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Abstract
Glioblastoma multiforme (GBM), the most frequently occurring malignant brain 
tumor in adults, remains mostly untreatable. Because of the heterogeneity of 
invasive gliomas and drug resistance associated with the tumor microenvir-
onment, the prognosis is poor, and the survival rate of patients is low. Communi-
cation between GBMs and non-glioma cells in the tumor microenvironment plays 
a vital role in tumor growth and recurrence. Emerging data have suggested that 
neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of 
gliomas, and SVZ NSC involvement is associated with the progression and 
recurrence of GBM. This review highlights the interaction between SVZ NSCs and 
gliomas, summarizes current findings on the crosstalk between gliomas and other 
non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also 
discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the 
interventions targeting the SVZ and their therapeutic implications in 
glioblastoma. Taken together, understanding the biological mechanism of glioma-
NSC interactions can lead to new therapeutic strategies for GBM.

Key Words: Neural stem cells; Glioma; Tumor microenvironment; Communication; 
Exosomes
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Core Tip: This review summarizes current findings on the links between neural stem 
cells (NSCs) in the subventricular zone (SVZ) and glioblastoma as well as the 
therapeutic implications of using SVZ NSCs as drug delivery vehicles for targeted 
glioblastoma multiforme (GBM) therapy and their potential mechanisms. Understan-
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ding glioma-NSC interactions will lead to the development of strategies for treating 
GBM, such as the use of extracellular vesicles/exosomes.
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INTRODUCTION
Glioblastoma multiforme (GBM) is the most frequently occurring malignant brain 
tumor in adults, for which no effective therapy is currently available. Current conven-
tional therapies, such as a combination of surgery and radio- or chemo-therapy, yield 
poor prognosis and low median survival times of patients[1,2]. In addition, the 
recurrence of GBM is common or inevitable, and there are no standardized therapeutic 
approaches for such cases[3]. To improve clinical outcomes, immunotherapy has been 
successfully performed by activating the immune systems of patients[4], employing 
chimeric antigen receptor T cells, oncolytic viruses (OV), anti-cytotoxic-T-lymphocyte-
associated protein 4, and anti-programmed cell death protein 1, among others[5-8]. 
However, the therapeutic efficacy remains limited in GBM due to the effects of the 
tumor microenvironment (TME), which leads to immunosuppression or immune 
tolerance[1,5,9]. Recent advances integrating metabolomics with genomics or 
proteomics have provided new insight into the mechanisms that drive the origin and 
development of tumors, including GBM[10-12], especially the interactions between the 
tumor and TME, and provide important clues for new therapeutic strategies. Neural 
stem cells (NSCs), as unique stem cell type in the brain, have the abilities of self-
renewal and multi-directional differentiation, and can differentiate into neurons, 
astrocytes, and oligodendrocytes[13]. NSCs mainly exist in the subventricular zone 
(SVZ) of the lateral ventricle and dentate gyrus [subgranular zone (SGZ)] of the 
hippocampus. Furthermore, NSCs create a unique stem cell microenvironment in the 
SVZ or SGZ region that maintains stem cell homeostasis and stemness and inhibits 
differentiation[14,15]. Recent studies[16-20] have found that NSCs located in the SVZ 
might be the cells-of-origin of gliomas, and that SVZ involvement is associated with 
GBM recurrence in patients. Further, GBMs contacting the SVZ significantly decrease 
the overall survival (OS) and progression-free survival (PFS) of patients[16-19]. Thus, 
crosstalk between the oncogenic signaling of tumors and SVZ NSCs might be 
important in GBM. In this review, we focus on recent advances of the origin and 
development of GBM and explore novel strategies for GBM treatment. First, we 
summarize current findings on the crosstalk between gliomas and other non-glioma 
cells in the tumor niche. Then, we address the recently identified links between NSCs 
and gliomas and discuss the role and mechanism of SVZ NSCs in glioblastoma. 
Finally, we provide insight into the interventions targeting the SVZ and their 
therapeutic implications in glioblastoma. This review provides an overview of current 
opinions on gliomas.

