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Abstract
Previously regarded as simple fat storage particles, new evidence suggests that 
lipid droplets (LDs) are dynamic and functional organelles involved in key 
cellular processes such as membrane biosynthesis, lipid metabolism, cell 
signalling and inflammation. Indeed, an increased LD content is one of the most 
apparent features resulting from lipid metabolism reprogramming necessary to 
support the basic functions of cancer cells. LDs have been associated to different 
cellular processes involved in cancer progression and aggressiveness, such as 
tumorigenicity, invasion and metastasis, as well as chemoresistance. Interestingly, 
all of these processes are controlled by a subpopulation of highly aggressive 
tumoral cells named cancer stem cells (CSCs), suggesting that LDs may be 
fundamental elements for stemness in cancer. Considering the key role of CSCs on 
chemoresistance and disease relapse, main factors of therapy failure, the design of 
novel therapeutic approaches targeting these cells may be the only chance for 
long-term survival in cancer patients. In this sense, their biology and functional 
properties render LDs excellent candidates for target discovery and design of 
combined therapeutic strategies. In this review, we summarise the current 
knowledge identifying LDs and CSCs as main contributors to cancer aggress-
iveness, metastasis and chemoresistance.

Key Words: Lipids; Lipid droplets; Lipid metabolism; Stemness; Cancer stem cells; 
Chemoresistance

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Increasing evidence suggests that lipid droplets (LDs) support cancer stem 
cells (CSCs) functionality at different levels. Indeed, an increased LD content has been 
linked to tumorigenicity, metastatic spread and chemoresistance in different cancer 
types, highlighting their value as prognostic and treatment response predictive 
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biomarker. A deeper understanding of the molecular mechanisms by which LDs 
control these processes would expedite the discovery of novel potentially druggable 
targets and the design of more efficient therapeutic strategies aimed at eliminating 
highly tumorigenic CSCs.
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INTRODUCTION
Cancer stem cells
The cancer stem cell concept: Consistent evidence supports that most of the hetero-
geneity found in both liquid and solid cancers might be originated in the context of 
hierarchical organisation of the tumours. Indeed, a subset of cells with self-renewal 
capacity and tumour-initiating properties called cancer stem cells (CSCs) undergo 
asymmetrical and symmetrical divisions in order to originate bulk differentiated 
tumour cells and identical CSCs to perpetuate its lineage. Cancer hierarchy at cellular 
level was first described in acute myeloid leukaemia[1], representing a huge milestone 
in the understanding of cancer emergence. The CSC theory has been supported since 
then by increasing evidence in other malignancies such as breast cancer[2], brain 
tumours[3] colon and colorectal cancers[4,5], as well as pancreatic cancer[6,7], among 
others.

The current approach to cancer therapy has been both clarified and challenged by 
the existence of CSCs. On the one hand, the increasing evidence of their existence and 
contribution to tumorigenesis and metastasis has allowed researchers and clinicians to 
acquire a better understanding of cancer origin and evolution. On the other hand, 
proof of the implication of CSCs in treatment failure due to their intrinsic chemores-
istance abilities has demonstrated that specific therapeutic strategies against this 
tumoral subpopulation are still urgently needed.

The origin of CSCs remains unclear, since it might vary between malignancies. One 
hypothesis derives from the observed similarities between CSCs and their normal 
homologous SCs, suggesting that local SCs may suffer a malignant transformation[8]. 
Other theories involve the acquisition of stemness features by differentiated cells. On 
the one hand, it has been suggested that differentiated cancer cells undergoing 
epithelial-to-mesenchymal transition acquire stem-like properties under the regulation 
of Notch signalling[9,10]. On the other hand, microenvironmental signals from stromal 
cells might facilitate non-CSCs dedifferentiation. For instance, Wnt signalling 
conferred self-renewal and tumorigenic abilities to colorectal cancer cells[11]. 
Furthermore, FGF5 and collagen production induced by Hedgehog promoted triple 
negative breast cancer chemoresistance by acquiring self-renewal capacity[12]. In any 
case, a dual scenario in which both local SCs and differentiated tumour cells originate 
new CSCs may be present in chemoresistant pancreatic[13] and lung[14] cancer cells.

