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Abstract
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells 
have some interesting biological properties that make them unique for cell 
therapy of degenerative and cardiovascular disorders. Although both cell 
populations have been already studied and used for their regenerative potentials, 
recently their special immunoregulatory features have brought much more 
attention. Mesenchymal stem cells and endothelial progenitor cells have both 
proangiogenic functions and have been shown to suppress the immune response, 
particularly T cell proliferation, activation, and cytokine production. This makes 
them suitable choices for allogeneic stem cell transplantation. Nevertheless, these 
two cells do not have equal immunoregulatory activities. Many elements 
including their extraction sources, age/passage, expression of different markers, 
secretion of bioactive mediators, and some others could change the efficiency of 
their immunosuppressive function. However, to our knowledge, no publication 
has yet compared mesenchymal stem cells and endothelial progenitor cells for 
their immunological interaction with T cells. This review aims to specifically 
compare the immunoregulatory effect of these two populations including their T 
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cell suppression, deactivation, cytokine production, and regulatory T cells 
induction capacities. Moreover, it evaluates the implications of the tumor necrosis 
factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune 
checkpoint signaling pathway controlling most of their immunological properties.

Key Words: Endothelial Progenitor Cells; Mesenchymal Stem Cells; T cells; Immunosu-
ppression; Immunoregulation; TNFα-TNFR2 signaling pathway

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This present article aims to review for the first time some known similarities 
and differences between mesenchymal stem cell and endothelial progenitor cell 
immunomodulatory functions. It describes and compares different mechanisms that 
they use to suppress conventional T cells and/or to induce regulatory T cells. Among 
different mechanisms of action, we emphasize the implication of the immune 
checkpoint signaling pathways such as the tumor necrosis factor alpha-tumor necrosis 
factor receptor 2 axis. We try to cover the lack of information by proposing new 
research paths and their importance for future studies including in vitro and in vivo 
applications in regenerative medicine.

Citation: Razazian M, Khosravi M, Bahiraii S, Uzan G, Shamdani S, Naserian S. Differences 
and similarities between mesenchymal stem cell and endothelial progenitor cell 
immunoregulatory properties against T cells. World J Stem Cells 2021; 13(8): 971-984
URL: https://www.wjgnet.com/1948-0210/full/v13/i8/971.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i8.971

INTRODUCTION
Mesenchymal stromal/stem cells
In the year 1968, mesenchymal stromal/stem cells (MSCs) were first isolated from 
bone marrow (BM) cells[1]. These cells represent heterogeneous cell populations that 
have shown various abilities and potentials such as proliferation and regeneration. 
According to previous shreds of evidence, they can differentiate into a variety of cell 
types of several origins like ectodermal, endodermal, and mesodermal such as 
cardiomyocytes, osteocytes, keratocytes, hepatocytes, and endothelial cells (ECs), 
neural cells, adipocytes, chondrocytes, and myocytes[2-6]. MSCs can express markers 
such as stem cell antigen 1, CD29, CD51, CD73, CD44, CD146, CD90, and CD105 but 
are negative for the expression of CD31 endothelial, CD14 monocytes, and CD45 
hematopoietic lineage markers[7-10].

Due to their special biological capacities including the ability to differentiate, 
regulate the immune responses, and produce and release various mediators, MSCs are 
extensively studied in fundamental research and are one of the best choices for cell 
therapy and clinical applications[11,12]. Based on MSC regenerative and immunomod-
ulatory effect, they have been used for tissue damage repair and anti-inflammatory 
activities as an effective alternative therapy in over 700 clinical trials such as inflam-
matory diseases like graft vs host disease[13,14], Crohn’s disease[15], rheumatoid 
arthritis[16], and lupus nephritis[17], in transplantations like hematopoietic stem cell 
transplantation[18,19] and kidney transplantation[20,21], cardiovascular diseases[22-
24], fibrotic diseases[25,26], spinal cord injury[27,28] and many others.

MSCs can significantly influence their microenvironment. They interact with the 
other cells, extracellular matrix, bioactive mediators such as cytokines, and therefore 
they can change the state of the surrounding inflammation[29-34]. They can support 
hematopoietic cells and regulate several types of innate and adaptive immune cells 
including mast cells, macrophages, myeloid-derived suppressor cells, neutrophils, 
natural killer cells, dendritic cells, B cells, and especially T cells[8,35-38].