TUMOR NICHE IN GLIOBLASTOMA
Emerging evidence[5,21-25] suggests that the unique TME involved by different non-
glioma cells is critical for glioma growth, invasion, recurrence, and tumor 
angiogenesis. In particular, the communication or crosstalk between glioblastoma and 
other non-glioma cells in the TME mediates tumor progression and therapeutic drug 
resistance[5,25]. The non-glioma cells in the TME or glioma niche contain neurons, 
normal and reactive astrocytes (RAs), glioma-associated microglia/macrophages, 
endothelial cells (ECs), neural stem cells, etc.[23-25]. These non-cancer cells secrete 
proteins or non-protein biomolecules (including nucleic acids, lipids, and nitric oxide) 
within the TME to regulate glioma growth. Furthermore, glioblastoma cells can recruit 
non-tumor cells to alter their phenotype to regulate the TME[23-25]. Neurons are the 
main cell type in the glioma niche. Venkatesh et al[26] found that excitatory neuronal 
activity affects the growth of glioblastomas, and neurons can mediate the interaction 
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with gliomas mainly via the cytokine NLGN3 secreted by activated neurons. 
Furthermore, the specific interaction between neurons and gliomas occurs mainly via 
the bona fide α-amino-3-hydroxy-5-methyl-4 isoxazole propionic acid receptor-
dependent neuron–glioma synapses[27]. These findings[26-28] describe the vital role 
of neurons in the glioma niche and crosstalk between these neurons. Astrocytes, 
especially reactive astrocytes, are involved in brain injury, tumors, and inflammatory 
and degenerative diseases[29]. The glioma-astrocyte interaction also plays a vital role 
in the TME[30,31]. Yu et al[32] showed that glioma cells can stimulate the transforma-
tion of normal human astrocytes into RAs in the absence of direct contact, and RAs 
deliver exosomal O6-alkylguanine DNA alkyltransferase to glioma cells, resulting in 
temozolomide (TMZ) resistance of gliomas. Furthermore, tumor-associated astrocytes 
exhibit immunomodulatory properties within the TME[33]. This indicates that reactive 
astrocytes or glioma-associated astrocytes in the TME mediate the potential interaction 
wi th  g l iomas .  The  TME of  g l iomas  normal ly  conta ins  in f i l t ra ted  
microglia/macrophages, and the ability of immunoregulation in glioma is positively 
correlated with the number of tumor-associated microglia/macrophages[34,35]. Chen 
et al[34] found that a complex composed of circadian regulator, circadian locomotor 
output cycles kaput, and its heterodimeric partner, brain and muscle aryl hydrocarbon 
receptor nuclear translocator-like 1, contributes to the interaction between the glioma 
and microglia. In addition, the authors[36] found that phosphatase and tensin 
homolog (PTEN) deficiency in glioblastomas significantly increased macrophage infilt-
ration to sustain GBM survival and stimulate tumor angiogenesis. A review by Poon et 
al[37] summarized the biology of glioblastoma-associated microglia/macrophages. 
These findings indicate the vital crosstalk of microglia/ macrophages with GBM in the 
TME. Gliomas have a high metabolic level, and the vasculature or angiogenesis is 
always abundant in the TME. Griveau et al[38] investigated glioma-vascular 
interactions by focusing on tumor-stromal and vascular regulation to explore the role 
of the glial phenotype associated with anti-angiogenic therapy escape[38,39]. Thus, the 
biological interaction between glioblastomas and non-glioma cells in the tumor niche 
is important in the development and progression of gliomas and exploration of new 
therapeutic opportunities. First, we describe the potential crosstalk between gliomas 
and glioma-associated non-glioma cells, such as neurons, astrocytes, microglia/ 
macrophages, and ECs (Figure 1); next, we carefully review current findings on the 
interactions between gliomas and NSCs.

ROLE OF SVZ NSCS IN GLIOMAGENESIS
Emerging data[16-19,40] have revealed that SVZ NSCs are closely related to 
glioblastoma development and progression, and GBM may arise from the accrual of 
gene mutations in NSCs. Jiang et al[41] found that GBMs associated with glial fibrillary 
acidic protein-expressing SVZ NSCs in mice showed accelerated tumor development, 
higher malignancy, and lesser drug resistance in comparison to those in the control 
group. In addition, TERT promoter mutation can permit the protracted self-renewal of 
cells and may induce gliomagenesis of NSCs[20,42,43]. Currently, NSCs in the SVZ are 
considered as potential cells-of-origin in gliomas[44-47]. In the next sections, we 
address the possible gene mutations in SVZ NSCs inducing gliomagenesis.

P53 or IDH1 mutation in SVZ NSCs
Recent findings[20,46,48-50] showed that SVZ NSCs that have acquired mutations in 
the tumor protein p53 or IDH1 gene can result in uncontrolled proliferation and 
tumorigenesis. Furthermore, p53 deficiency can induce the accumulation of oncogenic 
alterations[51,52]. Wang et al[53] showed the presence of mutant p53 proteins in SVZ 
NSCs, and that subsequent expression of mutant p53-expressing Olig2+ transit-
amplifying progenitor-like cells was associated with the initiation of glioma formation. 
Modrek et al[54] introduced IDH1R132H, P53 short hairpin (shRNA), and α-
thalassemia/mental retardation syndrome X-linked shRNA into human NSCs and 
found that these oncogenic hits blocked NSC differentiation and increased invasive-
ness, thus representing early drivers of gliomagenesis. Pirozzi et al[55] reported that 
mouse NSCs expressing IDH1R132H displayed reduced proliferation within the SVZ 
due to p53-mediated cell-cycle arrest and underwent neuronal differentiation. Bardella 
et al[56] conditionally expressed IDH1R132H in the SVZ of the adult mouse brain, and 
the mice developed hydrocephalus and dilated lateral ventricles (LVs), with the 
accumulation of 2-hydroxyglutarate and reduced α-ketoglutarate. Besides, stem cell 
populations were expanded, and mutant SVZ cells displayed features similar to those 
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Figure 1 Crosstalk between gliomas and non-glioma cells in tumor microenvironment. The tumor microenvironment of glioma contains many non-
glioma cells around the tumor, such as neurons, astrocytes, oligodendrocytes, immune cells (microglia and macrophages), endothelial cells, stem cells, etc. Active 
neurons promote the growth of glioblastomas through secreted cytokine NLGN3. Excitatory neuronal activity mediates the neuron-glioma interactions mainly via the 
bona fide AMPA receptor-dependent neuron–glioma synapse. Glioma cells stimulate normal astrocytes into reactive astrocytes and then reactive astrocytes induce 
temozolomide-resistance of glioma cells via delivering exosomal MGMT. The interactions of astrocyte-microglia can regulate transcriptional re-programming of 
microglia, and microglia contribute to sustaining the immunosuppressive microenvironment in glioblastoma multiforme (GBM) for promoting tumor progression. 
Glioblastomas increase macrophage infiltration, and then infiltrated macrophages promote GBM survival and tumor angiogenesis via secreted cytokines. Olig2-
positive glioma cells can be invaded by vessel co-option; the glioma-EC interactions restrict the anti-angiogenic therapy of gliomas. In addition, GBM contacting 
neural stem cells in the subventricular zone of the lateral ventricles result in a shorter overall survival of patients and increase early recurrence of gliomas. SVZ: 
Subventricular zone.