CSC metabolism
Microenvironmental selective pressure forces CSCs to adapt continuously in order to 
survive and progress. For instance, as the tumour grows, glucose and oxygen levels 
diminish, the pH becomes acidic and reactive oxygen species (ROS) and inflammatory 
mediators accumulate in the tumour microenvironment. Since most differentiated 
tumour cells are fully glycolytic in order to cope with their enhanced proliferative 
rates (e.g. Warburg effect), resource scarcity forces CSCs to become metabolically and 
functionally plastic in order to survive and detoxify their microenvironment. Theoret-
ically, an active mitochondrial metabolism would provide CSCs with an increased 
plasticity since a larger array of substrates could be feeding the tricarboxylic acid cycle. 
However, depending on the tumour type and model systems studied, CSCs use either 
mitochondrial oxidative phosphorylation (OXPHOS) or glycolysis[15,16] preferen-
tially, with varying degrees of plasticity to switch from, even within the same tumour. 
Indeed, although the majority of pancreatic CSCs relies on OXPHOS and is very 
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sensitive to mitochondrial inhibition, a small portion of CSCs shows a plastic 
phenotype, activating glycolysis when its mitochondria are inhibited[17]. However, 
full metabolic plasticity comes at the expense of self-renewal capacity[17].

Importantly, OXPHOS-dependent CSCs and therapy-resistant tumour cells from 
different cancer types bear higher levels of the master regulator of mitochondrial 
biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α)[17-19], which supports OXPHOS metabolism and provides resistance to 
oxidative stress and chemotherapy[18-20]. Considering that PGC-1α is a transcrip-
tional coactivator of the peroxisome proliferator-activated superfamily of receptors 
(PPARs) which controls the balance between glucose and lipid metabolism[21,22], we 
can hypothesise that PGC-1α enables CSCs to control a complex metabolic programme 
associating stemness to mitochondrial metabolism, including lipid and fatty acid (FA) 
oxidation (FAO). In fact, different studies have demonstrated that lipid metabolism is 
required to maintain the CSC pools in several tumour types[23-26].

LIPID METABOLISM AND LIPID DROPLETS
Cancer and lipid metabolism
Cancer cells have metabolic reprogramming abilities to sustain high proliferation rates 
as well as energy production, not only through high glycolysis (Warburg effect), but 
also through reprogrammed lipid metabolism[27-29]. Indeed, they enhance de novo 
lipid synthesis, lipogenesis and FAO, being FA synthesis one of the most important 
aberrations of cancer cell metabolism[30]. FAs are involved in many different aspects 
of tumorigenesis and tumour progression and sustain three requirements of cancer 
cells and CSCs: Cell membrane formation, signalling molecules and lipid-derived 
messengers, and energy production[31-33]. Importantly, an increased FA metabolism 
has been associated to poor prognosis in different types of cancer, such as pancreatic 
cancer or melanoma[34]. In pancreatic cancer, it is generally associated to a high 
expression of key regulatory enzymes like the FA synthase and sterol regulatory 
element-binding protein[35,36].

Cancer cells accumulate more lipids in their cytoplasm than normal cells[37]. 
Novikoff was the first to demonstrate the presence of cytoplasmic inclusions in the rat 
liver tumour cells and to identify the lipid nature of these droplets[38]. Although 
regarded as simple fat storage particles for long, lipid droplets (LDs) are currently 
considered conserved, dynamic and functional organelles involved in membrane 
biosynthesis, lipid metabolism, cell signalling and inflammation[39]. Indeed, they have 
been associated with an increased tumour aggressiveness and resistance to 
chemotherapy[40], considerably raising attention within the cancer biology commu-
nity.

LDs
LDs, also known as lipid bodies or liposomes, are cellular organelles ranging from 20-
40 nm to 100 mm, with key functions for lipid and energy homeostasis[41,42]. The 
quantity, size, composition and intracellular localisation differ significantly between or 
within cells, mainly due to their type, function and metabolic state[43]. Indeed, LDs 
are highly dynamic organelles which alternate periods of growth and consumption, 
depending on cell energy and nutritional status[39,41].