Endothelial progenitor cells
Another population of BM-derived progenitor/stem cells is endothelial progenitor 
cells (EPCs) that are considered as a circulating reservoir of endothelial progeny and 
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are applied in repairing tissue damages and neovascularization at the damaged 
endothelial sites[39-41]. In vitro, two different cell populations of EPCs have been 
identified based on their first colony appearance time: early EPCs or colony-forming 
unit-ECs and late EPCs or endothelial colony-forming cells (ECFCs)[42]. Both of these 
groups can exhibit specific endothelial markers like CD31, CD133, CD144, KDR 
(vascular endothelial growth factor receptor 2), von Willebrand factor, and CD146 and 
can engage in angiogenesis function. Nevertheless, colony-forming unit-ECs are 
unable to form vasculature in vivo because they are thought to be hematopoietic-
derived monocyte/macrophage colonies that primarily exert a paracrine proangio-
genic effect. ECFCs, on the other hand, do not express CD45 hematopoietic and CD14 
monocyte markers, while it has been recently reported that BMP2,4 and ephrinB2 were 
exclusively highly expressed[42,43]. Furthermore, in comparison to colony-forming 
unit-ECs, they exhibit a strong clonogenic and proliferative capability[42,44,45]. As a 
result, ECFCs are regarded as true EPC progeny, with all EC characteristics such as 
endothelial marker expression and vasculogenesis as well as stem/ progenitor cell 
features such as high clonogenicity and proliferation rate[39,46]. ECFCs can be isolated 
from cord blood (CB) and adult peripheral blood (APB). They have several distinct 
characteristics that make them particularly appealing for the treatment of 
cardiovascular, hematological, and degenerative disorders in which angiogenesis 
regulation is critical (Figure 1). Our team, for example, demonstrated that autologous 
EPCs can successfully treat right ventricular failure in a piglet model of chronic 
thromboembolic pulmonary hypertension[47].

Several other studies during the last decade reported that EPCs bear many 
therapeutic advantages in clinical therapies for other disorders, notably cardiovascular 
complications[48-50], thus the clinical capability of EPCs in terms of vascular 
regeneration is a hotline of trial applications[51,52]. Meanwhile, according to Clinical-
Trials.gov, numerous disease conditions are investigated according to the regenerative 
potential of EPCs mostly in patients with ischemic diseases, such as peripheral 
vascular disease and myocardial infarction. Clinical EPC applications are sorted into 
three major domains: (1) cellular injections; (2) EPC mobilization therapies; and (3) 
EPC-capture stents. Heretofore, until April 2021, more than 380 EPCs clinical studies 
were registered at ClinicalTrials.gov.

Unlike MSCs, there are not many studies to evaluate the immunogenicity and 
immunoregulatory features of EPCs and their interaction with the immune system. 
Most of the previous studies have used EPCs to restore blood perfusion notably in 
hind limb ischemia condition that was performed in immunodeficient mouse models 
to avoid potential immunological responses[53-55]. Nuzzolo et al[56] already 
demonstrated that EPCs derived from CB have a significantly lower proinflammatory 
and prothrombotic profile than adult EPCs. Some limitations of this work are that 
EPCs were not compared to mature ECs, thus one cannot observe whether the 
reported results are progenitor dependent or not. Furthermore, these evaluations were 
at the gene expression level, which can be different compared to the protein level. In 
an allogenic combination, Ladhoff et al[57] demonstrated that rat EPCs are immunotol-
erated against allogeneic immune responses and particularly humoral-mediated 
attacks in vitro. Furthermore, when they transplanted these cells as a component of a 
vascular graft, allogenic EPCs were not rejected[57]. However, the interaction of the 
immune system, notably T cells with EPCs, remains unclear. In an attempt to clarify 
these missing pieces of information, we have recently reported that EPCs can also 
regulate the immune response and bear some level of immunoregulation, especially 
against T cells[40].

