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Abstract
Diseases caused by ischemia are one of the leading causes of death in the world. 
Current therapies for treating acute myocardial infarction, ischemic stroke, and 
critical limb ischemia do not complete recovery. Regenerative therapies opens 
new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal 
stem cells (MSCs) are the most promising option in the field of cell-based 
therapies, due to their secretory and immunomodulatory abilities, that contribute 
to ease inflammation and promote the regeneration of damaged tissues. This 
review presents the current knowledge of the mechanisms of action of MSCs and 
their therapeutic effects in the treatment of ischemic diseases, described on the 
basis of data from in vitro experiments and preclinical animal studies, and also 
summarize the effects of using these cells in clinical trial settings. Since the 
obtained therapeutic benefits are not always satisfactory, approaches aimed at 
enhancing the effect of MSCs in regenerative therapies are presented at the end.

Key Words: Ischemia; Mesenchymal stem cells; Regenerative medicine; Stem cell therapy; 
Clinical applications
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Core Tip: Mesenchymal stem cell (MSC) transplantation is an innovative therapy with 
positive therapeutic effects for many ischemic diseases. Ischemia of an area is defined 
as insufficient blood supply to specific tissues and various organs or individual parts of 
the body. The leading cause of tissue ischemia is the narrowing or blockage of the 
lumen of an artery, most often due to the formation of atherosclerotic plaques, 
thrombus, or spasms of a specific artery. Here, the potential therapeutic mechanisms of 
MSCs in ischemic diseases were discussed, along with examples of preclinical and 
clinical studies.
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INTRODUCTION
Ischemia of an area is defined as insufficient blood supply to specific tissues and various organs or 
individual parts of the body (e.g., limbs). Reduced blood perfusion causes inadequate transport of 
oxygen and nutrients to tissue-resident cells, leading to ischemia and ultimately damaging tissues and 
organs. The leading cause of tissue ischemia is the narrowing or blockage of the lumen of an artery, 
most often due to the formation of atherosclerotic plaques, thrombus, or spasms of a specific artery[1]. 
Disruption of blood flow to particular organs or parts of the body may be chronic developing over 
several months or years or acute occurring suddenly (e.g., during exercise) and usually takes a more 
rapid course often with a worse prognosis. Ischemia resulting from atherosclerotic lesions is most 
commonly found in the heart muscle, lower extremities, kidney, and brain[1-4]. Examples of ischemic 
diseases caused by the narrowing of the coronary and cerebral arteries that cause high morbidity and 
mortality in patients are myocardial infarction and ischemic stroke (Figure 1)[5]. Ischemia may entail 
several functional changes at the level of individual cells that build tissues, causing their dysfunction 
and death due to necrosis or apoptosis[6].

Standard treatments for ischemia include invasive and pharmacological control and treatments for 
the effects of ischemia in the damaged tissues. These methods emphasize improving the quality of and 
extending the patient’s life, but they cannot fully reverse the effects of tissue ischemia in case of people 
suffering from congenital heart disease[7], ischemic heart failure[8], acute limb ischemia[9], critical limb 
ischemia[10], and ischemic stroke[11]. Even with the substantial progress of therapeutic strategies, these 
approaches do not provide the expected clinical benefits for all patients. Therefore, novel treatment 
pathways while replacing or supporting classic therapeutic approaches should continue to be invest-
igated[12-14].

Currently, great hopes are placed on regenerative treatment, i.e., therapies based on cellular prepar-
ations, including using various progenitor and stem cells (SCs) and their products[8,12,15]. Over the 
past decade, growing effort has been directed to the regenerative properties of SCs in relation to the 
biological treatment strategy of substitution of damaged cells in the tissue with new ones[16]. It is also 
believed that SCs may be involved in the neovascularization of ischemic tissues[17,18].

In 1970, Friedenstein et al[19] discovered an exceptional type of cell that has been extensively 
researched over the years for its potential use in regenerative medicine to treat ischemic damage[20]. 
These cells, called mesenchymal SCs (MSCs), reside in both young and adult donors [e.g., umbilical cord 
(UC), Wharton’s jelly (WJ) amniotic fluid, UC blood (UCB), placenta, adipose tissue (AT), bone marrow 
(BM), dental pulp (DP), and others], which has been a particular and exciting source of SCs for many 
years, mainly for autotransplantation and allotransplantation. Regardless of the tissue source, a cell that 
meets the criteria set out by the International Society for Cell Therapy (Table 1) may be qualified as 
MSCs[21].

