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Abstract
BACKGROUND 
Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to 
diagnose because of the presence of numerous symptoms and a lack of specific 
biomarkers. Despite patient heterogeneity linked to patient subgroups and 
variation in disease severity, anomalies are found in the blood and plasma of 
these patients when compared with healthy control groups. The seeming 
specificity of these “plasma factors”, as recently reported by Ron Davis and his 
group at Stanford University, CA, United States, and observations by our group, 
have led to the proposal that induced pluripotent stem cells (iPSCs) may be used 
as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-
depth review.

AIM 
To identify metabolic signatures in FM and/or ME/CFS supporting the existence 
of disease-associated plasma factors to be sensed by iPSCs.

METHODS 
A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-
based systematic review of the literature was used to select original studies 
evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH 
terms “metabolomic” or “metabolites” in combination with FM and ME/CFS 
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disease terms were screened against the PubMed database. Only original studies 
applying omics technologies, published in English, were included. The data 
obtained were tabulated according to the disease and type of body fluid analyzed. 
Coincidences across studies were searched and P-values reported by the original 
studies were gathered to document significant differences found in the disease 
groups.

RESULTS 
Eighteen previous studies show that some metabolites are commonly altered in 
ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be 
developed as screening platforms, providing evidence for the existence of factors 
in patient body fluids capable of altering morphology, differentiation state and/or 
growth patterns. Moreover, they can be further developed using approaches 
aimed at blocking or reversing the effects of specific plasma/serum factors seen in 
patients. The documented high sensitivity and effective responses of iPSCs to 
environmental cues suggests that these pluripotent cells could form robust, 
reproducible reporter systems of metabolic diseases, including ME/CFS and FM. 
Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in 
patient-conditioned medium may provide valuable information to predict 
individual outcomes to stem-cell therapy in the context of precision medicine 
studies.

CONCLUSION 
This opinion review explains our hypothesis that iPSCs could be developed as a 
screening platform to provide evidence of a metabolic imbalance in FM and 
ME/CFS.

Key Words: Myalgic encephalomyelitis/chronic fatigue syndrome; Fibromyalgia; Induced 
pluripotent stem cells; Plasma factor; Conditioned medium; Sensor system

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Because of the special ability to sense environmental cues we propose that 
induced pluripotent stem cells (iPSCs) are suitable for use as a sensor system for 
metabolic disease. As fibromyalgia and myalgic encephalomyelitis/chronic fatigue 
syndrome body-fluids have unique metabolic profiles, the applicability of iPSC-based 
bioassays for those conditions are worth investigating. We envisage the development 
of iPSC platforms that allow differential diagnosis and disease-specific high-
throughput drug-screening platforms. Using healthy iPSCs and patient body fluids has 
significant advantages over using cell lines, primary culture of patient cells or iPSCs 
derived from patients. A consistent iPSC control-cell line platform will provide a 
robust metabolic/phenotypic model allowing faster, cost-effective, large cohort 
screenings.

Citation: Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as 
suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. 
World J Stem Cells 2021; 13(8): 1134-1150
URL: https://www.wjgnet.com/1948-0210/full/v13/i8/1134.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i8.1134

INTRODUCTION
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a devastating 
disease of increasing prevalence, affecting millions all over the world, with a higher 
frequency in women[1,2]. It is a serious medical and economical problem in most 
countries. Because there are many symptoms that can vary significantly over time in 
an individual patient, diagnosis is challenging, and extensive delays can increase the 
burden on patients and their families. The lack of specific biomarkers for the disease[3] 

https://www.wjgnet.com/1948-0210/full/v13/i8/1134.htm
https://dx.doi.org/10.4252/wjsc.v13.i8.1134
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impacts not only on our ability to diagnose patients but also limits our capacity to 
ensure that just ME/CFS patients are recruited into research studies.

Fibromyalgia (FM) is a chronic disease that shares similar characteristics with 
ME/CFS. Classified as independent diseases, both affect millions of people, have a 
high prevalence in women, and a lack specific biomarkers, leading to diagnosis based 
on clinical symptoms and palliative treatments[4]. In FM, the key symptoms are 
fatigue and pain that often result in a high level of disability. The similarity between 
the symptoms of these two diseases is quite striking. A study investigating the overlap 
between ME/CFs and FM concluded that 30% to 70% of the patients diagnosed with 
FM also met the diagnosis criteria for ME/CFS, and vice versa[5], revealing substantial 
comorbid appearance in the affected population[6].

Over the last 10 years, researchers have identified a wide variety of potential 
biomarkers in different cohorts of patients diagnosed with ME/CFS and FM. Investig-
ations have been primarily focused on microRNA profiles, DNA methylation patterns, 
metabolite differences and cytokine profiles. Unfortunately, no single study has 
consistently validated geographically distant cohorts, or shown the differences to be 
specific for ME/CFS of FM. Despite studies not reaching the sizes required to fully 
validate individual markers, the data provides a compelling case across all studies for 
the existence of molecular irregularities being present in patient blood samples. With 
many biomarker studies including only 10-20 patients. Given the associated hetero-
geneity/complexity of the disease more robust screening platforms are required to test 
the molecular anomalies.

Preliminary results from peripheral blood mononuclear cells (PBMCs) cultivated 
with plasma from ME/CFS patients or healthy controls showed differences in 
behavior of the PBMCs after culture[7], indicating that at least some of the anomalous 
components of the disease appear to be contained in plasma, either by the presence or 
by the absence of certain unknown factors. In support of the “ME/CFS-specific plasma 
factor” reported by Ron Davis and his team at Stanford University, CA, United States, 
Elisa Oltra´s team at the Catholic University of Valencia, Valencia, Spain, in collab-
oration with Karl Morten´s group at Oxford University, Oxford, United Kingdom, 
found that cellular oxygen consumption was altered upon addition of ME/CFS human 
plasma (unpublished, preliminary data). The impact of ME/CFS plasma on the 
respiration of the muscle cell line used as reporter in the assays mentioned above is 
believed to reflect the altered metabolic status of the patients.

