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Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability 
over specific mRNA targets. miRNAs exhibit temporal or tissue-specific 
expression patterns and regulate the cell and tissue developmental pathways. 
They also have determinative roles in production and differentiation of multiple 
lineages of stem cells and might have therapeutic advantages. miRNAs are a part 
of some viruses’ regulatory machinery, not a byproduct. The trace of miRNAs was 
detected in the genomes of viruses and regulation of cell reprograming and viral 
pathogenesis. Combination of inter-regulatory systems has been detected for 
miRNAs during viral infections in stem cells. Contraction between viruses and 
stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral 
infections and defining stem cell developmental strategies that is programmed by 
miRNAs as a tool. Therefore, in this review we intended to study the inter-
regulatory role of miRNAs in the interaction between viruses and stem cells and 
tried to explain the advantages of miRNA regulatory potentials, which make a 
new landscape for future studies.
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INTRODUCTION
More than 27 years have passed since the discovery of the first microRNA (miRNA) 
named miRNA-lin-4 in Caenorhabditis elegans (C. elegans)[1]. The function of this 
molecule was not explainable at that time. By discovering the second miRNA in C. 
elegans[2] and then in humans and fruit flies, these types of molecules became a real 
challenge in biology.

miRNAs are small non-coding RNAs (typically 22 nucleotides in length) that are 
derived from hairpin-shaped precursors with 70 to 100 nt. They are known as post-
transcriptional regulatory tools over specific mRNA targets via direct base-pairing 
interactions[3,4]. In most species, miRNAs are phylogenetically conserved in a wide 
variety of key biological processes including embryogenesis and maintenance of 
“stemness”[5]. Also, miRNAs exhibit temporal or tissue-specific expression patterns 
and play an important role in development timing[6]. Traces of miRNAs were 
detected in viruses, too. While studying the role of RNAi in B lymphocytes infected 
with Epstein-Barr virus (EBV), some small RNAs were found that not only could be 
cloned from the cells but were encoded by the viral genome itself. These small RNAs 
were proved to be miRNAs and named miR-BHRF1-1, miR-BHRF1-2, miR-BHRF1-3, 
miR-BART1 and miR-BART2[7]. Finally, this fact was accepted that miRNAs are a part 
of some viruses’ regulatory systems, not a byproduct. Moreover, it is not easy to 
discriminate between cellular miRNAs actively induced or repressed by viral factors 
and those miRNAs altered by host responses[8].

The pluripotency of embryonic stem cells (ESCs) is an important feature that helps 
the researchers to study different roles of miRNAs[9,10]. The therapeutic potential of 
human embryonic stem cells (hESC) provides exciting new opportunities for cell-
based therapies. However, it is required to understand the molecular regulatory 
networks that control the properties of the cells such as self-renewal and differen-
tiation potential[4,11]. Genetic inactivation of the molecular machinery essential for 
proper maturation of miRNAs has been the cause of aberrant stem cell self-renewal 
and/or differentiation[12], indicating that the regulation of transcriptional network by 
miRNAs might control stem cell functions[13]. A combined inter-regulatory relation 
has been detected for miRNAs during infection of the stem cells with viruses, which 
might be helpful in therapeutic tactics, viral pathogenesis and control. Therefore, in 
this review, we aimed to study the inter-regulatory role of miRNAs in the interaction 
between the viruses and stem cells.

BIOGENESIS OF MIRNAS AND FUNCTIONS
miRNAs have been detected to be ubiquitous molecular regulators for controlling the 
quality of gene expression in different species. Important and critical processes in cells 
are happening under regulatory conditions made by miRNAs such as cellular 
development, proliferation, differentiation, apoptosis and metabolism[14-16]. 
Molecular biogenesis of miRNAs starts from nuclear transcription conducted by RNA 
polymerase II in the nucleus. The result of transcription of miRNA genes by RNA 
polymerase II is making a long molecule called primary miRNA[16,17]. This long 
primary miRNA molecule has features of normal mRNA molecules such as 5’ cap and 
3’ polyadenylation that makes one or more 70-80 nucleotide hairpin structures by 
folding. Later, these stem loop (hairpin) structures are recognized by an enzyme called 
Drosha, which acts as RNase III enzymes and works collectively with its cofactor 
DiGeorge syndrome critical region 8. The result of the function of Drosha and 
DiGeorge syndrome critical region 8 of primary miRNA is cleavage in approximately 
22 bp down the stem which yields ~60 nucleotide precursor miRNA that contains two 
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nucleotide overhangs in its 3’ end[18,19].
Precursor miRNA molecules are detected by a transporting vehicle called exportin-5 

and transferred from the nucleus to the cytoplasm. In the cytoplasm another RNase III 
enzyme, Dicer, starts processing precursor miRNA into a ~22 nucleotide miRNA 
duplex[20,21]. One of the strands of the miRNA duplex, which is called “guide” 
strand, enters into a functional complex called RNA-induced silencing complex 
(RISC). The second strand, which is known as “passenger” strand (also known as 
miRNA), degrades frequently. The degree of base pairing at the 5’ ends of miRNA 
duplexes determines the strand selection for entering into the RISC. This means the 
less stable strand in base pairing at the 5’ end preferentially incorporates into RISC
[22]. The miRNA within the RISC serves as target recognition of miRNA in the 
cytoplasm through base complementary commonly with sequences in the 3’ 
untranslated region (UTR) of target mRNAs. The nucleotides in miRNAs that attach to 
the 3’UTR of target miRNAs are composed of 6-8 nucleotides in the 5’ of miRNAs, 
which is called “seed” sequence[23,24].

