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Abstract
Ischemic stroke (IS) is the most prevalent form of brain disease, characterized by 
high morbidity, disability, and mortality. However, there is still a lack of ideal 
prevention and treatment measures in clinical practice. Notably, the trans-
plantation therapy of mesenchymal stem cells (MSCs) has been a hot research 
topic in stroke. Nevertheless, there are risks associated with this cell therapy, 
including tumor formation, coagulation dysfunction, and vascular occlusion. 
Also, a growing number of studies suggest that the therapeutic effect after 
transplantation of MSCs is mainly attributed to MSC-derived exosomes (MSC-
Exos). And this cell-free mediated therapy appears to circumvent many risks and 
difficulties when compared to cell therapy, and it may be the most promising new 
strategy for treating stroke as stem cell replacement therapy. Studies suggest that 
suppressing inflammation via modulation of the immune response is an 
additional treatment option for IS. Intriguingly, MSC-Exos mediates the inflam-
matory immune response following IS by modulating the central nervous system, 
the peripheral immune system, and immunomodulatory molecules, thereby 
promoting neurofunctional recovery after stroke. Thus, this paper reviews the 
role, potential mechanisms, and therapeutic potential of MSC-Exos in post-IS 
inflammation in order to identify new research targets.

Key Words: Mesenchymal stem cells; Exosomes; Ischemic stroke; Immunomodulation; 
Inflammation; Exosome therapy
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Core Tip: Mesenchymal stem cell-derived exosomes (MSC-Exos) are an emerging strategy for treating 
ischemic stroke (IS) and have demonstrated certain achievements in animal studies. Here, we review and 
discuss the mechanisms of MSC-Exos in treating IS through immunomodulation, the current responses to 
the clinical limitations of MSC-Exos therapy, and the issues that need to be addressed in future MSC-Exos 
research.

Citation: Shan XQ, Luo YY, Chang J, Song JJ, Hao N, Zhao L. Immunomodulation: The next target of 
mesenchymal stem cell-derived exosomes in the context of ischemic stroke. World J Stem Cells 2023; 15(3): 52-70
URL: https://www.wjgnet.com/1948-0210/full/v15/i3/52.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i3.52

INTRODUCTION
Stroke is one of the leading causes of death and permanent disability on a global scale; ischemic stroke 
(IS) accounts for approximately 80% of stroke cases[1]. Currently, the mainstay of acute treatment for IS 
is limited to reperfusion by intravenous recombinant tissue fibrinolytic activator (tPA, thrombolysis) 
and rapid recanalization utilizing devices (thrombectomy)[2]. In clinical practice, however, the 
thrombolytic treatment conditions are strictly limited to presentation within 4.5 h of symptom onset[3]. 
Although the therapeutic window for thrombectomy has been extended to 24 h, there may be a risk of 
cerebral hemorrhage, occlusion after revascularization, and over-perfusion brain injury[4,5]. In recent 
years, other treatments that researchers have actively explored have also been prevented from being 
implemented on a large scale in clinical practice due to a variety of disadvantages. For instance, 
hypothermia treatment may reduce body metabolism while affecting neuronal death mechanisms, 
resulting in increased immunosuppression and susceptibility to infectious complications[6]. Prophy-
lactic antibiotic treatment can decrease the incidence of infectious complications. However, antibiotic 
therapy is targeted, and broad-spectrum antibiotics can affect the body’s normal flora if they are 
misused, which may increase organismal resistance[7]. By 2050, there will be more than 200 million 
stroke survivors and almost 300 million disability-adjusted life-years, 25 million new strokes, and 13 
million deaths from stroke annually[1]. Therefore, there is a pressing need to discover effective 
treatments for IS that can be administered on a large clinical scale.