Studies of the presence of metabolites associated with FM or ME/CFS, and 
additional central sensitivity syndromes, have been reviewed recently by Miller et al
[4]. By reviewing only studies that used metabolomic approaches, and carrying out a 
systematic review, we examined the metabolic differences in detail, with a focus on 
ME/CFS and FM. In addition, we review the characteristics of iPSCs that endow them 
with the ability to be environmental sensors, and the successful in vitro use of 
conditioned medium (CM) cultures to evaluate information relevant to iPSC-based 
bioassay designs. All this provides evidence to support the premise that ME/CFS and 
FM, and possibly other diseases with a metabolic component, could be diagnosed, or 
at least initially triaged, using an assay that evaluates the effects of patient plasma on 
iPSC morphology, growth and/or differentiation capacity.

It is expected that the information gathered in this review will guide future 
empirical studies towards our hypothesis that iPSCs constitute an ideal cell sensor 
system for the assay of metabolic disease. In addition to the diagnostic value as a 
disease sensor system, the information obtained on the effects of plasma CM on stem 
cells will be useful in future individualized stem-cell therapy programs, as the health 
status of patients may determine treatment outcomes.

MATERIALS AND METHODS
Systematic selection of ME/CFS and FM metabolic profile studies
By applying a PRISMA (Preferred Reported Items for Systematic Reviews and Meta-
analysis)[8] using the MeSH terms “metabolomic” or “metabolites” in combination 
with the disease term in the PubMed database, a total of 30 publications of studies of 
metabolic disorders in ME/CFS, and 40 of FM, were found (Figure 1). After removing 
duplicate publications and applying filters for reviews, languages other than English 
and Spanish, animal models, not “-omic” studies, or unrelated topics, a total of 12 
original research articles for ME/CFS and six for FM were selected (Figure 1). The 
searches were performed between February and April 2020 by a single investigator. 
The protocol was not registered.
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Figure 1 Flowchart depicting the PRISMA systematic review[8] of the literature and the series of filters applied to study retrieval. The 
database and the number of hits are shown.

RESULTS
ME/CFS blood metabolic profiles
An examination of the literature found that the study results were reported in two 
different body fluid types, blood plasma and serum (Supplementary Table 1), and 
urine (Table 1). Other sample types like feces were not included in this analysis 
because they tended to be reported in studies of microbiome composition rather than 
altered metabolites. Supplementary Table 1 summarizes the results of nine different 
studies performed by six research groups that detected a wide variety of metabolites 
relative to controls in the plasma of ME/CFS patients. A total of 391 ME/CFS 
individuals, 529 healthy participants, and 97 depressed patients, were evaluated in the 
studies. ME/CFS patients were diagnosed using the Fukuda, CDC or Canadian 
criteria, except for the participants in the study published by Zhang et al[10] in 2019, 
which did not report the diagnosis criteria. The most frequent method of analysis was 
liquid chromatography/mass spectroscopy (LC/MS), used in 4/13 (31%) of the 
studies. Whenever possible, metabolites were classified as increased or decreased, and 
bolded to highlight higher potential significance for the disease when reported by 
more than one study. Registered metabolite coincidences include choline (P < 0.03)[9], 
(P = 0.017)[13], (P < 0.014), and (P = 0.008)[15]; ceramides, (P < 0.01)[9], (P = 0.1)[13], 
and (P = 0.03)[17]; carnitines (P = 0.057)[9], and (P = 0.017)[13]; glucose (P < 0.05)[10] 
and (P = 0.009)[15]; ATP (P = 0.002)[15] and (P = NA)[16]; and two amino acids: lysine 
and tyrosine (P < 0.05)[10] and (P < 0.05)[13].

It is interesting that the levels of some cholines, ATP and glucose were found 
repeatedly decreased in more than one study. A decrease in ATP fits with the constant 
lack of energy associated with ME/CFS, although possibly unspecific. Acyl cholines 
appeared as a relevant group of metabolites presenting with a clear reduction in the 
study by Germain et al[9], including palmitoylcholine, linoleoylcholine and 
arachidonoylcholine. Their decrease has been related to low blood pressure which is 
one of the many symptoms associating with ME/CFS[18]. By contrast, the amino acids 
lysine and tyrosine were found to be increased, and interestingly, carnitine and 
ceramides were detected in both, increased and decreased levels, depending on the 
study. Methodological differences including time between sample collection and 
processing, and whether patients were fasted or in the post-prandial state, might 
explain some of the current contradictions between studies. Alternatively, perhaps the 
differences point to subgroups of patients with different metabolic profiles.

https://f6publishing.blob.core.windows.net/d9600a24-51e5-4ed2-88bb-ec584a10bded/WJSC-13-1134-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/d9600a24-51e5-4ed2-88bb-ec584a10bded/WJSC-13-1134-supplementary-material.pdf
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Table 1 Summary of studies reporting significant differences in the urine composition of myalgic encephalomyelitis/chronic fatigue 
syndrome patients (P ≤ 0.1)

Ref. Population studied/study 
design

Diagnosis 
criteria Technique Metabolites with increased levels Metabolites with decreased 

levels

Salicylic acid

Glucose

P = 0.06

Acetaminophen

Erasmus et 
al[19], 2019

31 high CFS (patients) (31 F, 0 M). 
39 low CFS (control) (39 F, 0 M). 
Age range, median and mean age 
NA