Furthermore, miRNAs might be fully complementary or imperfectly matched to 
their targets. The former results in the induction of nucleolytic cleavage of target 
miRNA in the region of base pairing and causes a rapid decay of the entire transcript
[25], and the latter causes translational repression[23] (Figure 1). One of the plausible 
mechanisms that is proposed for translational inhibition of miRNA within the RISC is 
through translocating targets of miRNA into P bodies, which are cytoplasmic 
structures without ribosomes. This translocation is attributed to a P body component 
(GW182) that attach to Argonaute proteins in the miRNA within the RISC complex. In 
P bodies, the targets of miRNA might be deadenylated, decapped, degraded or held in 
stasis[24].

MIRNAS AND VIRUSES
Identification of viral miRNAs and their targets 
Discovery of viral miRNAs was a new attractive area for researchers in order to 
investigate the mechanisms used by these tiny molecules for gene expression 
regulation in their host cells. These studies were the basis of substantial progress in 
understanding the life cycle of the virus and their interactions with their host cells[7]. 
The fundamental method for identification and study of viral miRNAs is isolation of 
small RNAs after infection of cells, copy DNA cloning and sequencing[17,26,27].

Human cytomegalovirus (HCMV) is known to be the prototype of β-herpesviruses 
that has the largest genome size and can persist lifelong in hematopoietic cells such as 
granulocytes. Several miRNAs of HCMV have been detected and cloned, especially 
during the lytic phase of infection[28]. Murine CMV (MCMV), which is a close relative 
of HCMV, makes a well-designed animal model of CMV and does not replicate in 
mice. Most miRNAs detected in MCMV are expressed during lytic replication of the 
virus. However, none of the MCMV miRNAs have a significant homology with 
miRNAs in HCMV[29,30]. Through bioinformatic methods, several miRNAs have 
been predicted for herpes simplex virus (HSV)-1 and HSV-2. However, only one of 
them has been verified[28,31].

EBV is capable of immortalizing normal B cells, and this ability is related to many 
malignancies in human. The ENBA transcript is the source of three miRNAs known as 
BHRF1 miRNAs[26,32,33]. Additionally, during latent infection the virus can produce 
more than 14 BART miRNAs[33,34], 7 of which are similar to miRNAs detected in 
EBV-related virus of monkey and provides the first example of miRNA conservation 
within the families of herpesviruses[35]. Kaposi’s sarcoma-associated herpesvirus 
(KSHV/HHV8) is a γ-herpesvirus family that is related to human malignancies, such 
as Kaposi’s sarcoma, primary effusion lymphoma and Castleman’s disease[36]. This 
virus encodes a transforming protein called Kaposin[37]; also, miRNAs are derived 
from primary effusion lymphoma derived cells.

In adenoviruses, the miRNAs are derived from a non-coding transcript, called 
virus-associated RNA. This product induces resistance during interferon-related 
defenses and facilitates viral replication. It is detected that virus-associated RNA is 
processed by six Dicer into miRNA that facilitates the adenovirus infection[38].

As a typical example of polyomaviruses, SV40 is characterized as an excellent model 
of oncogenesis in the simian cells such as monkeys that leads to verruca and 
fibrosarcoma. One miRNA has been detected for SV40, the target of which is found in 
in vivo experiments[33,35,39,40].
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Figure 1 MicroRNA biogenesis begins with the generation of the primary microRNA transcript. The microprocessor complex, comprised of Drosha 
and DiGeorge syndrome critical region 8, cleaves the primary microRNA (miRNA) to produce the precursor miRNA. The precursor miRNA is exported to the 
cytoplasm in an exportin-5 dependent manner and processed to produce the mature miRNA duplex. Finally, mature miRNA duplex is loaded into the Argonaute family 
of proteins to form a miRNA-induced silencing complex. miRNA: MicroRNA; Pri-miRNA: Primary microRNA; Pre-miRNA: Precursor microRNA; miRISC: MicroRNA 
within the RNA-induced silencing complex; DGCR8: DiGeorge syndrome critical region 8; Ago: Argonaute; TRBP: Transactivation response element RNA-binding 
protein.

Five miRNAs have been detected bioinformatically in human immunodeficiency 
virus (HIV-1), but only one of them has been cloned successfully[27,28,41-43], which 
might be related to its low abundance.