of gliomas[56]. Lee et al[20] sought direct molecular genetic evidence associated with 
GBMs that had originated from SVZ NSCs in clinical patients. They utilized brain 
tissue from 28 patients with IDH wild-type GBM or other types of brain tumors to 
perform deep sequencing and found low-level GBM driver mutations in healthy SVZ 
tissue away from the tumor in 56.3% of patients with IDH wild-type GBM. Moreover, 
astrocyte-like NSCs carrying the driver mutations led to high-grade malignant gliomas 
in a genome-edited mouse model[20]. These results show that P53 or IDH1 mutation 
in SVZ NSCs drives gliomagenesis by disrupting the characteristics and phenotypes of 
SVZ NSCs.

Other gene mutations in SVZ NSCs
Many genes or molecules such as tumor oncogenes and transcription factors involved 
in biological functions may affect the development of glioblastoma[46,47]. Abel et al
[57] found that infiltrating glioma cells may be derived from SVZ NSCs that are 
transformed by activation of the oncogenic K-Ras. Daniel et al[58] showed that PI3K 
activation in NSCs can drive the initiation of tumorigenesis. Liu et al[50] found that 
overexpression of the nuclear receptor, tailless, inhibited age-dependent exhaustion of 
NSCs in mice, induced migration of stem cells from the SVZ niche, and led to the 
development of gliomas. Yang et al[59] found that loss of the transcriptional repression 
factor, Capicua, promoted gliomagenesis via aberrant NSC proliferation and differen-
tiation. The transcription factors Forkhead Box G1 (FOXG1) and sex-determining 
region Y-box 2 (SOX2) are frequently overexpressed in GBMs. Bulstrode et al[60] 
demonstrated that FOXG1-null cells showed increased astrocyte differentiation and 
SOX2 ablation attenuated NSC proliferation, which suggests that FOXG1 and SOX2 
play complementary, but distinct, roles in GBM self-renewal. The Y-box binding 
protein 1 (YB-1) is vital gene in brain development and is upregulated in glioblastomas
[61,62]. Fotovati et al[63] showed that YB-1 was also overexpressed in the SVZ region 
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of the mouse fetal brain; indeed, YB-1 knockout mice displayed reduced expression of 
NSC markers in the SVZ, as well as reduced neurosphere growth, but showed 
enhanced NSC differentiation[63]. These data indicate the importance of oncogenes or 
cancer-associated transcription factors in SVZ NSCs involved in the genesis of GBM.

Undifferentiated NSCs
Recently, undifferentiated NSCs, especially intermediate progenitor cells, rather than 
NSCs, have been considered as the cells-of-origin of glioma tumors[64]. Llaguno et al
[47] edited glioblastoma-relevant tumor suppressors, neufibromatosis type 1 (Nf1), 
transformation-related protein p53, and PTEN by a tamoxifen-inducible Cre-
recombinase in late-stage neuronal progenitors, neuroblasts, and differentiated 
neurons, respectively, but found no evidence of glioma formation. They showed that 
mainly early neural progenitor cells were responsible for gliomagenesis[47]. Liu et al
[65] mutated concurrent p53/Nf1 in NSCs to establish gliomagenesis in mice by using 
mosaic analysis with double markers (MADM). The results showed that only 
oligodendrocyte precursor cells expressed aberrant/malignant growth and led to 
gliomagenesis, determined by tracing in MADM-based lineage analysis[65]. This 
suggests that undifferentiated stem cells, or oligodendrocyte precursor cells, are 
susceptible to tumorigenesis.

Thus, taken together, although many glioma-associated oncogene or transcription 
factor mutations in SVZ NSCs are responsible for the development of glioblastoma, 
understanding the role and potential mechanisms of SVZ NSCs driving GBM genesis 
or progression will be very meaningful for developing novel therapeutic interventions.