NA H-NMR

Acetaminophen-glucuronide

P = 0.08

M: Taurine

M: Tyrosine

M: Leucine

M: Valine

M: Isoleucine

M: Aspartate

M: Ethylmalonate

M: Lactate

M: Threonine

M: Trans-Aconitate

M: 2-Aminohippurate

M: N-Phenylacetylglycine

M: N-Acetylaspartate

M: Thymol

B: Dimethylamine

B: Histidine

B: 4-Aminohippurate

B: Hippurate

B: Glutamine

P < 0.01

B: Isocitrate

B: 1-Methylnicotinamide

B: N-Acetylglutamine

B: Creatinine

F: Isobutyrate

F: Lysine

F: Alanine

F: Hypoxanthine

F: Fucose

F: N,N-dimethylglycine

F: Urea

F: Carnosine

F: 3-Hydroxymandelate

Zhang et al
[10], 2019

105 CFS (65 F, 40 M). 97 DD (56 F, 
41 M). 190 HC (69 F, 121 M). Age 
range 20-49. Median and mean 
age NA

NA H-NMR

F: Indole-3-lactate

P > 0.05

AcetateMannitol P < 0.001

Urea

McGregor et 
al[20], 2019

11 ME/CFS (11F, 0 M) Mean age 
30.9. 25 HC (24 F, 1 M). Mean age 
33. 6

Canadian 
criteria

H-NMR P < 
0.001
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Methylhistidine P < 0.01 Pyruvate

BE: Indoleacetaldehyde

BE: Phytosphingosine

BE: Pyroglutamic acid

BE: Creatinine

AE: Acetylcarnitine

AE Capric acid

AE: 
Methyladenosine

AE: Corticosterone

AE: Levonorgestrel

AE: Pantothenic acid

AE: Pyroglutamic acid

AE: Xanthosine

AE: Xanthurenic acid

Chi et al[21], 
2018

98 CFS (77 F, 21 M). Age range 
21-69. Median age 43. 99 HC (76 
F, 23 M). Age range 19-65 yr. 
Median age 39 yr. Mean age: NA

United 
States 
centers

LC-MS

AE: Creatinine

P < 0.05

AE: Nonanedioic acid

P < 0.05 
or P < 
0.01

Ruiz-Núñez 
et al[14], 
2018

98 CFS (77 F, 21 M). Age range 
21-69 yr. Median age 43 yr. 99 HC 
(76 F, 23 M). Age range 19-65 yr. 
Median age 39 yr. Mean age: NA

Fukuda 
criteria

LC-MS NA Nutritional 
factor

Urinary 
Iodine

P < 
0.001

Aminohydroxy-N-
methylpyrrolidine 
CFSUM1

P < 
0.00003

CFSUM2 P < 
0.0007

Tyrosine

β-alanine

P < 0.02 Alanine P < 
0.005

Aconitic acid

McGregor et 
al[11], 1996

20 CFS (16 F, 4 M). Age range 17-
58 yr. Mean age 39.4 yr. 45 HC 
(32 F, 13 M). Age range 12-74 yr. 
Mean age 37.1 yr. Median age 
NA

CDC criteria GC-MS

Succinic acid

P < 0.05 Glutamic acid P < 0.02

AE: After exercise; B: Both; BE: Before exercise; F: Female; GC-MS: Gas chromatography-mass spectrometry; H-NMR: Proton nuclear magnetic resonance; 
HC: Healthy control; LC-MS: Liquid chromatography-mass spectrometry; M: Male; ME: Myalgic encephalomyelitis; NA: Not available.

ME/CFS urine metabolic profiles
Another body fluid commonly studied for the detection of disease-associated 
metabolites is urine. Only six studies performed by five independent research groups 
were found. Summary Table 1 displays main findings reported by the five studies. A 
total of 312 ME/CFS patients were examined in those investigations and compared 
with 367 healthy subjects. However, the study by the Erasmus et al[19] compared 
severely affected CFS patients with mild cases.

The diagnostic criteria applied towards patient recruitment was as previously 
mentioned with the exception of the study by Chi et al[21] that reported the diagnosis 
criteria from United States centers without any further specification. Another 
difference found between plasma and urine analysis was in the use of analytic 
techniques, with H-MRI being the most commonly used (in 3/6 or 50% of the studies, 
Table 1).

Following the same format as in Supplementary Table 1. Metabolites showing 
significant different levels were categorized as increased or decreased, and the 
significance was set at P < 0.1, as indicated. This time, creatinine (P < 0.05)[10] and (P < 
0.05)[21]; alanine (P < 0.05)[10] and (P < 0.005)[11]; and urea (P < 0.05)[10] and (P < 
0.001)[20] were dysbalanced in more than one independent study and are bolded in 
Table 1. Urea was the only metabolite that was persistently decreased, and the most 
significant, with a P value < 0.001. By contrast, creatinine and alanine were found to be 
both increased and decreased across different studies. Once more the contradictory 
results may suggest differences in methods or perhaps be indicative of patient 
subgroups.