This present article aims to review some known similarities and differences between 
MSCs and EPCs BM-derived progenitor/stem cells that are involved in regeneration 
and immunoregulatory functions. It describes and compares different mechanisms 
that they use to suppress conventional T cells (T convs) and/or to induce regulatory T 
cells (Tregs). Among different mechanisms of action, we emphasize the implication of 
inflammatory signaling pathways such as the tumor necrosis factor alpha-tumor 
necrosis factor receptor 2 (TNFα-TNFR2) immune checkpoint axis. We try to cover the 
lack of information by proposing new research directions and their importance for 
future studies including in vitro and in vivo applications in regenerative medicine.

THE INTERACTION OF MSC AND EPC WITH THE IMMUNE SYSTEM
Besides their regenerative and tissue-protective features, many studies have been 
focusing on the interaction of MSCs and EPCs with the immune system in different 
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Figure 1 This schematic depicts the simplified procedure from isolation to the application of endothelial progenitor cells. Briefly, endothelial 
progenitor cells (EPCs) are isolated from the cord blood or adult peripheral blood and are seeded on a culture flask. After the appearance of the first colonies (around 
3 wk), cells are passaged and expanded to reach the desired numbers. After several verifications, EPCs could be injected into patients with cardiovascular disorders 
to take advantage of their regenerative and proangiogenic properties. The graphical images were created with BioRender.com. APB: Adult peripheral blood; CB: Cord 
blood.

biological conditions including inflammation that is caused by tissue damage, 
transplantation, cancer, etc. The following section describes the impact of these 
stem/progenitor cells on T cells and specifically compares their immunosuppressive, 
immunoregulatory, and Treg induction capacity.

MSCs and EPCs demonstrate a dissimilar level of T cell immunosuppression
Plenty of investigations from the past two decades revealed that MSCs have consid-
erable levels of immunosuppressive properties against both innate and adaptive 
immune responses[35,36]. For instance, in the case of natural killer cells that are 
principal effector members of innate immunity and are believed to play a crucial role 
in anti-tumor and anti-viral responses, MSCs can inhibit their cytotoxicity, prolif-
eration, and cytokine secretion through prostaglandin E2 and indoleamine 2,3-
dioxygenase dependent mechanisms[58]. Macrophages are another principal popula-
tion of innate immunity and regulators of tissue repair such as wound healing that are 
involved in inflammation by producing different cytokines and growth factors[59]. It 
has been shown that MSCs can alter the polarization of macrophage main subpopu-
lations[60]. They change the plasticity of macrophages by polarizing them towards 
more anti-inflammatory M2 and less proinflammatory M1 subpopulations[37].

In the case of adaptive immunity, T cells are by far the most studied population. 
Depending on their tissue origin, it has been shown that MSCs can both directly 
through cell-cell contact and indirectly via the production of different mediators such 
as cytokines and growth factors change the property of these cells. MSC immunoregu-
latory features are regulated by the secretion of a variety of anti-inflammatory 
mediators such as IL-10, TGFβ, indoleamine 2,3-dioxygenase, prostaglandin E2, nitric 
oxide, and many others[7]. MSCs can modulate T cell proliferation, expression of 
different activation markers, and anti- and proinflammatory cytokine production 
patterns and can regulate the balance of different T cell subpopulations. For example, 
it has been recently reported that MSCs regulate the Th17/Treg cell balance via 
hepatocyte growth factors[61]. Moreover, the overexpression of heme oxygenase-1 by 
MSCs was reported to suppress natural killer cells, decrease the balance of Th1/Th2, 
and facilitate Th17 into Treg conversion in vitro. During an in vivo assay in a decreased 
size liver transplant rejection model, understudy animals demonstrated a lower 
transplant rejection rate and proinflammatory cytokine levels followed by an elevated 
number of peripheral Treg and greater anti-inflammatory cytokine levels[62].
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MSCs are isolated from different neonatal and adult sources that could affect their 
regenerative and immunological properties. MSCs harvested from different sources 
have different characteristics, advantages, and drawbacks, such as their differentiation, 
colony-forming unit, and proliferation capacities that influence their potential in 
clinics[63]. We have recently revealed that MSCs derived from fetal sources such as 
fetal liver (FL) are more immunosuppressive than BM-derived MSCs[9]. In this setting, 
we have reported that FL-MSCs were more efficient to suppress the proliferation of 
both CD4+CD25- and CD8+CD25- T conv populations in comparison to commonly used 
BM-MSCs. Furthermore, FL-MSCs were more functional in decreasing the expression 
of T cell activation markers such as CD25, GITR, ICOS, and TNFR2 in both popula-
tions[9].