Diverse functions provided by viral miRNAs
Viruses are capable of regulating the expression of viral proteins during lytic or latent 
phases of infection[44]. This model of regulation has been detected in EBV infection. 
One of transforming proteins named LMP-1, is controlled through miRNAs. In this 
process, a cluster of BRAT miRNAs attaches to the 3’UTR of LMP-1 mRNA and causes 
repression in its protein expression. This phenomenon finally renders to resistance in 
apoptosis of the infected cells[45]. This regulatory process has also been detected in the 
beginning of HCMV expression. In this virus, miRUL112-1 regulates immediate early 
IE1 (UL123, IE72) genes, which is a transcription factor that is essential for expression 
of many viral genes in infected cells[46,47]. In SV40, a miRNA that is expressed late 
during infection reduces the expression of T antigen by targeting the 3’UTR of early 
transcripts. This T antigen repression helps the infected cells not to sensitize cytotoxic 
T cells[48]. Additionally, some overexpressed small non-coding RNAs encoded by 
HIV-1 reduce the level of viral transcripts and facilitate the maintenance or formation 
of latency after viral infection[49,50].

Based on the fact that miRNAs do not activate the host’s immune response, they are 
ideal means for viruses in establishing stable latency in their hosts through regulating 
some host miRNAs. For instance, there are 12 miRNAs encoded by KSHV that are 
related to its latency process and finally cause transformation of the cells during 
production of Kaposi’s sarcoma[51]. KSHV-miR-K12-11 is directly related to viral 
induced malignancy. This viral miRNA contains 100% homology in seed sequence 
with has-miR-155 that acts as an oncogene. miR-155 is upregulated in the lymphomas 
and is also a critical factor for B cell development[52,53]. It seems that these two 
miRNAs regulate the same set of cellular targets such as a transcription repressor 
called BACH-1[39,54].
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Interaction between virus miRNA and target genes
miRNAs are determinative elements in regulating the gene expression puzzle, and 
they control gene expression in diverse processes. Therefore, viral miRNAs are 
involved in regulation of not only their own gene, but also many host genes in order to 
subvert many cellular defense mechanisms[7,55]. In this process, many miRNAs target 
predictors such as MiRanda[56], which is one of the earliest target predictors. The 
algorithm used in MiRanda could predict the targets of a microRNA through matching 
the 3’UTR binding sites among mRNAs of the virus and/or host[33,56-58] (Figure 2).

Action of virus miRNAs on mRNAs of host cells: HCMV miRNAs (miR-UL23 and 
miR-UL24)[28,58] are able to recognize some host mRNAs such as synaptonemal 
complex protein 1, cathepsin S precursor and IL-1 receptor related protein that are 
important in the biological function in the cells[56-58].

Another example is miR-BART1 in EBV that can regulate the function of many host 
cell mRNAs. This miRNA binds to the 3’-UTR of Bcl-2 mRNA and regulates the 
process of apoptosis and proliferation. Other targets of miR-BART1 are Zinc Finger 
protein 177 and stromal cell derived factor 1 mRNAs that regulate them through 
binding to the 3’-UTR[28,59]. EBV miR-BART5 target PUMA that is a p53-regulated 
pro-apoptotic Bcl2-family member in infected neural precursor cells and inhibition of 
miR-BART5 leads to an increase in PUMA-mediated apoptosis[60]. Additionally, EBV 
contains miRNAs that directly target antiviral molecules like miR-BHRF1-3 that 
downregulate CXCL11, which is a major player of host defenses against EBV[61].

miR-LAT is encoded by the latency-associated transcript gene of HSV-1[62]. By its 
anti-apoptotic effect via downregulation of TGF-β1 and SMAD-3 expression, both of 
them are linked in the TGF-β signaling pathway, cause the survival of the infected 
neurons and contribute to the persistence of HSV in a latent form[31].

Thrombospondin 1 is one of the molecules targeted by multiple miRNAs of KSHV, 
and the function of thrombospondin 1 in normal conditions inhibits angiogenesis and 
cell growth by activating TGF-β. Therefore, Kaposi sarcoma tumors exhibit a reduction 
in thrombospondin 1 activity[51]. Additionally, there are more regulators of cell 
survival and growth that are the targets of viral miRNAs such as BCLAF1. BCLAF1 is 
detected to be a target of miR-K5 of KSHV in endothelial and B cells and can increase 
the reversibility of latent infection[63]. KSHV miR-K11 and miR-K6 in the endothelial 
cells can target MAF (a transcription factor involved in final phases of many cell 
types), and it seems that KSHV miRNAs regulate the endothelial cells during infection 
that results in oncogenesis[64]. miR-K11 of KSHV is an ortholog of cellular miR-155, 
and one of their shared targets is an oxidative stress repressor of transcription named 
BACH1 that coordinates with MAF proteins to repress heme oxygenase 1[39,54].

Some key cellular products such as major histocompatibility complex class I-related 
chain B (MICB) are targeted by different viral miRNAs (miR-UL112-1 of HCMV, miR-
K7 of KSHV and miR-BART2 of EBV), and the important fact is that their target sites in 
3’UTR of MICB mRNA do not have overlapping sites for the three miRNAs. The 
importance of MICB is due to its ability to activate natural killer cells and CD8+ T cells 
in response to viral infections[65,66].

During viral infections, many alterations happen in the expression rate of cellular 
miRNAs in dealing with antiviral strategies of host defense and/or alterations in host 
cellular environment. As an illustration, both miR-155 and miR-146a expression is 
induced during EBV infection of B cells[67]. In the latency phase of EBV infection, 
promoters of miR-146a and miR-29b are activated in the host cells, and the former 
causes reduction in interferon-responsive genes[67] and the latter results in downregu-
lation of TCL1, which has a role in the host cell survival and proliferation[68].