FM body fluids metabolic profiles
The populations included in all six studies were consistently diagnosed with the 

https://f6publishing.blob.core.windows.net/d9600a24-51e5-4ed2-88bb-ec584a10bded/WJSC-13-1134-supplementary-material.pdf
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American College of Rheumatology criteria[22]. The body fluids analyzed were 
plasma (two studies), serum (one study), whole blood (one study) and urine (two 
studies). A total of 192 FM patients and 189 healthy controls, seven osteoarthritis (OA) 
patients, and nine patients with rheumatoid arthritis (RA)[26] were evaluated in the 
six studies (Table 2). The objective of the last study was to find specific molecular 
differences across diseases presenting some overlapping symptoms with FM, such as 
OA and RA, and set up a tool to easily distinguish them in the clinic. Once more, 
metabolites showing significantly (P < 0.05) increased or decreased levels with respect 
to control groups are indicated, and bolded when reported by more than one study. As 
shown on Table 2, only three bolded metabolites stand out from the rest: 
phosphocholines (P < 0.007)[23], and (P = NA)[24], in particular phosphocholine 16:0, (
P < 0.001); glutaric acid (P = NA)[25], and (P = 0.00011)[27]; and taurine (P < 0.001)
[25], and (P = 0.0007)[28]. Furthermore, a different type of phosphocholine, lysoPCs, 
were increased in both plasma studies[23,24]. This class of metabolites is linked to the 
metabolism of lipids and was also altered in plasma from ME/CFS patients, as 
indicated by the uncompensated levels of ceramides (Supplementary Table 1). An 
increase in amino acid metabolism, as shown by significant changes in taurine in both 
plasma and urine samples from FM patients, was also reported. In contrast, glutaric 
acid levels associated with energy metabolism pathways were found to be both 
increased and decreased in the two different sample types.

CM in stem-cell based bioassays
CM, also known as the cell secretome, corresponds to the media harvested from 
cultured cells, where the cells are excluded or removed. It is composed of all classes of 
soluble mediator molecules secreted by the cell, often originating from the 
endoplasmic reticulum, the Golgi apparatus, or from less common vesicle secretory 
pathways, including exosome release. The excreted molecules include small 
metabolites, growth factors, hormones, cytokines, and other proteins, in addition to 
molecules of other types. All are essential components of different biological processes 
including cell growth[29]. It is known that cell proliferation is dependent on CM 
composition, mainly in response to the levels of nutrients and growth factors that are 
present. By analogy, blood plasma and other body fluids can be considered the 
individual’s CM, containing all secreted molecules from the different cell types and 
tissues in the body. In the last few years, researchers have used CM to address several 
medical and health associated questions. Because of the vast array of procedures used 
on a wide range of targeted cultured cells with different experimental questions, a few 
examples were selected to illustrate the reference framework of this opinion review. 
Studies that evaluated adult stem cells, primary cells isolated from patients, and the 
more commonly used cultured cell lines as distinct sources of CM (Table 3), highlight 
the medical relevance of these fluids (Table 3).

To the best of our knowledge, the first report of the use of CM from patients was 
almost 30 years ago[39]. In that pioneering study, the authors tried to understand 
more about the pathogenicity of Paget disease, a health problem that increases the 
formation of osteoclasts directly affecting the generation and regeneration of bones. 
The research focused on obtaining the supernatant from nonadherent mononuclear 
cells from the bone marrow of patients suffering from the disease. Once the CM was 
obtained, it was applied to selected target cells (bone marrow cells from healthy 
participants). The results indicated an increase in monoclonal cell formation that was 
linked to an increased release of interleukin 6 (IL-6), which is an important regulator of 
bone mass and is linked to the processes of aging and inflammation[40].

In contrast, among the most recent publications in this area of research, we found a 
study by Raimondo et al[30] on multiple myeloma (MM), a terrible disease that also 
affects the formation of bones. Here, the CM corresponded to extracellular vesicles, 
named exosomes, isolated from bone marrow plasma samples of MM patients, and the 
target cells were a type of telomerase mesenchymal stromal cell (hTERT-MSC). The 
effect of culturing both together was on the formation of osteoclasts. Specifically, MM-
exosomes induced osteoclastogenesis and increased the levels of expression of IL-8, 
whose function is linked to bone destruction in this disease. These two examples show 
that factors contained in the CM or body fluids contain properties that affect the 
growth and differentiation of target cells (i.e. the presumed reporter cell system in the 
assay).

The CM bibliography in Table 3 includes a wide variety of sample types. In many 
studies, the CM constituents were present in the cell culture supernatants of a wide 
variety of samples, including cancer cell lines[31,34]; primary cultures, such as PBMCs
[36,38]; and macrophages infected with parasites[32] or bacteria[35]; or myoblasts[33]. 
One study also included purified exosomes in the CM. The purified fraction mediated 

https://f6publishing.blob.core.windows.net/d9600a24-51e5-4ed2-88bb-ec584a10bded/WJSC-13-1134-supplementary-material.pdf
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Table 2 Summary of studies reporting significant differences in body fluids composition of fibromyalgia patients (P ≤ 0.05)

Ref. Population studied/study design Diagnosis 
criteria Sample Technique Metabolite with increased levels Metabolite with decreased levels

Taurine

Methionine sulfoxide

Amino acid 
metabolism

Anthranilate

Lysophosphocholines 
(16:0)

Lysophosphocholines 
(18:0)

P < 0.001 2-hydroxyglutarate P < 0.001

Lysophosphocholines 
(20:4)

Lysophosphocholines 
(22:6)

P = 0.001

Lysophosphocholines 
(18:1)

P = 0.003

Menzies et al
[23], 2020

20 FMS (20 F, 0 M). 20 HC (20 F, 0 M). 
Mean age in both groups 41.9 yr. Age 
range and medium age NA

ACR 1990 
criteria

Plasma LC-MS

Lipid metabolism

Lysophosphocholines 
(16:1)

P = 0.007

Energy 
metabolism

Alpha-ketoglutaric 
acid

NA

1-hexadecanoyl-sn-glycero-3-phosphocholine 
[PC (16:0)]