However, all LDs have a similar structure consisting of a hydrophobic core of 
neutral lipids, such as cholesteryl esters (CE), retinyl esters and triglycerides (TAGs)
[44], separated from the aqueous cytoplasm by a monolayer of phospholipids, mainly 
phosphatidylcholine[45]. Additionally, LDs are coated with integral and peripheral 
proteins[46] derived from the cytosol or the endoplasmic reticulum (ER)[47]. These 
proteins can be classified into four groups: (1) Resident/structural proteins, such as 
members of the perilipin (PLIN)-ADRP-TIP47 family or the cell death-inducing 
DFF45-like effector (CIDE) family[48-50] (Figure 1); (2) Lipid metabolism enzymes, 
such as diacylglycerol acyltransferases 1 and 2 (DGAT1 and DGAT2), adipose trigly-
ceride lipase (ATGL) and hormone-sensitive lipase (HSL); (3) Membrane trafficking 
proteins, including a variety of Ras related protein (Rab) GTPases, as well as soluble 
NSF binding protein receptor proteins; and (4) Cell signalling proteins such as 
mitogen-activated protein kinases and protein kinase C. Other types of proteins can be 
associated to the ribosome and cytoskeleton, or processes such as protein degradation
[51,52].
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Figure 1 Structure and cellular functions of lipid droplets. Lipid droplets (LDs) have a hydrophobic core of neutral lipids, mainly cholesteryl esters and 
triglycerides surrounded by a monolayer of phospholipids. LDs are coated with peripheral and integral proteins such as cell death-inducing DFF45-like effector and 
perilipins proteins, and lipid metabolism enzymes implicated in lipid synthesis and lipolysis: diacylglycerol acyltransferases 1 and 2 (DGAT1 and DGAT2), acyl-CoA 
cholesterol acyltransferases 1 and 2 (ACAT1 and ACAT2), adipose triglyceride lipase, hormone-sensitive lipase and monoacylglycerol lipase. LDs play roles in 
energy supply, via fatty acid oxidation, and signalling, by producing lipid intermediates that include pro- and anti-inflammatory signalling molecules and peroxisome 
proliferator-activated (PPAR) ligands. Upon activation, PPARs together with the coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
form a nuclear complex with RXR that binds to the DNA to activate the transcription of target genes. TAG: Triglycerides; CIDE: Cell death-inducing DFF45-like 
effector; PLIN: Perilipins; ATGL: Adipose triglyceride lipase; HSL: Hormone-sensitive lipase; MAGL: Monoacylglycerol lipase; FA: Fatty acid; CE: Cholesteryl esters; 
PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; DGAT: Diacylglycerol acyltransferases; ACAT: Acyl-CoA cholesterol 
acyltransferases; PPARs: Peroxisome proliferator-activated receptors.

LD biogenesis can be described as an evolutionary model consisting of three main 
steps: (1) Lipid synthesis; (2) LD formation; and (3) LD growth. In step 1, TAG and CE 
synthesis enzymes, such as DGAT1, DGAT2 and acyl-CoA cholesterol acyltransferases 
1 and 2 (ACAT1 and ACAT2), deposit neutral lipids between the sheets of the ER 
bilayer[53,54]. During step 2, the lipid quantity increases and, when it reaches a certain 
concentration, the LD detaches from the ER[55]. Thereafter, a variety of proteins such 
as perilipins, are recruited to the lens structure and facilitate the growth of the nascent 
LD[56]. Finally, step 3 only occurs in some mammalian cells, where LDs can grow by 
local lipid synthesis, by transporting lipids to LDs or by fusing with other LDs[57].

LDs can be broken down for energy supply and membrane synthesis through 
lipolysis or lipophagy (Figure 1). The lipolysis enables the release of FAs from TAGs 
through the consecutive action of ATGL, HSL and monoacylglycerol lipase[58,59]. 
Through lipophagy, LDs are enclosed in autophagosomes, fused with lysosomes and 
degraded by hydrolytic enzymes[60,61].

LDs are mainly found in the cytoplasm, but also in the nucleus of some cell types
[62]. Their intracellular location is determined by interacting with other organelles to 
promote lipid exchange, metabolic dynamics and stress adaptation[63]. LDs come into 
contact with the ER early in their biogenesis, as well as with the lysosome in the 
lipophagy process[56,61]. LDs also connect with mitochondria to enable the direct flow 
of FAs into the mitochondrial matrix to fulfil the cell energy requirements[64]. Their 
interaction with peroxisomes also allows the transport of FAs, phospholipids and 
TAGs[65]. Moreover, there is direct and indirect contact with nucleus and Golgi 
organelles[66].