As already mentioned EPCs are harvested from CB and APB sources. CB-EPCs are 
better cell therapy possibilities for the treatment of cardiovascular diseases, according 
to previous evidence comparing these two accessible sources[64,65]. Nevertheless, 
because CB-EPCs are obtained from allogeneic sources, it is critical to understand how 
the host immune system reacts when they are administered. Before their extensive 
clinical implementation, two major difficulties must be addressed: (1) Do allogenic 
EPCs have immunogenic qualities, and as a result, may they elicit an immune res-
ponse? and (2) Is it possible for the host immune system to recognize EPCs as 
pathogen targets leading to their eventual rejection?

To find answers to these concerns, we evaluated the EPC immunogenicity by invest-
igating if human leukocyte antigen (HLA)-mismatched total peripheral mononuclear 
cells (PBMCs) can recognize them as allogenic stimulating cells. Allogenic CB-EPCs 
were unable to stimulate peripheral blood mononuclear cell proliferation as compared 
to the allogenic HLA-II+ lymphoblastoid cell line, which resulted in increased prolif-
eration of peripheral blood mononuclear cells[66]. Co-culturing them with peripheral 
blood mononuclear cells, on the other hand, resulted in dose-dependent immunosup-
pression, which was verified in third-party donors. Furthermore, Proust et al[66] 
administered human CB-EPCs into xenogeneic immunocompetent ischemic mice and 
showed that these cells were tolerated by the murine immune system for at least 14 d 
and could correctly integrate into the ischemic site and perform their proangiogenic 
function.

In addition, recently published articles report that EPCs have also some level of 
immunoregulatory functions. For instance, Naserian et al[40] implanted EPCs derived 
from CB into a bio-artificial vessel model and reported that in complete contrast to 
mature ECs like human aortic ECs, which are already differentiated cells, CB-EPCs 
could suppress CD4 and CD8 T cells in a dose-dependent manner[40]. Further 
attempts to clarify the underlying mechanism for their immunosuppressive effect 
revealed that similar to MSCs, EPCs can also produce anti-inflammatory molecules 
such as IL-10, TGFβ, and HLA-G[66-68]. The comparative pieces of information from 
our team reveal a significantly higher immunosuppressive function of MSCs in 
comparison to EPCs. Our findings demonstrate while CB-EPCs are more immunosup-
pressive than APB-EPCs, both FL and BM-MSCs are remarkably more suppressive 
than EPCs (Figure 2).

Furthermore, we have evaluated the ability of EPCs from different sources to 
decrease the activation profile of the T cells. Interestingly, we have noticed that both 
CB-EPCs and APB-EPCs were capable to reduce the activity of CD4 and CD8 T cells 
with a higher immunoregulatory effect observed with CB-EPCs[68]. Comparing MSCs 
and EPCs let us conclude that once more MSCs are stronger regulators of T cell 
activation markers such as CD25, GITR, ICOS, and TNFR2 (Figure 2). Consequently, 
after immunosuppression and deactivation, the ability of T cells to produce different 
cytokines is altered. Our recent results made it clear that similar to MSCs, EPCs can 
also decrease the secretion of T cell proinflammatory cytokines such as TNFα, IFNγ, 
IL-17, and IL-2, but unlike MSCs they do not elevate the production of anti-inflam-
matory cytokines such as TGFβ and IL-10 (Figure 2)[7,8,68].