Caboni et al[24], 
2014

22 FMS (22 F, 0 M). Age range 27-72 yr. 
Mean age 52 yr. 21 HC (21 F, 0 M). Age 
range 27-67 yr. Mean age 50 yr. Median 
age NA

ACR criteria Plasma LC-Q-TOF/MS

1-tetradecanoyl-sn-glycero-3-phosphocholine 
[PC (14:0)]

NA NA

Ornithine

L-arginine

Nε-Methyl-L-lysine

L-glutamate

Asymmetric dimethylarginine (ADMA)

l-threonine/DL-homoserin

Clos-Garcia et al
[25], 2019

105 FMS (73 F, 32 M). 54 HC (26 F, 28 M). 
Age range and mean and medium age 
NA

ACR 2010 
criteria

Serum UPLC-MS

L-glutamine

NA Platelet activating factor (PAF-16) NA

Trans-urocanate

Asparagine

Heme

Hackshaw et al
[26], 2013

10 FMS (9 F, 1 M). Mean age 50 yr. 10 OA 
(7 F, 3 M). Mean age 65 yr. 10 RA (9 F, 1 
M). Mean age 60 yr. Age range and 
median age NA

ARC criteria Blood UHPLC/MS/MS NA NA NA
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Cysteine–glutathione disulfide

Glucose

Pyruvate

Nicotinamide adenine dinucleotide (NAD+)

3-D-Ribohexonic acid P = 0.0000089

Sorbose

Threonic acid

Erythropentonic acid

2-Keto-1-gluconic acid

P < 0.00001

2-hydroxyglutaric acid P = 0.000013

Arabinose P = 0.000017

2-D-3,5-DHPL P = 0.000019

2,3,4-Trihydroxybutyl-L P = 0.000021

Phosphoric acid

Glutaric acid

Oxalic acid

Rhamnose

P = 0.00011

Tagatose P = 0.00024

4-HBA P = 0.00109

Malatji et al[27], 
2019

17 FMS (17 F, 0 M). 62 HC (62 F, 0 M), 11 
CF, 10 CO, 41 CN (age range 18-22 yr). 
Median and mean age: NA

ACR 1990 
criteria

Urine GC-MS

Malic acid P = 0.024

Succinic acid P = 0.0001

Lactic acid P = 0.0044

Gut microbiome

Hippuric P = 0.09

Taurine P = 0.0007

Malatji et al[28], 
2017

18 FMS (18 F, 0 M). 41 HC (41 F, 0 M), 11 
FR, 10 AM, 20 YHC (age range 18-22 yr). 
Median and mean age NA

ARC 1990 
criteria

Urine QE-MS

Osmolytes

TMAO P = 0.006

NA

ACR: American College of Rheumatology; B: Both; CFS: chronic fatigue syndrome; F: Female; GC-MS: Gas chromatography-mass spectrometry; HC: Healthy control; LC-MS: Liquid chromatography-mass spectrometry; LC-Q-TOF/MS: 
Liquid chromatography quadrupole time-of-flight mass spectrometry; M: Male; NA: Not available; QE-MS: Q exactive mass spectrometer; TMAO: Trimethylamine N-oxide; UPLC-MS: Ultra-performance liquid chromatography-mass 
spectrometry.



Monzón-Nomdedeu MB et al. iPSCs as Sensors for ME/CFS and FM

WJSC https://www.wjgnet.com 1143 August 26, 2021 Volume 13 Issue 8

Table 3 Effects of disease-conditioned medium on in vitro cultured stem cells

Ref. Disease/condition
Conditioned 
medium/culture 
supernatant

Target cultured cells Results/effects

Raimondo et 
al[30], 2019

Multiple myeloma (MM) Exosomes from MM.1S cell 
line. Exosomes from bone 
marrow

hTERT-MSC (human 
telomerase reverse 
transcriptase stromal cell 
line)

Osteoclastogenesis (Osteoclast formation). 
Blockade of osteogenic differentiation of 
MSC with increased IL-8 expression

Bougaret et al
[31], 2017

Obesity-associated increased 
risk of metastasis in breast 
cancer post-menopausal 
patients

Supernatant of MCF-7 cells 
cocultured with mature 
adipocytes

Human umbilical vein 
endothelial cells (HUVECs)

Increased HUVEC cell proliferation, 
endothelial tube formation, migration, IL-6 
levels and decrease in Leptin and VEGFR 
HUVEC receptors

Bai et al[32], 
2016

Trichinella spiralis skeletal 
muscle infection

Supernatant of murine 
macrophage cell line 
J774A.1 infected with ML-
ESP

Murine myoblast cell line 
C2C12

Avoid formation of myotubes by decreased 
MyoD, myogenin and MyHC protein 
expression affecting the differentiation of 
myoblasts. Suppresses the cell cycle 
influencing p21 and D1 protein expression

Kozakowska 
et al[33], 2015

Diabetes-associated 
angiogenesis deficiency

Supernatant of C2C12 
myoblasts overexpressing 
HO-1 or a luciferase gene 
(control)

Intramuscular injection in 
mice

Improved skeletal muscle regeneration after 
ischemia by increased neovascularization 
with lower number of granulocytes and 
higher proportion of lymphocytes

Wobus et al
[34], 2015

Breast cancer Supernatant of MFC-7, 
MDA-MB231 breast 
carcinomas with respect to 
MCF-10 (control)

Primary Mesenchymal 
Stromal Cells (MSC) and 
MSC cell line SCP-1

Modulate genes belonging to proliferation 
and differentiation. Downregulation of 
chemokine receptor CXCL12 expression

Cabbage et al
[35], 2014

Atherosclerosis Supernatant of the 
macrophage cell line (RAW 
264.7) inoculated with 
Chlamydia pneumoniae