They now account for the most popular SC population used in clinical trials worldwide (clinical-
trials.gov). MSCs derived from birth-related tissues have more promise due to better proliferative 
capacity compared with MSCs obtained from adult tissues. They are safe in terms of both sourcing and 
ethical aspects[22,23]. Due to several specific characteristics, these cells are essential candidates for 
regenerative therapies for ischemic tissues. Moreover, it is possible to use these cells to manufacture 
ready-to-use SC-based medicinal products. This review described the potential therapeutic mechanisms 
of MSCs in the context of ischemic disorder treatment. Exemplary clinical trials and procedures 
enhancing the therapeutic effect of MSCs were also discussed.

PATHOGENESIS OF ISCHEMIC DISEASES AND MSC-BASED THERAPY
The leading cause of ischemic disorders is the chronic inflammatory disease of the arteries, called 
“atherosclerosis”. It can be caused by many risk factors, including aging, high blood pressure, diabetes, 
hypercholesterolemia, and smoking[24,25]. In the course of atherosclerosis, pathological damage and 
dysregulation of the endothelium lining the blood vessel wall, accumulation of lipids, smooth muscle 
cells, leukocytes, and foam cells are observed. Also, there is an aggregation of platelets in the lumen of 
the blood vessels, which leads to the formation of plaques narrowing the lumen of the vessels[26,27]. 
Moreover, in atherosclerotic lesions, increased expression of matrix metalloproteinases (MMP) and their 
participation in weakening the vascular wall through the degradation of the extracellular matrix (ECM) 
have been demonstrated[28].

https://www.wjgnet.com/1948-0210/full/v15/i2/16.htm
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Table 1 Minimal criteria for defining mesenchymal stem cells

Morphology, growth conditions Spindle-shaped (fibroblast-like), adherent

Specific surface markers CD73+, CD90+, CD105+, CD11b-, CD14-, CD19-, CD45-, CD79α-, MHC-II, HLA-DR-

Differentiation potential Adipogenic, chondrogenic, osteogenic

HLA: Human leukocyte antigen; MHC: Major histocompatibility complex.

Figure 1 Mesenchymal stem cell therapy in ischemic diseases. The mesenchymal stem cells can be use as biological drugs in the treatment of ischemic 
disorders of various organs, including brain ischemia in ischemic stroke, heart ischemia in acute myocardial infraction, Chronic ischemic cardiomyopathy, ischemic 
heart failure, and chronic lower extremity ischemia. MSC: Mesenchymal stem cell.

To compensate for the degradation of the ECM, smooth muscle cells migrate from the outer layers of 
the artery wall to the inner lining of the sheath to increase the collagen secretion rate[25]. It often causes 
undesirable remodeling as macrophages secrete cytokines such as tumor necrosis factor (TNF)-α, 
interleukin (IL)-1β, and IL-6 to induce smooth muscle cell apoptosis[25]. The unbalanced degradation 
rate of the ECM caused by increased collagen production results in the formation of atherosclerotic 
plaques with a thin fibrous collagen cap[29]. Injecting MSCs at this stage can modulate immune cell 
function, MMP activity, and the secretion of proinflammatory cytokines and restore collagen 
homeostasis[30]. In addition, due to hemodynamic changes and high shearing stresses in atherosclerotic 
plaques, ruptures and bleeding may occur, increasing platelet recruitment, coagulation processes, and 
thrombus formation[31]. Due to the secretion of proangiogenic factors and the ability to differentiate in 
the endothelium, MSCs can promote angiogenesis to restore blood flow to ischemic tissues for tissue 
regeneration and organ function restoration[32].

KEY PLAYERS IN ISCHEMIC TISSUE REGENERATION
Over the past decade, scientists and clinicians often discuss the regenerative properties of SCs in the 
context of biological treatment approaches. These strategies involve the replacement of damaged tissue 
cells with new SCs, including ischemic myocardium[16,33]. SCs are also considered cells that can 
participate in the neovascularization of ischemic tissues, which may also be associated with the 
improvement of the function of this organ[18,34,35].