MSCs and EPCs have different Treg induction capacities
One of the main mechanisms of immunosuppression by MSCs (regardless of their 
isolation source) is through induction of the expression of the forkhead box P3 (Foxp3) 
molecule in T convs[69-73]. Foxp3 is a transcription factor that is accepted as the 
master of Treg development and function[74-76]. Tregs are a rare subpopulation of T 
cells, discovered by Sakaguchi et al[77], that are specialized in immune suppression 
and maintenance of immunological tolerance[77,78]. It is now clear that any disruption 
in the development or functionality of Tregs will lead to autoimmune and inflam-
matory diseases[79-81]. Interestingly, it is revealed that through a variety of mecha-
nisms, MSCs can convert T convs to Foxp3 expressing Tregs. Signaling pathways 
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Figure 2 A comparison between immunoregulatory functions of mesenchymal stem cells and endothelial progenitor cells. According to our 
evaluations, among the four cell types [fetal liver (FL) derived mesenchymal stem cells (MSCs), bone marrow-derived (BM)-MSCs, cord blood-derived (CB)-
endothelial progenitor cells (EPCs), and adult peripheral blood-derived (APB)-EPCs]. Fetal liver-derived (FL)-MSCs are the most immunomodulatory cells because 
they: (1) suppress T cell proliferation; (2) decrease T cell activation phenotype; and (3) decrease T cell secretion of proinflammatory cytokines. On the other hand, 
they could more efficiently increase: (1) the secretion of anti-inflammatory cytokine; and (2) the induction of regulatory T cells (Tregs) more than the other cells. 
Therefore, we have considered FL-MSCs as the reference (5/5 blue points) regarding the measured criteria and compared the capacity of the other cells with them. In 
the case of CB-EPCs and APB-EPCs, because we did not notice any Treg induction or elevation of anti-inflammatory cytokine secretion we attributed a 0/5 score. 
Blue circles represent elevated levels while white circles represent the absence of the effect.

involving TCR, costimulatory molecules, TGF receptor, IL-2R, programmed death-
ligand 1, and Notch upregulate Foxp3 expression[82-84]. Induced Tregs exert their 
immunosuppressive activity mainly by producing IL-10, TGFβ, and IL-35[85,86].

Indeed, we and others have demonstrated several mechanisms behind this complex 
biological process. For instance, the modulation of ubiquitination factors[71], runt-
related transcription factor complex[72], Treg-specific demethylated regions 
demethylation[71], micro RNAs such as miR126a[73], and mitochondrial and extracell-
ular vesicle transfer from MSCs to T cells[87,88] are among some of the principal 
mechanisms. Besides, we have recently demonstrated that Treg induction by MSCs is a 
reciprocal phenomenon that requires both MSC and T cell interaction. In this setting, 
the expression of TNFR2 by T cells was shown to be crucial for their conversion 
towards functional Foxp3+ and Foxp3- Tregs[89]. Our data demonstrated that MSCs 
were incapable of converting T cells harvested from TNFR2 knockout (KO) mice. 
Moreover, in comparison to wild-type T cells, MSCs-exposed TNFR2 KO T cells 
secreted decreased amounts of IL-10 and TGFβ[89]. Furthermore, the production of 
anti-inflammatory mediators such as IL-10 and TGFβ by MSCs has been shown to be 
essential in Treg induction[90,91].

Concerning EPCs, recent findings based on various techniques including enzyme-
linked immunosorbent assay, flow cytometry, and immunofluorescence staining have 
revealed that these progenitor cells are also able to produce significant amounts of IL-
10, TGFβ, and HLA-G anti-inflammatory cytokines[66,68]. Therefore, based on their 
immunosuppressive effect and secretion of immunoregulatory mediators, our first 
assumption was that probably similar to their MSC counterparts, EPCs could also 
induce the expression of the Foxp3 molecule in CD4 and CD8 T cell subpopulation. 
Surprisingly, our result revealed that the EPC immunosuppressive effect was Treg 
independent as they did not increase the expression of Foxp3 in T convs (Figure 2)
[68]. This is in accordance with the absence of IL-10 and TGFβ production by T cells 
after co-culturing with CB-EPCs or APB-EPCs[68]. These results contradict other 
studies showing the capacity of mature ECs such as liver sinusoidal ECs, human 
umbilical vein ECs, and dermal microvascular ECs to induce CD4+CD25+Foxp3+ Tregs 
mostly through a TGFβ dependent mechanism[92-94]. Whether, unlike mature ECs, 
their progenitors (EPCs) are incapable of Treg induction or this deficit was due to the 
xenogenic context of our experimentation are two questions that need to be further 
investigated.