Besides energy supply and membrane synthesis, LDs play additional roles to ensure 
proper cell functionality under stress. Prolonged nutrient deprivation upregulates 
autophagy, causing breakdown of proteins and membranous organelles, which release 
amino acids and lipids potentially toxic for the cell. In this sense, LDs store neutral 
lipids, inert within its structure[67]. Additionally, LDs serve as extra source of lipids 
for FAO under nutrient stress[31,68,69] and hypoxic stress[68]. LDs also ensure the 
maintenance of redox homeostasis, proper mitochondrial function and membrane and 
organelle homeostasis[64,70]. In addition, they protect against ER stress; that is, 
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against imbalances in ER protein folding capacity, calcium uptake and lipid 
composition[41,71]. Finally, LDs produce lipid intermediates that include pro- and 
anti-inflammatory signalling molecules[72].

LDs IN CANCER STEMNESS AND CHEMORESISTANCE
Considering LDs regulate different cellular processes, it is not surprising that they 
have been strongly associated to cancer progression and aggressiveness in recent years
[69,73-75]. In fact, LDs facilitate not only tumour growth, but also metastasis, 
chemoresistance and disease relapse in multiple types of cancers[68,74,76], all 
processes intimately related to CSCs.

Indeed, a direct relation between LD content and stemness has been demonstrated 
in different types of cancers such as pancreatic, colorectal, ovarian and breast cancer
[25,77-79]: On the one hand, the isolation of cells with high LD content led to an 
enrichment of CSCs; on the other hand, isolated CD133+ CSCs show higher LD content 
than differentiated CD133- cancer cells. Interestingly, tumour-initiating pancreatic cells 
resistant to KRAS ablation showed an LD accumulation coupled with macroli-
pophagy, corresponding to the fusion of LD with autophagosomes. Correlated with a 
high catabolism rate of endogenous lipids and FAs, Viale et al[80] determined that 
these KRAS ablation-resistant cells used autophagy/macrolipophagy to maintain their 
energy balance. Indeed, the inhibition of either autophagy or entry of FAs in the 
mitochondria (using bafilomycin or etomoxir, respectively) dramatically reduced 
cellular oxygen consumption rate. This metabolic stress was associated with a strong 
decrease of survival and sphere formation capacity[80]. Functionally, Tirinato et al[81] 
demonstrated that sorted colorectal CSC with high or low LD content were able to 
form tumours after subcutaneous injection in immunocompromised mice, although 
cells with low LD content generated delayed small tumours less frequently. These 
results suggested that cells with high LD content increase tumorigenic potential, while 
cells with low LD content represented a more differentiated and less tumorigenic 
population. Thereby, LD content seems directly linked to tumorigenicity and is 
suggested as a marker of CSCs, in addition to molecular markers[81]. Moreover, LD-
related proteins from the PLINs and CIDE families can be associated to tumorigenicity 
in several cancer types[82]. Nevertheless, Cao et al[82] highlighted that an increased 
expression of PLIN2 was associated with a better survival rate in clear cell renal cell 
carcinoma (ccRCC), decreased with a higher tumour grade. Indeed, PLIN2 knockdown 
enhanced proliferation, migration and invasion of ccRCC cells. These findings 
underpin that more studies are needed to clearly identify the specific roles of LD-
associated proteins in tumorigenesis or tumour progression, which may be cell or 
context-specific.

LDs seem to be necessary for CSCs functionality[40], not only to sustain energy 
demands and biomass production but also to regulate several important oncogenic 
signalling pathways such as Wnt/β-catenin and Hippo/Yes-associated protein 1 
pathways[79] (Figure 2). In this sense, the PPARs superfamily directly associates 
signalling with LDs, since most lipid-derived second messengers produced in LDs act 
mainly through these nuclear receptors. Recently, Kuramoto et al[77] demonstrated 
that PPARα was activated in CSCs that accumulated LDs from pancreatic and 
colorectal cancer. At the same time, PPARα induced the expression of lipolytic factors 
like ATGL, leading to the release of FAs that supported stemness characteristics in a 
positive feedback loop. Indeed, a decreased PPARα activity, by using inhibitors or 
siRNAs, reduced sphere formation as well as pluripotency-related genes expression  
(SOX2, OCT4 and NANOG) in pancreatic cells in vitro[77]. These results suggest that 
pharmacological agents modulating PPARs activity could represent interesting 
compounds in order to target CSCs.