BSMC (bovine aortic 
smooth muscle cells) and 
perivascular Sca-1+, CD31-, 
CD45- cells from apoE-/- 
mouse aortas

Accelerate the conversion of smooth muscle 
cells to calcifying cells. Increase the 
production of collagen II causing 
osteochondrocytic phenotypes

Fasslrinner et 
al[36], 2012

Graft vs host 
disease/Inflammation

MLR supernatant (Mixed 
Lymphocyte Reaction) from 
PBMCs

Mesenchymal stromal cells 
(MSC) from the bone 
marrow

Decrease in the population doubling 
compared to control. Increased IL-8, IL-6 
and Ang-1 levels. Induced osteogenic 
differentiation and suppress adipogenic 
differentiation

Zhao et al[37], 
2007

Amyotrophic lateral sclerosis 
(ALS)

SOD1-G93A ALS mice CNS 
extracts

hMSC (human 
mesenchymal stem cell)

Morphological change from fibroblast to 
neuron phenotype without detectable 
apoptosis and death. Delay in proliferation 
of hMSC due to increased differentiation 
rate

Vaisman et al
[38], 1996

Granulopoiesis in Anorexia 
Nervosa

Plasma and supernatant of 
cultured PBMCs

Bone marrow GM-CSF 
(granulocyte macrophage 
colony forming cells)

Decreased numbers of GM-CFS

Roodman et al
[39], 1992

Paget’s disease Supernatant of cultured 
Paget’s nonadherent bone 
marrow mononuclear cells

Bone marrow cells from 
healthy donors

Increased MNC (multinucleated cell) 
formation and IL-6 levels

BMI: Body mass index; CNS: Central nervous system; hADSC: Human adipose-derived stem cells; HO-1: Heme oxygenase; ML-ESP: Excretory-secretory 
products released by the muscle-larvae from Trichinella spiralis; PBMC: Peripheral blood mononuclear cell; VEGFR: Vascular endothelial growth factor 
receptor.

cell-to-cell signaling assumed to promote activity or reflect the cell´s physiological 
state[30]. In addition to the CM the type of target reporter cell that is used is also an 
important element of the reporter bioassay. Some studies show different types of 
MSCs acting as target cells (Table 3)[30,34,36,37]. Cultures of this type of adult stem 
cell are highly relevant to this review, as MSCs share some similarities with iPSCs and 
can also be derived from them[41].

MSC differentiation to adipocytes, chondrocytes, or osteocytes, is altered or blocked 
when the immune system is impaired or activated. An example of this was 
demonstrated by Fasslrinner et al[36]. The research focused on evaluating the inflam-
matory response caused by graft vs host disease. In that study, mixed lymphocyte 
reaction (MLR) supernatants were extracted from a collection of different PBMCs 
donors and cultured with MSCs obtained from bone marrow collected from healthy 
donors. The results showed suppression of the potential of MSCs to differentiate to 
adipose tissue; and in exchange, potentiation of osteogenic differentiation by exposure 
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to patient MLR supernatants.
In murine myoblasts, another type of target cell, the supernatant collected after 

culturing murine macrophages with products released by Trichinella spiralis larvae 
affected myotube-formation proteins, inducing inhibition of differentiation[32].

Apart from changes in lineage differentiation, growth rates of stem cells are also 
affected by modifications in the media composition. Supernatants of cultured anorexia 
nervosa PBMCs decreased granulopoiesis[38] in bone marrow granulocyte 
macrophage-colony forming cells, which validated the existence of a “factor or factors” 
in the supernatant of patient blood cells that affected the growth of cultured cells. 
Interestingly, inflammatory diseases have been evaluated in MSCs[34,36,37], a cell 
type that has anti-inflammatory properties. To conclude, it can be deduced from 
Table 3, that a wide variety of diseases have been studied by CM approaches.

iPSCs are sensitive to environmental cues
iPSCs are known to be particularly sensitive to environmental cues, and thus may 
allow us to model what might be happening in vivo when incubated in the presence of 
abnormal metabolites from patients in the growing medium. The aim of a recent study 
by Rodimova et al[42] was to evaluate the metabolic status of iPSCs during dermal and 
epidermal differentiation by optical metabolic imaging. When iPSCs differentiated into 
dermal fibroblasts and keratinocyte progenitor cells, a metabolic shift towards a more 
oxidative state, as indicated by FAD/NAD(P)H redox ratios was observed. While the 
biosynthetic processes occurring in dermal fibroblasts lowered the intracellular pH, no 
intracellular pH shift was observed in keratinocyte progenitor cells. The pH levels in 
dermal fibroblasts were consistent with an OXPHOS metabolic pathway switch.

The differences in energy metabolism in undifferentiated and differentiated cells are 
well known. Undifferentiated cells need larger amounts of energy in a shorter period 
of time when they are actively proliferating. Although the OXPHOS pathway can 
produce more molecules of ATP in the final output, the rapid production of ATP by 
glycolysis seems to be a crucial feature for undifferentiated cells. Energy-producing 
pathways may also be affected differently in plasma-containing cultures. Interestingly, 
the plasticity of iPSCs is attributed to the presence of a specific mitochondrial 
phenotype that reflects the somatic cell type from which the stem cells were derived. 
Some iPSC cell lines may thus perform better than other when used as sensors of 
environmental cues.

When metabolism is altered, epigenetic changes may occur that may directly affect 
its physiology[43]. Glucose-derived metabolites like acetyl-CoA, NAD+, S-adenosyl 
methionine (SAM), L-proline, alpha-ketoglutarate (αKG), and fatty acids, have been 
found to be associated with regulation of the epigenome and stem cell pluripotency
[44]. Because of the reprogrammed open status of iPSC chromatin[45], iPSCs should be 
especially sensitive to the nutritional environment.