The implication of the TNFα-TNFR2 signaling pathway in MSC and EPC 
immunoregulatory function
Stem cells are very sensitive to an inflammatory environment and their biological 
function could significantly alter in the presence of surrounding proinflammatory 
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mediators including IFNγ, IL-17, IL-1, and especially TNFα[31,95-97]. For example, 
pretreating MSCs with TNFα is shown to have a boosting impact on the production of 
anti-inflammatory cytokines like TGFβ and IL-10 that consequently participate in 
immunosuppression and the Treg induction[98,99]. Equally, Nouri Barkestani et al
[100] recently reported that priming EPCs with a proper dose of TNFα could efficiently 
upregulate the expression of the TNFR2 molecule and increase their immunosup-
pressive and immunoregulatory effect in HLA mismatched combinations.

TNFα recognizes two transmembrane receptors (TNFR1 and TNFR2) with two 
completely distinct biological functions[100-102]. While the interaction of TNFα with 
TNFR1 leads to proapoptotic and deleterious outcomes, its interaction with TNFR2 
generally causes cell activation, proliferation, and survival[101-103]. TNFR1 and 
TNFR2 are different subgroups of the TNF receptor superfamily[104]. TNFR1 is a 
death receptor because it bears a death domain in its cytoplasmic compartment and its 
activation ends in caspase-8 function and cell death[105-107]. TNFR2, on the other 
hand, recruits TRAF2 with its associated binding molecules such as cIAP1, cIAP2, and 
TRAF1, which results in the activation of the classical NF-kappa B and mitogen-
activated protein kinase pathways leading to cell proliferation[106,108]. In contrast to 
TNFR1, which has a ubiquitous expression, TNFR2 is expressed by some limited cells 
such as T cells especially Tregs[101], neural cells including neural progenitor cells
[109], MSCs[7,8], and interestingly by ECs, particularly by EPCs[68,100].

Our previous investigations on Tregs have revealed that the TNFα-TNFR2 signaling 
pathway is in complete control of their immunosuppressive effect. In this setting, we 
have shown that when Tregs are harvested from TNFR2 KO mice or this receptor is 
blocked by using an anti-TNFR2 monoclonal antibody, the Treg immunosuppressive 
function is entirely hampered[101]. Similarly, in the absence of the ligand TNFα, Tregs 
could not perform their proper immunosuppressive function[101]. Observing the 
importance of this signaling pathway and with regards to the crucial role of the TNFα-
TNFR2 axis in MSC and EPC biology, we decided to evaluate the implication of this 
signaling pathway in these cells as well. Since both cell populations have shown some 
level of immunomodulatory functions, we first evaluated if the blockade of this axis 
impacts this important effect. Our results demonstrated that the interference in the 
TNFα-TNFR2 signaling pathway (either by blocking the receptor via monoclonal 
antibody or using T cells harvested from TNFα KO mice) in EPCs regardless of their 
sources has led to the complete loss of their immunosuppressive function[68]. 
Moreover, this blockade reduced EPC immunoregulatory function because they were 
significantly less able to produce IL-10, TGFβ, and HLA-G anti-inflammatory 
cytokines[68].

Observing this effect encouraged evaluating the implication of this signaling 
pathway in MSCs. In this setting, we isolated MSCs from TNFR2 KO mice and 
compared their immunomodulatory effect with MSCs collected from wild-type mice. 
Our results showed for the first time that the TNFR2 expression by MSCs is crucial for 
their ability to suppress the proliferation and decrease the activation phenotype of 
different T cell populations[8]. Moreover, inhibiting the TNF-TNFR2 signaling 
pathway in MSCs resulted in decreased production of anti-inflammatory cytokines 
TGFβ and IL-10 and increased production of proinflammatory cytokines, INFγ, IL-2, 
TNFα, and IL-17 by T cells[8]. We found that when TNFR2 KO MSCs were compared 
to wild-type MSCs, they were significantly less capable of converting CD3+CD25-T 
convs to CD4+Foxp3+ Tregs and CD8+Foxp3+ Tregs[8]. Besides, the newly induced 
Tregs had even less capacity to suppress T convs when set in a new mix lymphocyte 
reaction assay[7]. Further investigations to reveal the importance of the TNFR2 
receptor on other cells has demonstrated that the expression of this receptor is also 
necessary by T cells for their efficient conversion into Tregs by MSCs[89].