MECHANISM OF SVZ NSCS IN GLIOBLASTOMA
Patients with GBM with high isotropic p values in the SVZ region with high fluid-
attenuated inversion recovery indicated tumor infiltration involving the SVZ region
[66]. Emerging data[67,68] confirmed that GBMs in close contact with the SVZ 
possessed aggressive characteristics, furthermore, the SVZ region may be an 
independent predictor of lower OS and PFS and early recurrence in patients with 
GBM. Therefore, the mechanism of the interaction between GBMs and SVZ NSCs 
should be carefully evaluated.

Evidence for SVZ involved in GBM progression
Recent studies suggested that patients with GBMs in contact with the lateral ventricle-
SVZ region have lower survival rates than those with GBMs contacting the 
subgranular zone, corpus callosum, or cortex[16,17]. Furthermore, Şuşman et al[69] 
found a significant difference in the PFS of patients with GBM who were administered 
with high radiotherapy doses within the LV-SVZ region. Chen et al[70] investigated 
102 patients with GBM who had undergone surgical resection followed by adjuvant 
intensity-modulated radiation therapy and concomitant TMZ, and found that the 
recurrence of GBM was significantly related to the proximity to neurogenic regions 
(SVZ)[70]. To identify the potential molecules in the SVZ associated with GBM 
progression, Gollapalli et al[71] used proteomics techniques (two-dimensional 
difference gel electrophoresis and liquid chromatography-tandem mass spectrometry) 
to investigate the differences between SVZ+ (contacting) and SVZ− (non-contacting) 
GBM subtypes. Both serum and tissue proteomic analyses revealed significant 
alterations in various proteins associated with disease pathobiology, including lipid 
proteins, cytoskeletal, lipid binding, and cell-cycle-regulating proteins[71]. In addition, 
because of the similarities between tumor-initiating, GBM-derived neural stem (GNS) 
cells and genetically normal NSCs in vitro[72], Okawa et al[73] performed quantitative 
proteomics to compare total proteome and secreted proteome between GNS cells and 
NSCs. They identified 447 proteins in the total proteome and 138 proteins in the 
secreted proteome that were differentially expressed in GNSs and NSCs. Gene 
enrichment analysis mainly included extracellular matrix interactions, focal adhesion, 
cell motility, and cell signaling. They suggested that cell-matrix and cell-cell adhesion 
molecules play crucial roles in tumor infiltration[73]. Thus, these findings provide 
clinical and molecular evidence for SVZ NSCs in the regulation of GBM progression.

Gliomas invade SVZ region via chemoattractants secreted by NSCs
However, the mechanism of SVZ NSCs in glioma progression remains unclear, 
specifically the interactive biological functions between SVZ NSCs and GBMs. Qin et al
[74] focused on the role or action of NSCs/neural progenitor cells (NPCs) on glioma 
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cells, and found that the CM from SVZ NPCs had a chemoattractant effect on glioma 
cells. Through proteomic and functional analyses, they identified a chemoattractant 
complex secreted by SVZ NPCs, which included the neurite outgrowth-promoting 
factor, pleiotrophin (PTN), and its binding partners, secreted protein acidic and rich in 
cysteine (SPARC)/SPARC-like protein 1 and heat shock protein 90-beta. The chemoat-
tractant complex promoted tumor invasion by activating Rho/Rho-associated protein 
kinase signaling in gliomas. Furthermore, PTN was expressed at high levels in the 
SVZ, and its knockdown by shRNA in vivo remarkably reduced the ability of glioma to 
invade the SVZ[74]. This study mainly proposed that NSCs in the SVZ induced high-
grade gliomas to invade the SVZ region by secreting specific chemoattractant factors, 
and considered that the cytokine PTN is a potential target for glioma therapy. These 
results provide an experimental basis for glioma invasion of the SVZ region. Thus, 
targeting the interaction process between GBM and SVZ NSCs can represent a novel 
strategy to curtail the malignant potential of SVZ NSCs and restrict the progression of 
gliomas.

Gliomas promote tumor transformation of NSCs by extracellular vesicles delivery
Many studies[75-78] have shown that extracellular vesicles (EVs)/exosomes play an 
important role in intercellular communication. In addition, EVs/exosomes derived 
from gliomas or non-glioma cells in the TME are involved in tumor cell proliferation, 
invasion, malignancy, and drug resistance owing to their functions delivering mRNA, 
microRNAs, or proteins[79,80]. Wang et al[81] added glioblastoma-derived EVs to 
culturing with NSCs and found that NSCs de-differentiated into tumor-promoting 
cells. They found that these transformed cells had higher proliferative, migratory, and 
clonogenic activities than naïve cells, and accelerated tumor formation in vivo. Using 
single-cell transcriptome sequencing analysis, they identified several key genes in the 
transformed NSCs, including S100B, CXCL14, EFEMP1, SCRG1, GLIPR1, HMGA1, and 
CD44[81]. This study preliminarily shows that EVs secreted by gliomas can regulate 
and promote tumor transformation of SVZ NSCs by gene delivery, suggesting an 
origin for glioma recurrence. However, the targets or potential links between SVZ 
NSCs and gliomas are unclear and require further investigation and experimental 
validation.