One type of cell studied for years for their potential future use in regenerative medicine to treat 
myocardial damage or improve perfusion in limb muscle tissue is the mesenchymal/stromal SC (MSC) 
isolated from the BM, AT, birth-associated tissues, and other sites. These cells were found in both young 
and adult donors and have been an essential and exciting source of SCs, primarily for autotrans-
plantation. They now account for the most often used SC population in clinical trials worldwide (clinic-
altrial.gov)[18,36,37].
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The history of studies on MSCs began in the 1970s when Friedenstein et al[19] observed colony-
forming unit-fibroblasts (today known as MSCs). These cells constituted a fraction of adherent cells in 
the BM[19]. Moreover, their previous studies showed that subpopulations of BM cells could differ-
entiate to other cell types, i.e., osteoblasts[38]. These discoveries initiated an increase in interest in MSCs 
and the search for these cells in other tissues as well.

One of the primary and best-known sources of MSCs is BM[39,40]. Cells with similar morphology 
and biological characteristics can also be found in other tissues collected from adult donors, such as 
peripheral blood, AT, DP, and fetal tissues such as UCB and WJ[41].

BM-MSCs show morphological and phenotypic similarities to AT-MSCs and WJ-MSCs. These 
markers include CD29 +, CD44 +, CD73 +, CD90 +, CD105 +, CD166 +, human leukocyte antigen (HLA)-
ABC +, CD11b-, CD14-, CD19a-, CD34-, CD45-, CD79-, and HLA-DR[42,43]. However, the source tissues 
from which MSCs are isolated differ in the content of these SCs. For example, the number of MSCs in 
the BM is lower than in AT[43,44]. The BM contains from 0.0017% to 0.02% of MSCs among all 
mononuclear cells, while in AT, these cells constitute 5.0% to 25.6% of all cells, which is the so-called 
stromal-vascular fraction obtained from this tissue[44-46]. The number of colony-forming unit-fibroblast 
colonies isolated from the same number of plated BM or AT cells is several times higher from AT than 
BM[42]. Also, WJ-MSCs cells have a higher frequency of colony-forming unit-fibroblasts than BM-MSCs 
cells[47]. Considering the differentiation potential of BM-MSCs, AT-MSCs, and UC-MSCs, these cells 
show a comparable capacity to differentiate into osteoblasts, chondrocytes, and adipocytes[42,48], 
confirming their mesodermal origin.

MSCs derived from various tissues can also be differentiated in vitro into phenotypically similar cells, 
including cardiomyocytes[49-53], vascular endothelial cells (ECs)[54,55], and nerve cells[56]. However, 
it has been shown that the effectiveness of such differentiation is variable and depends on the tissue 
origin[49,51,53,56]. Within one culture of MSCs, cells may be more or less predisposed to differentiate to 
a specific phenotype of the mature cell[57]. Despite the morphological and antigenic similarity between 
MSCs from different source tissues, the results of world studies showed that BM-MSCs may offer a 
different expression profile of many genes compared to placenta-derived MSCs[57], which suggests that 
MSCs obtained from BM, WJ, and AT may differ in terms of their molecular composition and their 
ability to differentiate.

The International Society for Cellular Therapy, to clarify the nomenclature and define the 
requirements of human MSCs and facilitate the comparison of test results between laboratories around 
the world, proposed three minimum criteria for characterizing human MSCs[21].

Due to numerous world studies showing the relatively wide potential of MSCs to differentiate into 
various types of tissues, these cells constituting a population obtained from mature tissues have for 
years interested scientists in the context of their potential use in tissue regeneration[58-60].

MSC MECHANISMS OF ISCHEMIC TISSUE REGENERATION
Multipotent MSCs show many features desirable from the point of view of their potential use in the 
regeneration of damaged tissues, not only in autologous but also in allogeneic transplants. Therefore, 
over the last decade, many studies have been undertaken to explain the mechanisms of action of these 
cells replaced by tissue damage. Figure 2 presents several essential mechanisms of action contributing to 
ischemic tissue regeneration.