Although the TNFR2 molecule plays an important regulatory role in MSCs, its 
blockade caused a partial deficiency in the MSC suppressive property. This effect was 
unlike EPCs in which their immunoregulatory effect was entirely TNFα-TNFR2 
dependent, making MSCs more ‘’intelligent’’ or flexible stem cells (Figure 3). MSCs 
from the TNFR2 KO mice still had some level of immunomodulatory and regenerative 
functions[7], meaning that even in the absence of prosurvival signals, MSCs could 
adapt themselves to the new inflammatory environment.

CONCLUSION
Thanks to recent investigations, we currently know that besides their strong 
regenerative functions, EPCs and MSCs also have some levels of immunomodulatory 
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Figure 3 The comparison between mesenchymal stem cell and endothelial progenitor cell immunosuppressive activity in the presence 
and blockade of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 signaling pathway. Because the immunosuppressive function 
of mesenchymal stem cells (MSCs) is greater than endothelial progenitor cells (EPCs), we have kept them as the reference (5/5). In this case, in the presence of the 
tumor necrosis factor-alpha (TNFα)-tumor necrosis factor receptor 2 (TNFR2) signaling pathway (i.e. normal condition), MSCs have the highest immunosuppressive 
effect (5/5). On the other hand, in the presence of this signaling, EPCs have a less immunosuppressive effect (3/5). Interestingly, while blockade of this axis led to a 
complete loss of immunosuppressive function in EPC (0/5), MSCs kept suppressing T cells with less efficiency (2/5), showing that this axis is partially controlling their 
immunoregulatory properties.

features that make them interesting choices for cell therapy of immunological 
disorders. Moreover, due to their immunosuppressive effect, they could persist longer 
when administered in an allogenic combination.

Nevertheless, these two cell types do not demonstrate the same level of immunoreg-
ulatory effect and their mechanisms of action are also dissimilar. In this review, we 
have compared for the first time the immunosuppressive effect of MSCs and EPCs 
against T cells. We have shown that MSCs regardless of their sources are more 
immunosuppressive and immunomodulatory than CB-EPCs and APB-EPCs. 
Moreover, while induction of Foxp3+ Tregs from T convs is an essential mechanism of 
action for MSC indirect immunoregulatory function, EPCs induce neither CD4+Foxp3+ 

nor CD8+Foxp3+ Treg populations.
The TNFα-TNFR2 immune checkpoint signaling pathway has emerged as a novel 

target for immune therapy of immunological disorders including cancer and 
transplantation[110-112]. Thanks to the recent publications, particularly on other 
immunosuppressive cells such as Tregs, we currently know that this signaling 
pathway plays a crucial role in EPC and MSC immunoregulatory functions. A 
comparison between these two cell types demonstrates that hampering in the TNFα-
TNFR2 axis leads to the complete disruption of EPCs and has a significant impact on 
MSC immunomodulatory functions. Due to its protective and anti-inflammatory role, 
activation of the TNFR2 axis has been suggested as a therapeutic approach in several 
degenerative, inflammatory, and cardiovascular disorders. The stimulation through 
the TNFR2 molecule has been shown as a promising approach to increase the 
proangiogenic effect of TNFR2 expressing cells leading to improved ischemia 
conditions[113,114], myocardial infarction[115,116], and Alzheimer’s disease[117]. 
Similar outcomes were reported regarding improved Treg immunosuppressive 
function, which could potentially improve graft vs host disease[118] or autoimmune 
disorders[110]. Conversely, the TNFα-TNFR2 axis was used as a potential target for 
Treg elimination in cancer conditions in which an elevated immune response is 
required[111,119,120]. This is indeed very interesting since the Foxp3 molecule is a 
transcription factor (i.e. intranuclear) and not easily accessible for Treg elimination. 
Therefore, targeting TNFR2 (with cytoplasmic expression) seems to be an efficient 
alternative to hamper immunosuppression in Tregs and also in other immunomodu-
latory cells such as EPCs and MSCs.
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