Two viral proteins are encoded by oncogenic human papillomaviruses (E6 and E7) 
that inhibit the p53 and Rb pathways, respectively. Subsequently, the cellular miRNAs 
that are controlled through these two pathways are profoundly influenced, and miR-
34a is downregulated by E6 that leads to an increase in cell growth[69]. Also, E6 causes 
a reduction in miR-218, which is the reason of increase in LAMB3 in HPV-16 infected 
cells, and their final outcome is enhancement in cell migration and tumorigenicity[70].

HCMV infection makes changes in the function of the mTOR signaling pathway 
that has vital regulatory effects over cellular processes dealing with metabolism, 
growth and survival. It is reported that during HCMV infection, miR-100 and miR-101 
are reduced, which is essential for regulating the mTOR signaling, and through this 
HCMV captures the control of cell critical processes[71].

It is documented that two miRNAs (miR-17-5p and miR-20a) of the cells harboring 
HIV-1 infection are suppressed. These miRNAs are responsible for targeting and 
controlling a cellular histone acetylase and proposed cofactor of the HIV-1 Tat 
transactivator called PCAF[8]. In MCMV infection the function of specific miRNA 
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Figure 2 Interplay between viral infection and microRNA expression. miR: MicroRNA.

specifically triggered miR-27a activity, which is rapidly decreased following infection
[72].

Action of virus miRNAs on mRNA in the virus itself: Finding the complementary 
sequences, especially in the 3’UTR part of viral genes, sheds light into the fact that 
viral miRNAs regulate their own gene products as well. Antisense strand of viral DNA 
polymerase transcript BALF5 has a complementary site for miR-BART2 in its 3’UTR 
part, and it is suggested that expression of the BALF5 gene should be partially 
controlled through miR-BART2[28]. Additionally, miR-BART2 can bind to the 3′UTR 
of BMLF1 (EB2), and miR-ART1 can adhere to the 3′UTR of BBLF4 mRNA and LMP2A 
mRNA, which contribute to regulating the expression of EBV genes[73]. The other 
example is miR-UL112-1 of HCMV that is known to be the first viral miRNA that has 
targets in both virus and host. In the virus, it targets the viral IE72 transcript and in the 
host servs as an agent for reduction of the MICB protein, and the results are induction 
of viral latency[46,47].

Cellular transformations made by viral miRNAs: Viral miRNAs can attach and 
regulate both viral and cellular mRNAs. The ultimate goal of viral miRNAs for 
reprogramming the cellular processes include controlling lytic-latent switch, 
promoting cell proliferation, survival, and differentiation and finally controlling the 
host immune responses, for preparing a cellular microenvironment in favor of 
facilitating viral life cycle[74].

Functions of viral miRNAs in the infection and replication process: Considering the 
ability of viral miRNAs in employment of host cell components of gene expression 
machinery, it is expected to observe its consequences in the host gene expression. The 
study of Sullivan et al[48] showed that SV40 can regulate the expression rate of 
evading the immune system of the host. Sequence of miRNA is located on the late 
strand of the SV40 circular genome and overlaps the early mRNAs produced from the 
opposite strand of the viral genome. Early mRNA expression of viral large T-antigen is 
controlled by production of miRNA at the late stage of the replicative cycle. SV40 T-
antigen is the foremost target for activation of cytotoxic T lymphocytes of the host, and 
the miRNA mediated decrease in T-antigen lowers the susceptibility of the infected 
cells in vitro. This suggests that one of the functions of the SV40 miRNA may be related 
to its ability in evading the immune surveillance during the latency in the host[48,75-
78].
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In EBV infection, miR-BART2 binds to the mRNA of BALF5, which results in latent 
infection. Hence, miR-BART2 may regulate the latent-lytic switch by preventing 
premature BALF5 expression[28]. LMP1, which is targeted by miR-BART1-5p, miR-
BART16 and miR-BART17-5p, acts as a viral mimic for tumor necrosis factor receptor 
and induces cell proliferation during latency[45].

In HIV infection, miR-N367 binds to the U3 negative response element and reduces 
the activity of its promoter. The outcome of this process is inhibition in the HIV 
replication and viral persistent infection[43,49,50,79,80]. HIV probably produces some 
miRNAs that can inhibit the expression of molecules and cytokines related to 
restriction of immunologic function of the host such as CD28 and CD4[41,43,80].

MiR-UL112-1 is located in the antisense sequence of the UL114 (a viral DNA 
glycosylase) gene in HCMV[81]. HCMV miR-UL148D and miR-US33 might be 
involved in their expression regulation and are located antisense of US29 and UL150, 
respectively[28,82].

HSV-1 and HSV-2 viruses use viral miRNAs in order to downregulate ICP0 and 
ICP34.5 that are products of immediate early genes[83-85]. Additionally, miR-H3 and 
miR-H4 are located in antisense sequence of the ICP34.5 gene of HSV-1 and HSV-2 
viruses[83]. Also, miR-H2 in both of the mentioned viruses is transcribed antisense of 
ICP0 and diminishes the production of ICP0 protein[84-86]. miR-H6 of HSV-1 targets 
ICP4, while it is not located antisense of the ICP4 gene[85]. In KSHV infection, miR-K9
* targets ORF50, which is a critical gene in activating the lytic phase of viral life cycle
[87].