Differentiation of MSCs
It was initially suggested that MSCs administrated into the area of tissue damage are able to differ-
entiate into desired cell types, including muscle-building cardiac mesenchymal cells (CMCs), vascular 
smooth muscle cells, and ECs[59,61,62]. It was shown in vivo that MSCs injected to the heart muscle had 
a phenotype similar to differentiating cells, including CMCs and ECs[63-65]. Pochon et al[66] confirmed 
that WJ-MSCs differentiated into CMCs in vitro, expressing CMC markers and spontaneous throbbing, 
which might be evidence of their terminal maturation into specialized cells capable of playing their 
proper functions. Although MSCs show the potential to differentiate to CMCs in vitro, the fundamental 
issue is to restore damaged tissue in vivo. Effective delivery and retention must be emphasized here 
because if cells do not reach the target tissue, they cannot exert any therapeutic effect[60]. Even if studies 
have shown that MSCs can differentiate into various types of myocardial cells, an increasing number of 
studies show that this is not a main mechanism for their regenerative activity in the cardiovascular 
system.

Several articles now contain information on the neural differentiation of MSCs from various sources 
in vitro[67-69]. In the described studies, the prevailing view suggests that MSCs, derived from immature 
tissues due to their plastic properties, can differentiate more effectively into cells with neural phen-
otypes, showing the presence of typical linear markers[70]. Positive results of in vitro neural differen-
tiation of MSCs were obtained in experiments using specific chemical compounds, growth factors, co-
culturing with mature neurons, or the culture of three-dimensional aggregates[71,72]. Another study 
showed that neural differentiation of MSCs can be induced by a conditioned medium derived from 
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Figure 2 Proposed therapeutic mechanisms of mesenchymal stem cells, including differentiation, immunomodulation, secretion of 
paracrine factors, and secretion of microvesicles. Mesenchymal stem cells (MSCs) can repair and/or rescue injured cells via differentiation into 
replacement cell types including endothelial cells, and cardiomyocytes. The immunomodulatory activity of MSCs includes the suppression of macrophage polarization 
to M1, though favors M2 polarization. MSCs can secrete a number of factors that stimulate the regeneration of damaged cells and tissues [e.g., vascular endothelial 
growth factor (VEGF), insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF), stromal cell-derived factor-1] and having a beneficial effect for 
neovascularization processes (e.g., VEGF, IGF-1, HGF, fibroblast growth factor-2, platelet-derived growth factor-BB, placental growth factor), inhibiting the 
pathological remodeling of ischemic tissues [e.g., matrix metalloproteinase 2 (MMP-2), MMP-9]. The exosomes secreted by MSCs contain cytokines and growth 
factors, signaling lipids, mRNAs, and regulatory microRNAs which can be responsible for the therapeutic effects. MSC: Mesenchymal stem cell.

cultures of olfactory ensheathing cells or Schwann cells[73]. Sotthibundhu et al[74] discovered that 
stimulation of autophagy MSCs could improve the efficiency of SC differentiation and the formation of 
neural-like cells.

Interaction of MSCs with other cells
MSCs can communicate with neighboring cells through direct cell-cell interactions, including gap 
junctions and tunneling nanotubes[75]. Moreover, MSCs are able to transport mitochondria through 
nanotubes and thus obtain cardiological protection by regaining the respiratory chain in myocytes[76]. 
To allow damaged tissue to regenerate, MSCs communicate with other cells in the damaged areas to 
recruit other types of SCs. For example, studies have demonstrated that CMCs can re-enter the cell cycle 
after supplementation with specific cytokines secreted by MSCs (e.g., transforming growth factor-β)[77]. 
MSCs can also keep other cells to active migration to the area of tissue damage, as demonstrated by the 
trafficking of hematopoietic SCs to the damaged myocardium[78].

Immunomodulatory properties of MSCs
Despite the reported low rate of retention of MSCs in ischemic heart muscle after their injection, the 
results of many experiments showed improvement in the functional heart parameters, like inhibition of 
adverse tissue remodeling myocardium and left ventricle ejection fraction (LVEF)[33]. So, this begs the 
questions: Is the improvement in injured organ function following the administration of MSCs results 
only from the implantation and ability of MSCs to differentiate into specific cell types or is another 
mechanism also involved in this process?

