the UPRmt.

For mature MSCs, reducing the level of NAMPT led to a decrease in the intracellular 
NAD+ concentration, thereby downregulating the expression of SIRT1 after exposure 
to the NAMPT inhibitor FK866. Young MSCs were induced to become senescent cells. 
This was mainly caused by the depletion of NAD+ and reduction in SIRT1 activity. 
NAMPT overexpression can delay the senescence of MSCs during aging[109]. The 
UPRmt was activated in primary mouse hepatocytes with increased or absent SIRT1 
expression[110]. Increasing NAMPT requires a complete mitochondrial NAD salvage 
pathway and UPRmt-associated protein deacetylase SIRT3[111].

Improving the level of NAD+ cells in mice not only enhances the function of 
mitochondria but also induces the expression of UPRmt-related genes and inhibition of 
proteins, thereby preventing skeletal muscle stem cells from aging and prolonging the 
life of treated mice[112]. In addition to skeletal muscle stem cells, increasing NAD+ can 
also delay the aging of pigment stem cells[112]. Gastrocnemius muscle differentiated 
from muscle cells showed low expression of the UPRmt marker CLPP during aging
[113]. The UPRmt can delay aging. Additionally, at the cellular level, reduced CLPP 
impairs myoblast differentiation and cell proliferation and increases eukaryotic 
initiation factor 2α phosphorylation, thus inhibiting translation[114].

SIRT7 knockout enhanced osteogenic differentiation of bone marrow MSCs[115]. In 
addition, miR-152 can promote the aging of human dental pulp stem cells by targeting 
SIRT7 expression[116].

HEAT SHOCK PROTEINS AND MITOCHONDRIA UNFOLDED PROTEIN 
RESPONSE
The UPRmt plays a key role in modulating corals' ability to adapt to a changing world, 
including the production of HSPs and antioxidants[117]. The same may be true of 
human evolution. Recent studies have found that the UPRmt of C. elegans is very similar 
to that of mammals[118]. The UPRmt transcription factor ATFS-1 has been shown to 
regulate HSP70 and other mitochondrial chaperons[10]. ATF5, a homologous gene of 
ATFS-1, may also regulate HSPs. UBL-5 is a highly conserved protein and is abundant 
in mitochondria-rich human tissues such as the heart, skeletal muscle, liver, and 
kidneys[119]. Two UPRmt reporter genes (HSP60 and HSP70) were attenuated by 
inactivation ofUBL-5 gene encoding C. elegans and animal ubiquitin like small protein
[120]. The HSP pathway of the UPRmt may be related to UBL-5. The UPRmt was 
discovered by the modulation of nuclear genes encoding mitochondrial chaperone 
proteins by perturbations of the folding environment in mitochondria[121]. In 
mammalian cells, truncated folding defects of OTC upregulate mitochondrial 
chaperone proteins HSP60/10, HSP40, and the protease CLPP[122]. This signal 
transduction pathway may involve the transduction of mitochondrial matrix UPRmt 
pathway into the nucleus. mtHSP90 inhibitors can induce the UPRmt rapidly[123].

SIRT GENES AND MITOCHONDRIA UNFOLDED PROTEIN RESPONSE
The sirtuin family is critical to the mitochondrial stress response;in particular, SIRT1, 
SIRT3, and SIRT7 are involved in the UPRmt on different axes[124]. In addition to SIRT3 
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described above, SIRT7 is involved in the UPRmt. Nicotinamide riboside prevents and 
reverses non-alcoholic fatty liver disease by inducing the SIRT1 and SIRT3 dependent 
UPRmt, triggering an adaptive mitotic pathway to increase liver β-oxidation and 
mitochondrial complex content and activity[125]. There are seven sirtuins in 
mammals: Sirt1, Sirt2, Sirt6, and Sirt7 are located in the nucleus; Sirt1 and Sirt2 in the 
cytoplasm; and Sirt3, Sirt4, and Sirt5 in the mitochondrion[126]. This phenomenon 
may involve the transduction of the mitochondrial UPRmt pathway into the nucleus.

CONCLUSION
The UPRmt is a double-edged sword with dual effects. The UPRmt initiated by short-
term and mild mitochondrial stress, as an intracellular defensive response system, can 
resist mitochondrial damage and maintain and promote the function of mitochondria. 
Prolonged and repeated mitochondrial stress may aggravate the irreversible damage 
to cells by mediating apoptosis[127]. Therefore, controlling the UPRmt effectively is a 
current challenge, and the role of the UPRmt in stem cells is still unclear and deserves 
further attention.

The role of the UPRmt in longevity has primarily been examined in C. elegans, an 
organism that lacks somatic stem cells[128]. Recent reports have shown that activation 
of the UPRmt, through the administration of an NAD-increasing compound, can 
rejuvenate stem cells and extend the lifespan of mice[129].It remains to be seen 
whether the longevity of human stem cells is similar to that of C. elegans and mice.

Despite recent reports of the potential existence of stem cells that might be used to 
restore the primordial follicle and thereby the oocyte pool, therapeutic interventions 
during female reproductive aging currently remain limited[130]. The UPRmt has been 
used to find ways to prolong female reproduction. Study into the relationship between 
stem cells and the UPRmt in the field of regenerative medicine is ongoing.

Mitochondria are key factors of environmental stability in the body. During this 
homeostasis, the regulation of mitochondria in stem cells becomes increasingly 
important[131]. In addition, the UPRmt is inextricably linked to mitochondrial 
homeostasis.

However, the self-renewal, differentiation, aging, and apoptosis of stem cells are 
dependent on cell type, and some of the mechanisms need to be further investigated.
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