Functions of viral miRNAs in inducing tumorigenesis: It has been reported that 
some of viral miRNAs have a close relationship with tumors. This theory proposes 
that the viral miRNAs target the tumor suppressor genes of the host and facilitate 
tumor appearance. An example for this process is miR-BHRF1-1 in EBV that targets 
P53 (tumor suppressor gene) and BCL-2 (apoptosis regulatory factor) mRNAs of the 
host and pave the way for the formation of tumors[26].

During EBV infection, two miRNA families, let-7 and miR-200, as tumor 
suppressors were downregulated. Viral products such as BARF0, EBNA1 and LMP2A 
are responsible for downregulation of the miR-200 family and also ZEB1, ZEB2 and E-
cadherin[88]. Moreover, in the EBV infected B cells and epithelial cells, miR-200b and 
miR-429 induces lytic replication[89].

Furthermore, microarray analysis results showed that some miRNAs such as miR-
34b, -34c, -18a, -200a/b, -449a, -31 and let-7 were dysregulated in nasopharyngeal 
carcinoma, and the abnormality produced in the production rate of their target was the 
reason of proliferation of nasopharyngeal carcinoma[90]. EBNA1 upregulation has 
been related with the latent infection of EBV in epithelial cell tumors[91,92].

Identification of cellular miRNAs and their viral targets: Beside the fact that a key 
function of viral miRNAs is to regulate the cell’s milieu, evidence also exists that 
highlights the role of cellular miRNAs in reshaping the course of viral infections. In 
this regard, several experiments detected cellular miRNAs that act in regulation of 
viral infections[93-96].

The role of small interfering RNAs[93] and another class of small noncoding RNAs 
(called piRNAs) has been detected to deal with suppressing the replication of 
mammalian retroviruses[94,95]. In addition, experiments have validated the 
bioinformatically proposed miRNAs and revealed that some cellular miRNAs could 
indeed target various infecting viruses such as HIV-1[97-101]. Commonly, cellular 
miRNAs act as restrictors of viral replication. miR-32 is reported to confine the 
replication of primate foamy virus type 1[100]. During HIV-1 infection, viral mRNAs 
have been targeted by a set of human miRNAs including miR-28, miR-125b, miR-150, 
miR-223, and miR-382 in order to repress viral replication[99].

Considering the fact that cellular miRNAs can target mRNA products of the viral or 
cellular genome, it might be a question that RNA viruses can escape from this kind of 
regulation. However, interaction of cellular miRNA viral RNA has been reported. 
miR-32 in 293T cells can target primate foamy virus type 1, and in mice miR-24 and 
miR-93 target vesicular stomatitis virus RNAs[100,102]. Additionally, in CD4+ T cell 
cultures, several cellular miRNAs were detected to target HIV-1 RNAs that facilitate 
maintenance of the viral latency[99].

MicroRNAs in stem cells
Stem cells are known as undifferentiated cells that are capable to differentiate into 
various cell lineages. Commonly, stem cells are classified as ESCs, induced pluripotent 
stem cells (iPSCs) and adult stem cells. They are named according to where they have 
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originated from, for example, mesenchymal stem cells (MSCs), hematopoietic stem 
cells, cardiac stem cells, neural stem cells (NSCs), endothelial stem cells, etc. ESCs are 
pluripotent stem cells derived from the inner cell mass of a blastocyst or earlier morula 
stage embryos in the epiblast tissue[103], whereas iPSCs are directly generated 
through somatic cell reprogramming[104]. The ability of stem cells in pluripotency and 
self-renewal makes them virtuous candidates for clinical therapies. In preclinical 
animal experiments, different cell types have been originated from stem cells, such as 
cardiovascular cells[105], neural cells[106] and osteoblasts[107], which are used for 
transplantation in order to repair the damaged organs[108,109].

miRNAs have been detected to be key regulators of the stem cells and in ESCs with 
ablated Dicer or DiGeorge syndrome critical region 8 (Dicer-/- or Dgcr8-/-). Abnormal 
differentiation has been reported[110,111]. Additionally, miRNAs fulfill this task by 
targeting the factors related to pluripotency at the 3’UTR. In human ESCs, miR-145 
would repress Oct4, Sox2 and Klf4 mRNAs in order to subside the pluripotency 
potential of ESCs[112].

miR-296, miR-470 and miR-134 play roles in mouse ESC differentiation through 
targeting the coding region of transcription factors such as Nanog, Oct4 and Sox2 in 
mouse ESC differentiation[113]. Classifications of miRNAs modulating the fate of stem 
cells that are recognized include c-Myc-induced miRNAs, miRNAs targeting P53 and 
early embryonic miRNA cluster and finally embryonic stem cell specific miRNAs, 
which also are known as ESC-specific cell cycle-regulating miRNAs[114-117].

Cell reprogramming
The process of reprogramming the differentiated somatic cells into a pluripotent state 
is referred to as cell reprogramming. For cell reprogramming, some technologies such 
as nuclear transplantation and iPSC reprogramming are needed. Nuclear trans-
plantation is executed by transferring a nucleus from a donor individual into an 
oocyte, which is enucleated previously. But iPSC technology involves the reprogra-
mming of somatic stem cells into a pluripotent state by repressing the expression of 
pluripotency related genes or proteins[104,118]. Human iPSC is generated through 
transduction of combinations of Oct3/4, Sox2, Nanog and Lin28[119].