No doubt, that in order to answer this question, other studies, which have focused on the 
immunomodulatory properties of MSCs, should be mentioned here[79-81]. The remarkable ability of 
MSCs to produce an enormous number of soluble factors, such as anti-inflammatory cytokines, enables 
them to modulate the immune system response[82,83]. For example, MSCs secrete the cytokines, IL-4 
and IL-10, which inhibit the proliferation of T cells, the growth factor, hepatocyte growth factor, which 
inhibits the proliferation of CD4+ T cells, and transforming growth factor-β1, which with prostaglandin 
E2 inhibits the inflammation process[84-86]. Moreover, they encourage the maturation of monocytes 
towards anti-inflammatory macrophages type M2[79,87].

In addition, the most extraordinary attribute of MSCs is an immunological privilege. MSCs are 
known to be capable of avoiding and suppressing immune responses[88,89]. Most MSCs show the low 
expression of HLA class I and a lack of HLA class II markers. Due to this feature, they do not cause an 
immune conflict between the transplant recipient and the injected cells. Additionally, MSCs possess 
HLA-G, which is a key factor in the elimination of the fetus rejection by the maternal immune system
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[90,91]. Because of the high expression of HLA-G, MSCs can modulate the tolerance of the immune 
system and it has a very beneficial effect on acceptance of the transplant.

Paracrine effects of MSCs
Another reported mechanism of therapeutic activity of MSCs can be attributed to the secretion of 
paracrine factors, including several cytokines, growth factors, and chemokines, that may regulate many 
regenerative processes at the MSCs implantation site[92]. Proangiogenic molecules produced by MSCs 
involve, among others, the protein fibroblast growth factor-2[92-94], platelet-derived growth factor[95], 
and an extremely proangiogenic vascular endothelial growth factor, supporting the proliferation of 
vascular smooth muscle cells and ECs as well as the migration and the new blood vessel structure 
formation[96].

On the other hand, molecules that promote ECM remodeling involve MMP1, MMP2, MMP9, a family 
of enzymes that degrade ECM structure, and TNF-α and the activator plasminogen that leads to ECM 
protein impairment[78,97]. A distinct category of molecules produced by MSCs are the factors 
responsible for MSCs survival, proliferation, and migration to the area of tissue injury, which involve 
fibroblast growth factor-2 supporting the proliferation of vascular smooth muscle cells and ECs, stromal 
cell-derived factor-1 reducing apoptosis and regulating cell migration, insulin-like growth factor-1 
controlling cell differentiation and growth and inhibiting apoptosis, and a secreted frizzled-related 
protein-2 supporting CMC survival at the conditions of low oxygen availability in vivo[77,98].

Exosomes secretion
Extracellular vesicles are biological nanoparticle structures containing bioactive molecules, including 
protein, and nucleic acids. They can influence other cells and participate in intercellular communication 
over long distances[99]. Many studies on tissue regeneration mechanisms demonstrated that 
extracellular vesicles released by SCs can deliver bioactive molecules to target cells, which may 
influence the function of those cells, including the process of damaged tissue regeneration[100].

PRECLINICAL STUDIES: ANIMAL MODELS OF TISSUE ISCHEMIA
Most of the molecular and cellular mechanisms that affect the therapeutic potential of MSCs in the 
therapy of ischemic tissues were initially identified in animal models. The capacity of MSCs to survive 
in the recipient after administration and the ability to differentiate into Ecs and CMCs has been proven 
in acute myocardial infarction in a mini-swine model[65]. In this paper, Zhang et al[65] also confirmed 
the migratory activity of MSCs towards inflammation, inhibition of CMC apoptosis, stimulation of 
cardiac SCs, reduction of fibrosis, myocardium reverse remodeling, and enhancement of LVEF. It has 
been demonstrated that MSCs derived from UCB (UCB-MSCs) can reduce the acute myocardial 
infarction size by ≥ 50% and enhance LVEF[101]. The observed therapeutic effect may be due to the 
ability of MSCs to secrete bioactive factors. In turn, thanks to their immunosuppressive properties and 
the paracrine effect, MSCs can alleviate inflammation and ischemic heart disorders, contributing to the 
reduction of infarct size and improving LVEF through a paracrine effect[102].

The therapeutic efficacy of UC-MSCs and heart function improvement has been demonstrated[103]. 
Intravenous administration of MSCs has improved LVEF contractility, function, perfusion, and reverse 
remodeling[18]. The transplantation of MSCs in a rat model of acute myocarditis can reduce inflam-
mation by decreasing the infiltration of an inflammatory cell, reducing CMC death, and remodeling 
adverse myocardium[104,105]. Based on the results of animal studies, hopes are high regarding 
enhancing many heart functions, such as reduction of scar tissue, myocardium reverse remodeling, 
increase in cardiac contractility, improvement of ejection fraction, and increase in heart perfusion. 
However, there is still a need for long-term observation of the effects of injecting MSCs to ensure the 
safety and efficacy of therapy.