INTERVENTIONS TARGETING THE SVZ (NSCS) FOR GLIOBLASTOMA 
TREATMENT
Recent data revealed that GBM contacting the SVZ region presented highly aggressive 
characteristics, and radiotherapy received within the SVZ region increased the PFS of 
patients with GBM. Furthermore, SVZ NSCs not only contribute to neurogenesis and 
play an important role in nerve regeneration[13,82], but also have a tumor-homing 
property and can be used to deliver drugs for tumor treatment[83-86]. The pre-clinical 
and clinical studies of interventions using SVZ/NSCs for glioblastoma treatment are 
shown in Table 1.

Radiotherapy for the SVZ region in glioma intervention
Currently, in addition to surgery and chemotherapy, radiation therapy has been used 
as a standard treatment strategy for patients with GBM in the clinic, and can be used 
to target the SVZ region. Chen et al[87] retrospectively analyzed 116 patients with 
surgically resected glioblastoma and found that the PFS and OS of patients 
significantly improved with a mean radiation dose of 40 Gy to the ipsilateral SVZ. This 
result suggests that targeting the SVZ region was necessary for treating GBM. To 
determine whether SVZ NSCs can tolerate radiation therapy, Cameron et al[88] 
combined the chemotherapy drug TMZ with X-irradiation in mice, and found that 
chemoradiation resulted in type A neuroblast apoptosis, but not NSC death. 
Furthermore, type A cells can be repopulated within the V-SVZ in vivo by sufficient 
recovery time[88]. Animal experiments suggested that SVZ NSCs could tolerant 
standard chemoradiation therapy. However, high radiation therapy doses to the 
ipsilateral SVZ may not be effective in patients with GBM[89]. Muracciole et al[90] 
found that high radiation doses > 57.4 Gy to ipsilateral NSCs and > 35 Gy to 
contralateral SVZ negatively impacted the OS of IDH-wild-type glioblastoma patients
[90]. Moreover, Cho et al[91] found that the apparent diffusion coefficient with lower 
Gaussian distribution values of ipsilesional SVZ increased after chemoradiation, 
leading to a poor PFS and OS of patients.
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Table 1 Pre-clinical and clinical studies of interventions using subventricular zone/neural stem cells for glioblastoma treatment

Ref. Experiment Clinical Interventions Doses Subjects Outcomes Mechanism

[87] - Yes Adjuvant radiation 
therapy for the SVZ 
(NSCs)

Ipsilateral 48.7 Gy Patients = 116 Improved PFS and OS in 
patients with GBM after 
GTR

-

[88] Yes - Adjuvant TMZ/XRT 
of the SVZ (NSCs)

50-100 mg/kg 
TMZ, and 1-2 Gy

Mice, n = 6 per 
cohort

SVZ NSCs tolerated 
chemoradiation 

-

[89] - Yes Adjuvant 
chemoradiation 
therapy for the SVZ 
(NSCs)

Ipsilateral (High 
dose > 59.4 Gy)

Patients = 173 Improved PFS and OS in 
patients with high 
ipsilateral doses

-

[90] - Yes Adjuvant radiation 
therapy for the SVZ 
(NSCs)

Ipsilateral High 
dose > 57.4 Gy

Patients = 50 Negatively impacted on 
OS in IDH wild type 
GBM

-

[91] - Yes DWI evaluated before 
and after adjuvant 
chemoradiation

No data Patients = 40 Increasing in ipsilesional 
ADCL associated with 
shorter PFS and OS

-

[96] Yes - NSCs modified by IL-4 89 ng/5 × 105 cells 
per 48 h

Mice, n = 5-7 
rats, n = 12-33 
per group

Strong anti-tumor effects 
and long-term survival 
of animals

Produced IL-4

[97] Yes - hNSCs overexpressed 
BMP4 (hNSCs-BMP4)

No data Mice, n = 10 
per group

Inhibited tumor growth 
and prolonged survival

BMP/Smad1 
pathway

[99] Yes - Modified iNSC with 
anticancer molecule 
TRAIL

7.5 × 105 cells per 
mouse

Mice, n = 12 
per group

Decreased tumor growth 
and extended the 
survival

Secreted anticancer 
molecule TRAIL

[100] Yes - h-iNSCTE transduced 
with TRAIL and TK

7.5 × 105 cells per 
mouse

Mice, n = 12 
per group

Inhibited GBM growth 
and prolonged the 
median survival

Secreted cytotoxic 
molecules TRAIL 
and TK

[85] Yes - HB1.F3.CD NSCs 
combined with 
intraperitoneal 
injection of 5-FC

1 × 104, 5 × 104, 1 
× 105 cells per 
mouse, 500 
mg/kg 5-FC

Mice, n = 12 
per group

Inhibited GBM growth 
and prolonged the 
survival

Converted prodrug 
5-FC to active 5-FU

[101] - Yes HB1.F3.CD NSCs 
combined with oral 
administration of 5-FC

1 × 107, 5 × 107 

cells, 75-150 
mg/kg/day 5-FC

Patients = 15 Confirmed the safety 
and ability of NSCs to 
target brain tumors and 
locally produce 
chemotherapy