Although using viral mediated transduction of cell reprogramming is risky due to 
random integration of the virus into the host cell genome and causes tumorigenicity, 
the efficiency of this method is higher (0.02%-0.08%) than using other methods such as 
virus-free methods[120]. Moreover, another method that was using synthetically 
modified mRNA is used to generate more efficient (1.4%) human iPSCs with lower 
tumorigenicity potential[121].

Another example of miRNA reprogramming potential is miR-302 of human ESCs 
that can activate the critical genes for cell cycle progression and reprogramming of the 
somatic cells[122]. Studies show that somatic and cancer cells might be reprogrammed 
by miR-302 cluster into a less/trans differentiated state through alterations in the 
epigenetic programming, the same as iPSCs[123,124].

Regulating stem cells during reprogramming via miRNAs
miRNAs not only can reprogram cells, but also might have mechanisms for regulating 
this process and regulate the efficiency of iPSC reprogramming. There are reports of 
over-expression of embryonic stem cell specific miRNAs such as miR-290, or the miR-
302 family enhances the efficiency of reprogramming[125]. Other human miRNA 
clusters such as miR0372 (that is an ortholog of miR-290 and miR-302 clusters in 
mouse), miR-17-92, miR-106b-25 and miR-106a-363 clusters (which is very similar to 
miR-302 cluster sequence) are documented as enhancers of reprogramming efficiency
[126,127]. The ability of miRNAs in reprogramming the somatic cells into iPSCs 
happens in a direct manner. miR-302 cluster is reported to reprogram human skin 
cancer cells into a pluripotent condition[128]. Mouse and human somatic cells can be 
directly transfected into a pluripotent state via direct transfection by the miR-200c, 
miR-302 and miR-369 family[129]. The important benefit of this method is reaching 
efficiency above 10% and the lowest tumorigenicity[108].

The other way for miRNA participation in the process of reprogramming is 
regulating the cell cycle factors. In this regard, two miRNA families (miR-25 and miR-
130/301/721) can target p21, which is a cell cycle inhibitor, and this phenomenon 
leads to a promotion in the efficiency of reprogramming[127,130]. Furthermore, in a 
somatic cell reprogramming process, a reduction in miR-34a can promote the 
efficiency of the process significantly via targeting p53[131].
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Mechanism of miRNA-mediated stem cell reprogramming
miRNAs regulate stem cell reprogramming via a process that consists of three main 
steps: initiation, maturation and stabilization[132]. Some miRNAs that are activated 
through OSK (Oct4, Sox2, Klf4) or OSKM (Oct4, Sox2, Klf4, c-myc), such as miR-200b, 
miR-200c, miR-106a-363 cluster, miR-302-367 cluster and miR-93/106b, are detected to 
be involved in the initiation phase that is mesenchymal to epithelial transition, during 
iPSC initiation[127,132,133]. Upregulation of some miRNAs such as miR-19, miR-17, 
miR-290 and miR-8 family and downregulation of miR-30/Let-7 family are critical for 
activation and maintenance of pluripotency[132].

Role of miRNAs in stem cells pluripotency
As to regulation of pluripotency, miRNAs control this process via direct targeting of 
3’UTRs of pluripotency factors. miR-145 subsides OSK (Oct4, Sox2, Klf4) genes that 
deal with pluripotency by repressing them, and three miRNAs consisting of miR-134, 
miR-296 and miR-470 regulate pluripotency in ESCs through targeting the coding 
sequences of Oct4, Sox2 and Klf4[112,113]. A study reported that the miR-290 family 
had epigenetic effects on DNA molecules such as methylation in order to regulate 
differentiation and pluripotency of ESCs[134]. An interesting study also showed that 
Oct4, Sox2, Nanog and Tcf3 had binding sites in the promoter region of most miRNAs 
that are preferentially or exclusively expressed in ESCs. These transcription factors 
also regulate the expression of miRNAs[135].

Self-renewal in stem cells by miRNAs
The strategy of genetic reprogramming by miRNAs in the stem cells can be used for 
their potential of survival, proliferation and tissue repair post-transplantation[136]. 
Different miRNAs have various capabilities, like being apoptotic, anti-apoptotic and 
neutral. This is also dependent on the kind of cell line in which they are expressed and 
the range of their targets in each kind of cells[137-140]. Therefore, activated miR-290 
and miR-143 in ESCs contribute to the proliferation and cell cycle progression[114,
136]. Also, miR-143 is abundant in embryonic development, especially during 
myocardial proliferation and cardiogenesis. Furthermore, increased expression of miR-
143 is detected in some carcinomas as well[141].

The expression level of some miRNAs (miR-378, miR-689, miR-21, miR-574-5P, miR-
696 and miR-370) was significantly increased during liver regeneration[142,143], but 
these miRNAs had no expression alteration during hepatic differentiation of human 
umbilical cord MSCs. This research confirms the ability of these miRNAs in self-
renewal vs differentiation[144].