In preclinical studies on transgenic animals of models of neurological diseases, significant functional 
improvement was observed after MSC cell transplantation[106]. The use of these cells may be related to 
their direct action, i.e., replacement of damaged cells as a result of neural differentiation or to an indirect 
influence positively influencing the endogenous regenerative processes of the organism. In addition, 
preclinical studies on animals have confirmed the neuroprotective properties of MSC transplants, which 
may be linked to their production of numerous growth, anti-inflammatory, and anti-apoptotic factors 
important for neurons[107].

CLINICAL TRIALS: MSC AS MODERN THERAPEUTIC AGENTS IN ISCHEMIA
Clinical trials testing MSCs in regenerative therapy are growing (ClinicalTrials.gov). Regenerative 
therapies based on MSCs for several ischemic disorders are now carefully examined. The remedial 
effects obtained are promising and prove that the transplantation of MSCs may be beneficial in the 
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treatment of many diseases[108,109]. The concept of clinical application of MSCs may improve the 
health of patients suffering from many cardiovascular diseases[110]. So far, a few dozen studies have 
been registered in the international database of clinical trials to assess the safety and effectiveness of 
MSCs administration in the treatment of ischemic diseases.

The most popular source of therapeutic MSCs used in clinical practice is BM. The first MSC-based 
biological drug, AMI HeartiCellgram®, used in myocardial infarction therapy was also based on BM-
MSCs. Lee et al[111] described the manufacturing procedure for this drug, and Kim et al[112] proved its 
effectiveness in a clinical experiment. The therapeutic benefits included the restoration of normal 
systolic heart function and the reduction of post-infarction scar tissue[113,114].

The pioneer pilot clinical study applying WJ-MSCs in treating ischemic disorders was performed by 
Musialek et al[115] in 2015. This group has shown the safety of injected MSCs as an off-the-shelf 
product, percutaneous allogeneic SC therapy in human acute myocardial infarction. Later observation 
proved no clinical adverse events in the treated tissue, except for a local rise in body temperature of 1 
patient[115]. Currently, Musialek et al[115] are examining the safety and effectiveness of the 
“CardioCell” drug (WJ-MSC-based biological therapeutic) in a phase II/III randomized, placebo-
controlled, double-blind clinical trial in several ischemic disorders [i.e., acute myocardial infarction 
(EudraCT Number: 2016-004662-25), chronic ischemic heart failure (EudraCT Number: 2016-004683-19), 
and non-option critical limb ischemia (EudraCT Number: 2016-004684-40)][116,117].

A clinical trial with MSCs has shown the enhancement in heart muscle function in cases of heart 
failure. For example, Bartolucci et al[118] have shown that intravenous administration of UC-MSCs 
improved LVEF, functional status, and standard of living. Also, exosomes released by UC-MSCs can 
alleviate the effect of acute myocardial ischemic injury[119]. Scientists confirmed that the injection of 
UC-MSCs exosomes can greatly improve contractile heart function and minimize myocardial fibrosis. 
These bioactive bubbles protected heart cells from death and supported EC migration and angiogenesis. 
UC-MSCs have also been applied in a clinical study for the treatment of chronic coronary occlusion[17]. 
Also in this trial, the improvement the heart function and better left ventricular ejection fraction were 
reported[17].

So far, several clinical trials of ischemic stroke have shown that transplanting MSCs into patients with 
successful reperfusion therapy reduces the volume of lesions after stroke and promotes the regeneration 
of neurological function. This success is shown by improvements in human functional, behavioral, and 
sensorimotor assessments, such as the Barthel Index, Modified Rankin Scale, European Stroke Scale, 
Fugl-Meyer Scale, and National Institutes of Health Stroke Scale[120,121]. MSCs participate in the 
regeneration of ischemic tissues and organs with beneficial effects, as outlined above (Table 2). The 
therapeutic activity is presumed to include immunomodulation, cardioprotective effects, activation of 
endogenous repair processes, and tissue remodeling.