There are two types of pluripotent states: naïve and primed (i.e. closer to the differ-
entiated phenotype commitment). They differ in the energy metabolic pathway used 
to produce ATP. In the case of naïve pluripotent stem cells, glycolysis and OXPHOS 
can both be used as energy metabolic pathways. By contrast, primed pluripotent stem 
cells obtain energy only from glycolysis even if oxygen is present in the environment
[46]. It seems that factors inhibiting the OXPHOS pathway would be of use in the 
transition from naïve to primed pluripotency. For example, methionine withdrawal, 
which promotes the OXPHOS pathway, inhibits glycolysis and triggers differentiation 
towards a fibroblast phenotype.

An additional cue to be sensed by iPSCs includes the glucose uptake process. 
Increased glucose uptake in combination with glycolysis activation, enhances iPSC 
colony formation[47], leading to macroscopic, easily observable morphological 
changes, and self-renewal rates. It has been reported that hyperosmotic stress has an 
impact on cell shape caused by the AQP1 cytoskeletal remodeling protein[48]. AQP1 
water channels in membranes are increased by hyperosmolarity. In stem cells, various 
cell shapes can affect downstream differentiation options. To examine the effects of a 
high glucose environment and the effects of hyperosmotic stress on iPSCs, a group of 
investigators[49] treated cells with either high glucose or high mannitol, as a 
hyperosmolar agent and a metabolic control. Both compounds increased the number 
of cellular AQP1 channels, but only high glucose increased pluripotency markers. 
Knowing the signals that regulate the osmosis pathway allows investigators to direct 
iPSC fate options, indicating once more their suitability as sensors of the metabolites 
present in plasma. The effects of changes in oxygen level were also studied by the 
authors. Hypoxic environments, in which the oxygen requirement exceeds the 
available supply, increase reprogramming efficiency and help cells maintain their 
pluripotent state[49]. That is an important observation, and supports iPSCs as a 
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potential sensor for the diagnosis of ME/CFS, because, as previously mentioned, 
preliminary results obtained by Oltra and Morten showing that the addition of 
ME/CFS plasma to cell cultures increased oxygen consumption.

Additional environmental factors that affect iPSC cultures are variables to be 
controlled in the reporter system set, and include cell density associated with 
acidification of the culture medium[50]; cell-cell contact interactions, the extracellular 
matrix; physical forces, and the physiochemical environment[51]. It is important to 
keep in mind that selection of the appropriate growth conditions will influence the 
robustness and quality of the sensor assay based on iPSCs. The conditions may vary 
according to the needs, types of metabolites, or soluble factors to be sensed.

DISCUSSION
Choline is an essential nutrient in humans and is a functional component of every cell 
membrane[52]. Previous studies have shown that many compounds containing 
choline are present in ME/CFS and FM patients at levels that vary from those in 
healthy subjects. As shown on Supplementary Table 1, choline levels are decreased in 
all ME/CFS studies so far performed. A decrease in choline levels often correlates with 
disorders of the liver, lymphocytes, and skeletal muscle. Acyl cholines, can be long-
chain or short-chain compounds, and both are active in the regulation of blood 
pressure. Interestingly, only long-chain acyl cholines are related to acetylcholine, a 
crucial neurotransmitter present in both the central and peripheral nervous systems. 
Germain et al[9] reported that acyl cholines negatively regulate the expression of 
acetylcholine, which may explain brain fog and memory loss symptoms in ME/CFS 
patients. Interestingly, decreased levels of acetylcholine, which is a major neurotrans-
mitter in the brain, may explain the occurrence of patient cognitive problems.

Increased choline levels were found in different parts of the brain in ME/CFS 
patients compared with controls[53,54]. The finding is not shown in any of the 
summary tables included in this review because it was reported in only one metabolite 
analysis and not as an -omics finding. Nevertheless, low-scope studies[55] and/or 
studies in tissues may help interpret the results of wider scope studies done on body 
fluids. The only increased choline metabolite reported in -omics studies was 
phosphocholine in the plasma of FM patients (Table 2). The increased level of a 
metabolite in a body fluid does not necessarily mean that it was also increased in all 
tissues or in other body fluids.

Ceramides are related to lipid formation, specifically sphingolipids. Differences 
have  so  far  been  found in  only  the  p lasma of  ME/CFS pat ients  
(Supplementary Table 1). Ceramides are needed for the formation of extracellular 
vesicles and exosomes[56], which could explain the increased numbers reported by 
Oltra et al[57] in the plasma of severely affected ME/CFS patients. Variable levels of 
ceramides have also been found in a number of other pathologies[58], consequently 
neither ceramides nor compounds containing choline, are considered specific to 
ME/CFS. Alterations could be a consequence of disease rather than a cause. 
Nevertheless, the proposal here is to provide a system capable of sensing complex 
cues, not variations of single metabolites.

Metabolomic screening has limitations in identifying compound variants or unusual 
molecules in the analyzed fractions because of a lack of reference compounds for 
comparison-based identification. The vast majority of metabolites isolated by 
metabolomics are not identified. That is probably why specific ME/CFS or FM 
biomarker metabolites have not yet been found. Study heterogeneity resulting from 
the methods and/or the diagnostic criteria used for patient selection constitute 
additional limitations for meta-analysis.