Differentiation in stem cells by miRNAs
One of the important regulatory roles of miRNAs is their modulating role in stem cell 
differentiation. This ability is used for differentiating the cells originating from the 
stem cells into various adult cells for treatment of different diseases. The miR-302 
family, which is located on ch.4, and the miR-200, miR-372 and miR-520 families, 
which are located on ch.19, are highly expressed in hESCs and are downregulated at 
the time of differentiation in adult cells[145,146] (Figure 3).

The miR-204 and miR-302 families are also known to be related to differentiation 
and maturation of retinal pigment epithelium cells from hESCs. Increase in the miR-
204 family and decrease in the miR-302 family is detected too. During retinal pigment 
epithelium differentiation, miR-184, miR-200b and miR-222, which are known as 
retinal pigment epithelium-specific miRNA signatures, increase[147,148].

Significant increase of miR-145 during hESC differentiation results in a repression in 
pluripotency by direct targeting the genes related to self-renewal and paves the way 
for differentiation[149]. The same process for differentiation is detected in murine 
ESCs through repression of Sox2 and Klf4 by miR-200c, miR-203 and miR-183[150], 
and miR-134, miR-296 and miR-470 target Nanog, Oct4 and Sox2[113]. For facilitating 
ESC differentiation, silencing the self-renewal genes is necessary as well. Let-7 is 
detected to be a critical miRNA for controlling the level of stem cell factors[110].

Furthermore, miRNAs accompany the cells during their differentiation process until 
they reach their final fate, which could be differentiated into various specialized cells 
such as cardiovascular, neural, osteogenic, chondrogenic and hematopoietic. The 
following parts briefly explain each process.

In the process of cardiovascular differentiation of cardiomyocyte progenitor cells 
and stem cells, miRNAs have regulatory roles. miR-499, via targeting Sox 6, facilitates 
the differentiation of human-derived cardiomyocyte progenitor cells into 
cardiovascular cells[151]. miRNAs conduct the cardiovascular differentiation of ESCs 
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Figure 3 Importance and specificity of microRNAs in stem cell differentiation. miRNA: MicroRNA; Pri-miRNA: Primary microRNA; Pre-miRNA: 
Precursor microRNA; RISC: RNA-induced silencing complex; Pol: Polymerase; Exp-5: Exportin 5.

and iPSCs. For instance, miR-1 regulates the cardiac differentiation of ESCs and iPSCs 
in the infracted heart[139]. This miRNA also, by targeting Klf4, promotes smooth 
muscle cell differentiation of retinoid acid-induced ESCs[152].

The modulatory roles of miRNAs have been detected in neurogenesis. miR-21 is 
related to neural differentiation of the subventricular zone in the adult mammalian 
brain[153]. Nuclear receptor TLX is targeted by miR-9 that results in NSC differen-
tiation and inhibition of the expression of pri-miR-9. A negative regulatory loop that 
finally results in a balance between proliferation and differentiation of the NSCs is 
created through the action of TLX and miR-9[154]. Another example of making a loop 
in regulating adult NSC differentiation is methyl-CpG binding protein 1-miR-184-
Numbl loop. In this case, acute deficiency of methyl-CpG binding protein 1 results in 
an increase in miR-184 that directly targets Numbl (Numb-like), which is the regulator 
of brain development[155].

The role of miRNAs in neurogenesis of ESCs and iPSCs is detected by targeting 
some neural differentiation, relatively. Suppression of the miR-371-3 family that is 
highly expressed in human iPSCs and ESCs is a classic example of this process[156]. 
Other examples are downregulation of miR-132 by suppressing Nurr1 during differen-
tiation of the tyrosine hydroxylase positive neurons[157], inhibition of activin and 
BMP-dependent pathways activate miR-125 that results in the suppression of Smad4 
and finally differentiation of hESCs into the neural lineage[158], and creation of a 
regulation loop by Oct4 and miR-302 during differentiation of hESCs through NR2F2
[159].

Any progress in expanding the ability of generating osteogenic and chondrogenic 
cells from other sources of cells is of great therapeutic value, and miRNAs are able to 
regulate these processes through targeting specific transcriptional factors and 
pathways, such as extracellular signal-regulated kinase-dependent pathway that has a 
critical role in osteoblast differentiation. Activation of RUNX2 through phospho-
rylation promotes expression of Osterix that results in the activity of alkaline 
phosphatase. Focal adhesion kinase is activated by extracellular proteins after 
activation of extracellular signal-regulated kinase 1/2. miR-138 has the ability to 
suppress differentiation of hMSCs into osteoblasts by targeting focal adhesion kinase
[160].
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miR-23b and miR-335-5p are related to induction of chondrogenic differentiation in 
human and mice MSCs, respectively. The former suppresses protein kinase A 
signaling in humans, and the latter targets Daam1 and ROCK1 in mice[161].

Mammalian hematopoiesis differentiation is regulated by miRNAs. Overexpression 
of miRNAs that have AAAGUGC seed sequence ectopically is related to improvement 
in primary hematopoietic progenitors[162]. In mouse models, some miRNAs are 
detected in relation to hematopoietic tissue such as miR-181, miR-223 and miR-142, 
which miR-181 is known to promote B lymphocyte differentiation significantly[163]. 
miR-125a continually expresses in hematopoietic stem cells and increases the number 
of these cells through targeting Bax1[164] and miR-125b whose overexpression is 
related to myeloid leukemia[165].