IMPROVING THE EFFECTIVENESS OF MSC-BASED THERAPY
MSCs can supply alternative therapy in the treatment of many disorders, but many studies have 
demonstrated that depending on the method of isolation, expansion, and delivery we can obtain cells 
with distinct functional features. The therapeutic benefits of MSC-based therapy involve paracrine 
activity, immunomodulation, and enhanced function of the damaged organ. However, not all patient 
responses to treatment are satisfactory; therefore this approach requires a deep understanding of the 
therapeutic actions of MSCs after injection into the recipient. The therapeutic efficacy of MSCs is 
affected by many factors, including the method of MSCs cultivation in vitro, the metabolic activity of the 
MSCs, the number of injected cells, the patient’s genetic sensitivity, and the stage of the disease[136,137].

The selection of the appropriate source of therapeutic MSCs depending on the disease is crucial as 
more and more data show source-dependent variations in therapeutic activity such as levels of released 
trophic proteins or different differentiation capacities. There is much disagreement as to the therapeutic 
efficiency of MSCs derived from different tissues (fetal and adult sources). Therefore, extensive studies 
are desirable to obtain consistent data about remedial effects.

Another problem that is much debated is the type of transplant, i.e., allogeneic or autologous. The 
results obtained from clinical trials showed no difference between the therapeutic effects of allogeneic 
and autologous MSCs in the treatment of ischemic cardiomyopathy[138]. The undoubted advantage of 
autologous transplants is the lack of burdening the cells with other diseases because in such cases the 
donors are healthy volunteers. Autologous SCs obtained from the patient do not have this privilege, 
which may limit the therapeutic effectiveness. In addition, it is an important issue to obtain the right 
dose of autologous cells. The autologous transplant requires the collection of appropriate tissue from the 
patient, isolation of SCs, and obtaining the necessary dose of therapeutic cells, which is a challenge as 
the disease and the patient’s age may contribute to the reduction of the proliferative activity of MSCs
[139,140].

To resolve these issues, scientists introduced allogeneic sources of SCs that can be used to produce 
ready-to-use biological products. The use of allogeneic SCs shortens the waiting time for a transplant. 
Allogeneic cells from young and healthy donors are used to produce biological drugs of quality that can 
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Table 2 Selected clinical trials of mesenchymal stem cell-based therapy in ischemic diseases

Disorder Ref. Trial number 
(acronym)

Type of transplant and 
stem cell source Results

Myocardial infarction Hare et al[36], 
2009

NCT00114452 Allogenic BM-MSCs No tumorogenicity, no arrythomogenicity

Myocardial infarction Houtgraaf et al
[37], 2012

NCT00442806 
(APOLLO)

Autologous AT-MSCs No adverse effects, decreased: Scar tissue; 
increased: Perfusion

Myocardial infarction Gao et al[122], 
2015

NCT01291329 Allogenic WJ-MSCs Increased: Ejection fraction; decreased: Heart 
perfusion

Chronic ischemic 
cardiomyopathy

Hare et al[123], 
2012

NCT01087996 
(POSEIDON)

Allogenic vs autologous BM-
MSCs

Increased: Ejection fraction; decreased: Scar tissue

Chronic ischemic 
cardiomyopathy

Karantalis et al
[124], 2014

NCT00587990 
(PROMETHEUS)

Autologous BM-MSCs Local; increased: Contraction; decreased: Scar 
tissue

Chronic ischemic 
cardiomyopathy

Perin et al[125], 
2014

NCT00426868 
(PRECISE)

Autologous AT-MSCs Increased: Left ventricular mass; increased: 
Contractility; increased: Perfusion

Chronic ischemic 
cardiomyopathy

Bartunek et al
[126], 2013

NCT00810238 (C-CURE) Preconditioned autologous 
BM-MSCs

Increased: Ejection fraction

Chronic ischemic 
cardiomyopathy

Bartolucci et al
[118], 2017

NCT01739777 
(RIMECARD)

Allogenic UC-MSCs Increased: Ejection fraction

Ischemic heart failure Teerlink et al
[127], 2017

NCT01768702 (CHART-
1)

Autologous BM-MSCs Left ventricular reverse remodelling, increased: 
Left ventricular volume