Several studies have demonstrated the importance of LDs and the associated lipase 
HSL in invasion and metastasis regulation, with special relevance in pancreatic cancer
[83]. For instance, oncogenic KRAS down-regulates HSL to control lipid storage and 
utilisation, leading to LD accumulation and tumour invasion[84,85]. Disruption of the 
KRAS-HSL axis or overexpression of HSL reduces lipid storage and suppresses 
invasive migration in vitro and metastasis in vivo[83,84]. Interestingly, Mitra et al[86] 
demonstrated by Raman spectrometry that circulating tumour cells isolated from the 
peripheral blood of patients with metastatic prostate cancer, accumulated LDs[86], 
further strengthening the relation between metastasis and LD accumulation.

Increasing evidence links lipid metabolism with chemoresistance in different cancer 
types[74]. For instance, FAO-derived adenosine triphosphate has been shown to drive 
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Figure 2 Features of cells with high content of lipid droplets. Cells with high lipid droplets (LD) content show activation of different signalling pathways 
such as Wnt/β-catenin, Hippo/Yes-associated protein, Notch, Hedgehog and PPARs/PGC-1α. Increased LD content has been linked to aggressive phenotypes in 
tumour cells, such as stemness, tumorigenicity, migration and invasion, metabolic plasticity and chemoresistance. LD: Lipid droplets; PGC-1α: Peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha; PPARs: Peroxisome proliferator-activated receptors; YAP: Yes-associated protein.

chemoresistance in breast cancer and leukemic stem cells[87,88]. In addition, Incio et al
[89] showed that 5-Fluorouracil (5-FU) uptake and efficacy in pancreatic cancer cells 
decreased significantly in an obese context, indicating that large obesity-caused 
accumulation of LDs resulting from obesity can reduce drug delivery and 
chemotherapy efficiency.

The contribution of LDs to chemoresistance is twofold: On the one hand, intrinsic 
presence of LDs has been widely reported to be a characteristic of chemoresistant 
cancer cell lines[68,69,74,76]. For instance, prostate cancer cells survive androgen 
deprivation therapy by metabolising lipids present in LDs[90]. On the other hand, 
chemotherapy treatments may induce de novo LD biogenesis. For example, 
doxorubicin and 5-FU induced TAG biosynthesis, accumulated in LDs in human colon 
carcinoma cells[74,91]. Moreover, direct or indirect pharmacological inhibition of FAO 
or OXPHOS is sufficient to drive LD formation in cancer cells[74]. Indeed, treatment 
with the c-MYC/Max inhibitor 10058-F4 induced LD accumulation resulting from 
mitochondrial dysfunction[92]. Interestingly, a combination of both LD presence and 
accumulation has been described in colorectal cancer cells. For instance, high LD 
content identified cancer cell lines with increased chemoresistance to 5-FU and 
oxaliplatin. These cells further accumulated LDs in response to chemotherapy in a 
process facilitated by lysophosphatidyl-choline acyltransferase 2 (LPCAT2), an LD-
associated enzyme essential for phosphatidylcholine synthesis[93]. An elevated 
expression of LPCAT2 prevented chemotherapy-induced ER stress, further 
highlighting the protective role of LDs against cellular stresses[74,93]. Importantly, it 
has been recently reported that LDs can also act as a sink to sequester hydrophobic 
compounds impairing drug-induced apoptosis, resulting in chemoresistance of cancer 
cells[68,69].

CONCLUSION
Even if our knowledge about the mechanisms by which LDs support cancer stemness 
is still very limited, it seems clear now that high levels of LDs are strongly associated 
with cancer aggressiveness and chemotherapy resistance in different tumour types. 
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Considering this, measurement of LD accumulation could be potentially used as a 
prognostic biomarker, also with predictive value in terms of treatment response to 
conventional therapies. A deeper understanding of the molecular mechanisms 
dictating their implication in essential processes of the CSC biology, such as tumori-
genicity, metastatic spread and chemoresistance, should pave the way to discover 
novel LD-related targets and therapeutic approaches for more effective cancer 
treatment.
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