Convert prodrug 5-
FC to active 5-FU

[102] Yes - HB1.F3.CD NSCs-
TRAIL combined with 
intraperitoneal 
injection of Lan C

2 × 105 cells, 1 
mg/kg Lan C

Mice, n = 10 
per group

Induced 
tumorregression

Lan C sensitized 
GBM to TRAIL

[105] Yes - HB1.F3.CD NSCs 
loaded with CRAd-
Survivin-pk7

5 × 105 cells, with 
50 IU per cell of 
CRAd-S-pk7

Mice, n = 7 per 
group

Increased the median 
survival of mice

Overcame major 
limitations of OVs 
in vivo

[106] Yes - HB1.F3.CD NSCs-
CRAd-S-pk7 combined 
with intraperitoneal 
injection of NACA

4 × 105 cells, 250 
mg/kg/day 
NACA

Mice, n = 6-7 
per group

Extended the median 
survival of mice

Enhanced OVs 
production and 
distribution in vivo

[109] Yes - Overexpressed CXCR4 
in NSCs and loaded 
with CRAd-S-pk7

5 × 105 cells Mice, n = 8 per 
group

Extended the survival SDF-1/CXCR4 
pathway

[110] Yes - NSCs loaded CRAd-S-
pK7 combined with 
intraperitoneal 
injection of MT

5 × 105 cells, 50 
μg/g MT

Mice, n = 8 per 
group

Improved the survival of 
GBM-bearing mice

Prolonged 
thepersistence of 
NSCs in the nasal 
cavities

[114] Yes - HB1.F3.CD NSCs 
loaded with MSN-Dox

2.5 × 105 cells Mice, n = 4-8 
per group

Prolonged the median 
survival of mice

Self-destructing 
mechanism

[116] Yes - Scaffold GEMs/tNSCs
tk

1 × 106 cells per 
scaffold

Mice, n = 5 per 
group

Increased cell viability 
and improved the 
survival

Reduced residual 
tumor volumes

[117] Yes - tNSC-TRAIL and/or 
tNSC–TK

7 × 105–1.4 × 106 

cells
Mice, n = 4-13 
per group

Inhibited tumor growth 
and survival

Secreted cytotoxic 
molecules TRAIL 
and/or TK
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SVZ: Subventricular zone; NSCs: Neural stem cells; PFS: Progression free survival; OS: Overall survival; GTR: Gross total resection; TMZ: Temozolomide; 
XRT: X-irradiation; IDH: Isocitrate dehydrogenase; DWI: Diffusion-weighted imaging; ADC: Apparent diffusion coefficient; IL-4: Interleukin-4; BMP4: 
Bone morphogenetic protein 4; iNSC: Induced neural stem cell; TRAIL: Tumor necrosis factor-α-related apoptosis-inducing ligand; h-iNSCTE: Human 
fibroblasts into tumor-homing early-stage induced neural stem cells; TK: Thymidine kinase; 5-FC: 5-fluorocytosine; 5-FU: 5-fluorouracil; Lan C: Lanatoside 
C; OV: Oncolytic adenovirus; CRAd-S-pk7: CRAd-Survivin-pk7; NACA: Novel antioxidant thiol, N-acetylcysteine amide; MT: Methimazole; MSN-Dox: 
Doxorubicin-loaded mesoporous silica nanoparticles; GEMs: Gelatin matrices; tNSC: Tumoricidal neural stem cells; tNSCstk: Engineered tNSCs to express 
the prodrug/enzyme thymidine kinase.

Therefore, although radiotherapy can be used to target the SVZ area, some 
problems warrant further consideration. First, the SVZ area is very small, making it 
difficult to accurately control the dose to the targeted SVZ. In particular, a high dose of 
radiation therapy may result in adverse effects. Second, due to the fact that SVZ NSCs 
are physiologically involved in the replenishment and repair of injured nerve tissue, 
radiation therapy-induced damage to NSCs in the SVZ may affect the repair capability 
of neurological functions. Therefore, it is necessary to develop novel gene-targeted 
therapeutic methods to precisely target glioma and avoid potential side effects.

NSCs loading anticancer molecules for targeted therapy of gliomas
The tumor-homing ability of NSCs has been confirmed to enable NSCs to migrate 
toward and co-localize within the tumor islets in vivo[85,92-94]. Glass et al[95] reported 
that endogenous NSCs in mice migrated from the SVZ toward gliomas and 
surrounded them. They injected red fluorescent protein-labeled GL261 cells into 
transgenic mice with a promoter for nestin (nestin-GFP) to explore the association 
between endogenous NSCs and gliomas. They found that nestin-GFP cells surrounded 
the tumors and expressed early precursor markers; furthermore, the tumor-associated 
precursor cells originated from the SVZ[95].