Critical limb ischemia Wijnand et al
[128], 2018

NCT03042572 (SAIL) Allogenic BM-MSCs Safety, decreased: Pain rest

Critical limb ischemia Norgren et al
[129], 2018

NCT01732822 (EUCLID) Allogeneic placental-derived 
MSCs

Increased: Amputation-free survival; decreased: 
Pain rest; increased: Tissue perfusion

Critical limb ischemia Gupta et al[130], 
2013

NCT00883870 Allogenic BM-MSCs Decreased: Pain rest; increased: Ankle systolic 
pressure; increased: Ulcer healing

Ischemic stroke Steinberg et al
[131], 2016

NCT01287936 Modified BM-MSCs Increased: Motor functions (ESS, NIHSS, Fugle-
Meyer scales)

Ischemic stroke Levy et al[132], 
2019

NCT01297413 Allogenic BM-MSCs Increased: Barthel index

Ischemic stroke Savitz et al[133], 
2019

NCT01273337 
(RECOVER-Stroke)

Autologous BM-MSCs Safety

Ischemic stroke Laskowitz et al
[134], 2018

NCT03004976 Allogenic UCB-MSCs Safety and feasibility

Ischemic stroke Jaillard et al
[135], 2020

NCT00875654 Autologous BM-MSCs Increased: Motor functions (NIHSS, Fugle-Meyer 
scales)

BM: Bone marrow; AT: Adipose tissue; WJ: Wharton’s jelly; UC: Umbilical cord; MSCs: Mesenchymal stem cells; ESS: European Stroke Scale; NIHSS: 
National Institutes of Health Stroke Scale.

be stored frozen. The medicinal product prepared in this way, if necessary for clinical intervention, can 
be thawed at any time and administrated to the patient.

MSCs applied in the clinic as therapeutic agents must be carefully prepared, according to the good 
manufacturing practice and good clinical practice standards, with the established quality control 
system. The manufacturing process should be properly optimized in terms of therapy requirements to 
reach a sufficient remedial effect. MSCs applied in the clinic as therapeutic agents must be carefully 
prepared, according to the good manufacturing practice and good clinical practice standards, with the 
established quality control system. The manufacturing process should be properly optimized in terms of 
therapy requirements to reach a sufficient remedial effect. Here it should be emphasized that we can 
prepare therapeutic cells to treat different disorders, such as graft vs host disease, myocardial infarction, 
Crohn’s disease, and others, however, the therapeutic benefits obtained may not be satisfactory. 
Therefore, there is still a need for a more sophisticated approach to obtaining highly effective biological 
medicines. The use of an appropriate approach to the production of therapeutic MSCs for the treatment 
of a particular disease should contribute to the achievement of satisfactory results.

Additionally, to adopt therapeutic MSCs for demanding conditions in the host body, preconditioning 
methods can be applied. This approach requires the presence of additional adverse factors (such as low 
oxygen availability or proinflammatory cytokines) during in vitro culture. Bernardo and Fibbe[141], 
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during the production of therapeutic MSCs, added proinflammatory cytokines to the culture medium, 
the concentration of which increased after acute myocardial infarction. In this study, an anti-inflam-
matory response of MSCs was observed within 24-48 h based on the analysis of the composition of the 
culture medium. The use of selected cytokines in MSCs cultures for the treatment of acute myocardial 
infarction enhanced anti-inflammatory secretory activity and therapeutic efficacy.

CONCLUSION
The remarkable ability of MSCs to regenerate damaged body parts to regain lost function is promising 
in many disorders, including ischemic diseases. Three properties of MSCs render them optimal for 
ischemic tissue repair and regeneration: (1) Immunomodulatory and immunoregulatory capacity 
beneficial to ameliorate abnormal immune responses; (2) Soluble and insoluble paracrine factor-
generating potential; and (3) Endothelial differentiation.

While MSCs have several advantages, there are still many challenges to overcome. The unique 
immunomodulatory properties of MSCs are essential to their function, but the mechanisms of the 
immune regulation of MSCs have not been elucidated. Many factors can influence the therapeutic 
potential of MSCs, such as donor age, isolation and culture method, induction factors, oxygen concen-
trations, mechanical stimuli, and others. Hence, optimizing the culture conditions of MSCs may be an 
effective way to improve the therapeutic potential of MSCs for successful tissue repair.
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