No single study included in our analysis confirmed our initial hypothesis that iPSCs 
are the ideal target cells to use as sensor reporters of CM components in ME/CFS and 
FM plasma. However, the absence of studies supports the novelty of the proposed 
idea, and the possibility of previous reports evaluating the impact of CM on iPSCs 
growth and differentiation supportive of our hypothesis. Table 3 includes a series of 
studies using different types of mesenchymal stem or stromal cells as targets of CM 
from other sources, leading to changes in their differentiation potential and growth 
capability. As MSCs and iPSCs share some features, including the capacity to self-
renew and the potential to differentiate into other tissue lineages[59], it is assumed 
that the results obtained with MSCs can be extended to iPSCs. It is also hypothesized 
that the increased plasticity of iPSCs leads to improved sensitivity and cell 
homogeneity, leading to more reproducible batch-to-batch results.

https://f6publishing.blob.core.windows.net/d9600a24-51e5-4ed2-88bb-ec584a10bded/WJSC-13-1134-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/d9600a24-51e5-4ed2-88bb-ec584a10bded/WJSC-13-1134-supplementary-material.pdf
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Data from several review articles reported that pluripotent stem cells were sensitive 
to a wide variety of stimuli, metabolic pathways for energy production[47], 
intracellular pH[60], hyperosmotic stress[48], the presence or absence of oxygen[49], 
cell density[50], and the composition of the medium[61], all of which contributing to 
outcomes of iPSC cultures. We failed to find studies of iPSC sensitivity to environ-
mental factors compared with other stem cell types or cultured cells, but the data 
obtained here supports our proposal to a certain extent. Moreover, it should be of 
interest to invest future research efforts to provide empirical data for the currently 
undocumented comparisons. The fact that iPSCs have also been used to test toxicity, 
mutagenicity, teratogenicity, and carcinogenic potential effects of environmental 
factors[62], further supports the adequacy of iPSCs, as a sensor system to assay soluble 
factors present in the plasma of patients with metabolic dysfunction, as proposed in 
this review.

An important limitation of the proposed bioassay comes from its inherent low 
specificity, as different metabolites may induce similar gross phenotypic changes in 
iPSCs. Nevertheless, the method should at least serve as an initial selective process for 
triage and to screen healthy individuals. The bioassay should increase the success of 
transcriptomic and proteomic CM-treated iPSCs to uncover pathway modulation by 
disease-specific factors. The additional relevance of this proposal being the assessment 
of the impact of the disease on patient endogenous stem cells. Furthermore, the system 
proposed here might help to estimate the potential response to stem-cell therapy of 
patients according to their metabolic status, perhaps leading to more robust outcomes 
of stem-cell therapy in future clinical trials.

Evaluation of additional subcellular changes including mitochondrial function in 
iPSCs after CM addition, and the mitochondrial characteristics in the CM cell sensors 
are additional aspects that deserve investigation in future research studies. Similarly, 
evaluation of the endocytic pathway, exosome release, and paracrine factors are 
additional aspects of sensor cells that can inform on the pathophysiology under study, 
helping identify early, specific disease biomarkers and predict individual responses to 
stem-cell therapy.

CONCLUSION
To the best of our knowledge, this is the first comprehensive systematic review of 
ME/CFS and FM metabolic profiles. It is an update of the metabolic differences 
reported by more than one independent study, and the discrepancies that exist may 
reflect patient heterogeneity in these two overlapping diseases. Possible associations 
between dysregulated metabolites and disease symptoms were also found.

The CM bibliography reveals the prevalence of studies that investigated the inflam-
matory components of disease and a preference for the use of adult stem cells as a 
target reporter system, perhaps because of the attributed immune-regulatory 
properties of MSCs. It also highlighted a variety of CM ranging from cell culture 
supernatants to human body fluids either as complex mixtures or as functional 
purified fractions such as exosomes.

Finally, even though we did not find any articles reporting the use of iPSCs as a 
disease sensor, which might reflect the novelty of our hypothesis, we managed to 
gather information supportive of the high sensitivity and environmental response of 
iPSCs. The environmental cues included several physical and chemical factors and 
soluble mediators, which are seen as evidence of exceptional sensor capacity for future 
assay of the ME/CFS and FM disease-associated “plasma factors” and essentially the 
main overall goal pursued here.

ARTICLE HIGHLIGHTS
Research background
Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) are multifactorial immuno-metabolic disorders lacking biomarker-based 
diagnostic methods. Comorbidity is frequent, and the prevalence is increased in 
women, affecting as much as 5% of the population globally. Available clinical 
treatments are symptom-palliative only.
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Research motivation
A diagnostic bioassay of FM and ME/CFS would reduce the time to diagnosis, clinical 
costs, and permit the development of effective, curative, treatments. Methods capable 
of detecting disease-associated “plasma factors” could serve this purpose even if the 
nature of the detected factors remain unknown.

Research objectives
Identification of metabolic imbalances associated with FM and ME/CFS provides the 
background needed to develop a cell-based diagnostic bioassay for FM and ME/CFS.

Research methods
The methods included a PRISMA (Preferred Reported Items for Systematic Reviews 
and Meta-analysis)-based systematic review of the literature analyzing FM and 
ME/CFS metabolic profiles, and the technical evidence supporting induced 
pluripotent stem cells (iPSCs) as sensors of environmental imbalance.

Research results
More than one study found statistically significant changes (P < 0.05) in body-fluid 
metabolites, particularly cholines, ceramides, and some amino acids in FM and 
ME/CFS patients. Environmental cues can affect stem cell phenotype.

Research conclusions
FM and ME/CFS metabolite profiles support metabolic imbalance. The lack of 
previous research exploring the hypothesis raised confirms the novelty of our 
proposal.

Research perspectives
Empirical testing of the influence of FM and ME/CFS “plasma factors” on iPSCs 
growth and behavior is warranted.
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