Because current gene therapies are unable to infiltrate the brain parenchyma and 
hard-to-reach glioblastoma core site, NSCs have been used to load therapeutic 
molecules for targeted treatment of gliomas. Benedetti et al[96] transferred IL-4 to 
C57BL6J mouse NSCs and injected them into the brains of mice to establish a 
glioblastoma model. They found that the survival of tumor-bearing mice was 
significantly extended, which was also observed in Sprague-Dawley rats with C6 
glioblastomas[96]. Liu et al[97] overexpressed bone morphogenetic protein 4 (BMP4) in 
hNSCs (hNSCs-BMP4) and found that the cells inhibited gliomas in vitro and in vivo by 
secreting BMP4. These findings suggest effective approaches based on loading of 
NSCs with therapeutically effective molecules for glioma treatment. In recent years, 
transdifferentiation (TD) has been successfully used in somatic cell reprogramming
[98]. Bagó et al[99] generated TD-derived induced NSCs (iNSCs) by transdifferen-
tiating fibroblasts in mice, and found that the iNSCs not only rapidly homed and 
migrated to glioblastomas in vitro and in vivo but also successfully delivered the 
anticancer molecule, tumor necrosis factor α–related apoptosis-inducing ligand 
(TRAIL), leading to a significant decrease in the growth of xenograft glioblastoma and 
prolongation of the median survival times of mice[99]. Next, they[100] also engineered 
human iNSCs by TD of human fibroblasts to deliver the cytotoxic agents TRAIL and 
TK (thymidine kinase). The cytotoxic h-iNSCs rapidly migrated to human GBM cells 
and penetrated GBM spheroids, significantly reducing the size of solid human GBM 
xenografts and prolonging the median survival of mice[100]. These results suggest that 
NSCs can be used as a cell platform for glioma-homing cytotoxic therapy.

Pre-clinical and clinical applications of human NSCs for GBM treatment
HB1.F3.CD, a cytosine deaminase (CD)–expressing clonal human NSC line that can 
convert the prodrug 5-fluorocytosine (5-FC) to active chemotherapeutic 5-fluorouracil 
(5-FU), has been approved by the United States Food and Drug Administration for use 
in human clinical trials. Aboody et al[85] used HB1.F3.CD and 5-FC to treat tumor-
bearing mice and showed that the average tumor volume of mice was significantly 
decreased, with no difference in toxicity. This result confirmed the efficacy of an 
allogeneic NSC-mediated enzyme/prodrug-targeted therapy in high-grade glioma. 
Portnow et al[101] reported the first-in-human study (NCT01172964) in patients with 
recurrent, high-grade glioma by retrovirally transducing HB1.F3.CD.C21 (CD-NSCs) 
to express cytosine deaminase stably. Fifteen patients with recurrent, high-grade 
glioma underwent intracranial administration of CD-NSCs during tumor resection or 
biopsy. After oral administration of 5-FC, CD-NSCs produced 5-FU locally in the brain 
in a 5-FC-dose-dependent manner by intracerebral microdialysis with no dose-limiting 
toxicity. Furthermore, autopsy results revealed that CD-NSCs that had migrated to 
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distant tumor sites were non-tumorigenic[101]. These findings demonstrate the initial 
safety and proof-of-concept of NSCs in targeting brain tumors. In addition, the cardiac 
glycoside lanatoside C (Lan C) sensitizes glioma cells to the anticancer agent, TRAIL. 
Teng et al[102] showed that HB1.F3.CD engineered to express TRAIL migrated 
towards tumors in mice and induced tumor regression in combination with Lan C. 
Oncolytic adenoviral virotherapy exhibits limitations, such as a poor viral distribution 
and infiltration throughout tumors[103,104]. Ahmed et al[105] used HB1.F3.CD loaded 
with the oncolytic adenovirus, CRAd-Survivin-pk7 (CRAd-S-pk7), and found that OV-
loaded HB1.F3.CD cells effectively migrated to the contralateral hemisphere of mice, 
inhibited the progression of clinically relevant human-derived glioma models, and 
prolonged the median survival times of mice compared to OV alone[105]. Further-
more, Kim et al[106] used the novel anti-oxidant thiol, N-acetylcysteine amide 
(NACA), to prevent OV-mediated potential toxicity, and found that NACA combined 
with CRAd-S-pk7 significantly increased NSC activity, enhanced CRAd-S-pk7 
production, and improved the therapeutic efficacy in vivo[106]. Currently, NSCs 
loaded with CRAd-S-pk7 have been used in a clinical trial in patients with GBM 
(NCT03072134).

Other pre-clinical strategies of NSCs
Intranasal delivery of therapeutics to the brain is a novel strategy[107,108]. Dey et al
[109] utilized hypoxic preconditioning or overexpression of CXCR4 to enhance the 
tumor-targeting ability of NSCs. They found that NSCs intranasally delivered 
oncolytic virus into glioma efficiently and extended the survival of mice. Spencer et al
[110] found that methimazole (MT), a US-FDA-approved compound, effectively 
disrupted the olfactory epithelium, delayed clearance, and kept cells in the nasal 
cavity. After MT injection, oncolytic virus-loaded NSCs delivered intranasally 
significantly improved the survival of GBM-bearing mice[110-112]. Thus, intranasal 
delivery as a novel pharmacologic strategy can employ the non-invasive NSCs-based 
therapeutic platform to optimize the treatment.