VIRUSES, MIRNAS AND STEM CELLS: LANDSCAPE OF VIEW
Considering the capabilities of stem cells, viruses and miRNAs provides insights into 
many potential sources for different aspects of molecular medicine, such as finding 
anti-viral therapies, pathogenesis and control of viral diseases and many more. The 
following parts briefly point to the few but valuable steps toward the mentioned goals 
by preparing the studies that have been done in this regard.

Therapeutic approaches of miRNAs in virally infected stem cells
In their study, Qian et al[166] reported the potential of umbilical cord blood derived 
mesenchymal stem cells-derived (uMSC) exosomes as effective anti-HCV agents 
through transporting a series of antiviral exosomal miRNAs to the target cells. Among 
the exosomes derived from different cell types, uMSC exosomes were the best 
candidate for repressing HCV infection while showing lower cytotoxicity compared 
with other antiviral agents. They claim that their study is the first in introducing new 
functional and therapeutical role for uMSC exosomes and providing new insights and 
prospects for the development of optimal antiviral agents in the future. Also, specific 
exosomal miRNAs derived from uMSCs result in the augmentation of the original 
effect of the host cell miRNAs[167].

Pathogenesis abilities of miRNAs in virally infected stem cells
Japanese encephalitis virus infection is a central nervous system neuroinflammation 
disease that is commonly more detected in children and old-age people. Human 
microglial cells were infected with Japanese encephalitis virus, and the miRNA-
microarray profiling reported the expression level of different miRNAs. miRNAs are 
involved in molecular pathogenesis of Japanese encephalitis virus and might be 
helpful in developing antiviral strategies against this infection[168].

Another study that detected the value of miRNAs in pathogenesis is a study that 
was done for elucidating the role of miRNAs in pathogenesis of Zika virus (ZIKV; a 
mosquito-borne virus resulting in newborn brain abnormalities such as microcephaly). 
This study focused on intracellular and extracellular vesicle-derived miRNAs and the 
host mRNA transcriptome of the neural stem cells during ZIKV infection. It was 
shown that some miRNAs, especially miR-4792, dysregulated at the intracellular level 
and had altered levels in extracellular vesicles during ZIKV infection[169].

Regulatory effects of miRNAs in virally infected stem cells
ZIKV envelope protein had the ability to alter the miRNome profile of human fetal 
neural stem cells, leading to alterations in proliferation and differentiation of fetal 
neural stem cells. Furthermore, they detected 14 upregulated and 11 downregulated 
miRNAs, among which miR-204-3p and miR-1273g-3p were directly responsible for 
regulating the expression level of NOTCH2 and PAX3, respectively. They also 
revealed through GO analysis that altered miRNAs in their study were in close 
relationship with the cell cycle and development processes[170].

Furthermore, for understanding the underlying mechanisms of mother-to-fetus 
transmission during ZIKV infection, mRNA and miRNA expression profiles were 
studied in human umbilical cord mesenchymal stem cells infected with two lineages of 
ZIKV, African (MR766) and Asian (PRVABC59). The results indicated that, during 
viral infection, miR-142-5p and its cellular targets (IL6ST and ITGAV) were decreased 
in a significant manner. The results of this study certify the importance of miRNAs in 
modulation of viral replication, especially during ZIKV infection[171].
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During coxsackievirus B3 infection in Hela cells, miRNA alteration profiling 
specified 34 miRNAs whose predicted targets were mainly associated with cellular 
differentiation and transcriptional regulation. This study might be the first step in 
detecting the regulatory ability of miRNAs during viral infections like coxsackievirus 
B 3 infection[172].

Controlling capacities of miRNAs in virally infected stem cells
Coronavirus disease in 2019 is the cause of severe acute respiratory syndrome 
coronavirus 2 infection that, unfortunately, has no specific treatment and is still 
spreading among the world population. Hyun et al[173] studied the regulatory ability 
of the miRNAs derived from MSC extracellular vesicles as a potential novel 
therapeutic factor. Their study could introduce some therapeutic miRNAs by critical 
roles in the viral biology of the infected cells. Among them, miR-92a-3p, miR-103a-3p, 
miR-181a-5p, miR-26a-5p and miR-23a-3p are able to block RNA replication in severe 
acute respiratory syndrome coronavirus 2 and suppress virus-mediated proinflam-
matory responses by human bronchial epithelial cells and lung fibroblasts, all of which 
express angiotensin-converting enzyme 2 receptors.

CONCLUSION
Overall, this review provides a comprehensive view on the changes in the host 
miRNAs induced by viral infection and highlights the importance of miRNAs in the 
discovery and characterization of cellular factors involved in the modulation and 
regulation of viral replication and pathogenesis. Using the ability of stem cells in 
producing miRNAs against viruses might also be a giant step forward in the path of 
control and therapy of persistent viral infections. Programing of cross talk between 
viruses and stem cells by miRNAs may be helpful in therapeutic tactics, pathogenesis 
and controlling viral infections, and stem cell development strategies need to be 
evaluated in future studies.
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