Mesoporous silica nanoparticles (MSNs) have controlled-release capabilities and 
non-toxic features. Cheng et al[113] conjugated MSNs with 111In and administered 
111In-MSN labeled NSCs into glioma-bearing mice via either intracranial or systemic 
injection. Their results revealed that 111In-MSN-NSCs actively migrated toward 
glioma xenografts[113]. Cheng et al[114] employed a pH-sensitive, MSN-doxorubicin 
(Dox)-loaded NSC delivery system for delaying drug release and non-invasively 
trigger programmed cell death. They found that MSN-Dox-loaded HB1.F3.CD cells 
efficiently preserved their migratory function and released MSN-Dox conjugates, 
causing significant toxicity to glioma cells, glioma apoptosis, and animal survival
[114]. These results suggest a multimodal, controlled-release, therapeutic strategy.

Engineered tumoricidal neural stem cells (tNSCs) show potential for treating 
aggressive brain glioblastoma[94,99-101,115]. Sheets et al[116] optimized and used 
HB1.F3.CD cells to prepare a polymeric scaffold [nanofibrous electrospun poly (L-
lactic acid) scaffolds]. They found that the polymeric scaffold significantly extended 
tNSC persistence in the cavity of a mouse model of human GBM resection/recurrence 
as the tNSCs migrated from the scaffolds into the tumors, both in vitro and in vivo. 
After engineering tNSCs with the prodrug/enzyme TK and transplanting them into 
the post-operative cavity of mice, the researchers found that the residual tumor 
volume of mice was markedly reduced, and the median survival times were extended
[116]. Satterlee et al[117] used organotypic brain slice explants and distinct human 
glioma types to create a novel hybrid tumor model and then evaluated the efficacy of 
iNSCs loaded with TRAIL or enzyme-prodrug therapy. They found that tNSC-TRAIL 
significantly decreased tumor growth and promoted the survival of the animals[117]. 
These findings suggest a new strategy and model for testing targeted GBM 
therapy.Overall, as an effective drug delivery platform, NSCs can be modified for 
delivering various anti-tumor agents, including apoptotic agents, oncolytic viruses, or 
prodrug-activating enzymes, and optimized to improve their therapeutic benefits in 
glioblastomas.

CONCLUSION
With the development of gene-targeted therapy and further studies demonstrating the 
role of the TME in tumor progression, crosstalk between glioma and its microenvir-
onment has been recognized, especially the communication of glioma and non-glioma 
cells. Recently, pre-clinical and clinical experiments confirmed that SVZ NSCs are 
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Figure 2 Challenges and effects of neural stem cells in the subventricular zone in glioma progression. A hypothetical scenario shows the 
crosstalk between neural stem cells (NSCs) in the subventricular zone (SVZ) and glioblastoma multiformes and the effects of SVZ NSCs in glioma progression. SVZ 
NSCs can exert chemoattractant effects on glioma cells through secretion of chemoattractant complex factors [such as pleiotrophin, HSP90B, and secreted protein 
acidic and rich in cysteine (SPARC)/SPARC-like protein 1], and glioblastomas can induce SVZ NSCs to de-differentiate into tumor-promoting cells via glioblastoma-
derived extracellular vesicles (EVs). The SVZ NSC-glioma interactions are mainly mediated by the secreted factors, especially EVs/exosomes. Understanding the 
biological mechanisms mediated by cytokines and EVs/exosomes will help to discover new therapeutic strategy. NSCs: Neural stem cells; SVZ: Subventricular zone; 
GBM: Glioblastoma multiforme.

closely related to glioma origin and progression through gene mutation and factor 
delivery. In general, gliomas are separated by a long distance from the SVZ region and 
may interact paracrine pathways, such as secreted cytokines and EVs. However, 
studies demonstrating an interaction between gliomas and SVZ are only preliminary, 
and the crosstalk mechanism remains unclear. In particular, SVZ NSCs are generally in 
a resting state but can be activated by brain disease or nerve damage. When gliomas 
occur, which can induce a state of intracranial stress, SVZ NSCs may be activated 
through the TME. However, how the microenvironment of glioma stimulates SVZ 
NSCs, and how SVZ NSCs react to the glioma, as well as the potential mechanisms, 
need further exploration (Figure 2). Thus, the genetic mutations or secreted factors 
associated with both GBMs and SVZ NSCs should be further examined.

In summary, as specialized stem cells in the nervous system, NSCs play vital roles 
in regulating physiopathological functions of the brain, including glioma development 
and progression. Studies of the interaction between SVZ NSCs and GBMs may reveal 
new molecular, epigenetic, and genetic characteristics that can be employed for 
combination therapy. Further research is needed to verify the mechanisms and 
advantages of SVZ NSCs in glioma progression and discover specific gene target 
treatment to increase the survival of patients with GBM. By exploring how gliomas 
stimulate the activation of SVZ NSCs, and how SVZ NSCs regulate the development 
and progress of gliomas, particularly the interaction mechanism of glioma-NSC 
mediated by secreted EVs/exosomes or factors, potential therapeutic strategies can be 
developed to treat gliomas.
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