In acute stroke management, time is brain. The focus of stroke research should be on extending the 
time window for treatment. Examples include early measurement of immune biomarkers[8], improved 
efficiency of pre-hospital emergency transport[9], improved levels of care[10], and stem cell 
transplantation therapy[11]. Among these, stem cell transplantation therapy, which can extend the 
treatment window for IS to seven days, has become a hot research topic[11]. This also offers promising 
treatment options for patients outside the golden treatment period. MSCs are among the most hopeful 
candidates for stem cell therapy compared to other types due to their comprehensive source, ease of 
culture, pluripotent differentiation, immune tolerance, high survival rate, and strong paracrine effects
[11-13]. It has previously been proved that nutrient factors and extracellular vesicles (EVs) secreted in 
situ by stem cells after transplantation enter the damaged brain and exert immunomodulatory, 
neuroprotective, angiogenic, and neural restructuring effects[13,14]. This phenomenon is known as the 
paracrine response (also called the “bystander” effect) and is the main mechanism by which stem cell’s 
function. In comparison, exosomes are key effectors in the paracrine response of stem cells[14]. 
Mesenchymal stem cell-derived exosomes (MSC-Exos) therapy applied to stroke is superior to cell 
therapy in biodistribution, stability, safety, and development potential while ensuring therapeutic 
efficacy as an alternative therapy to stem cells.

In addition to the problem of a narrowing treatment window, the poor prognosis of IS is another 
pressing issue. Immunosuppression is the important cause of IS patients' poor prognosis and increased 
susceptibility. The inflammatory response underlies ischemic tissue damage. MSC-Exos, a highly 
promising treatment modality for brain injury, can effectively reduce neuroinflammatory reactions by 
modulating the immune system to promote recovery[15,16]. This paper reviews and discusses the 
immunomodulatory effects of MSC-Exos at the cellular and molecular levels following IS, as well as its 
application in therapy, in order to serve as a reference for future research and treatment.

IMMUNE RESPONSE AFTER IS
IS is caused by thrombosis or embolism, which could interrupt blood flow to the brain. After acute 
ischemic events, blood stagnation and altered hemodynamics restrict the availability of oxygen and 
glucose [oxygen-glucose deprivation (OGD). Then brain cell metabolism shifts from the oxidative 
phosphorylation to high levels of glycolysis, producing excess lactic acid[17,18]. Excessive accumulation 
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of lactic acid is able to trigger tissue acidosis, edema, blood-brain barrier (BBB) dysfunction, and 
extensive necrosis[18]. Firstly, once the Na+/K+ ATPase pump is affected, there will be an inward flow of 
Na+ and an outward flow of K+, which depolarizes the neuronal plasma membrane and promotes the 
release of excitatory neurotransmitters (including glutamate)[18-20]. Excess glutamate activates the N-
methyl-D-aspartate receptor and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, 
thereby leading to cytotoxicity and cell death[19,21,22]. Next, an extracellular Ca2+ inward flow occurs 
after affecting the Ca2+ pump, which causes a dramatic rise in intracellular Ca2+. Ca2+ overload activates 
calcium-dependent proteases, lipases, DNAases, kinase phosphatases, endonucleases, and other death 
signals, inducing ischemic core cell death[20,23]. Additionally, the Ca2+ influx activates nitric oxide 
synthase (iNOS), which subsequently generates oxygen radicals and peroxynitrite (ONOO-), causing 
oxidative stress in neural tissue[24]. Meanwhile, the depletion of ATP production and overproduction of 
reactive oxygen species (ROS) leads to mitochondrial dysfunction, further exacerbating oxidative stress
[22,25]. In summary, OGD results in subsequent energy disturbances, lactic acidosis, cellular excito-
toxicity, and oxidative stress, ultimately leading to brain cell damage or death. This is the initial step of 
ischemia-induced damage, which triggers the subsequent cascade responses. Injured/dying cells emit 
“danger signals” and thus activate the immune system (Figure 1).

Once the immune system is activated, immune cells enter the brain parenchyma sequentially. 
Microglia (MG), as the resident macrophages of the central nervous system (CNS), are the first to detect 
ischemia and rapidly activate in response[26,27]. MG recognizes “danger signals” [danger-associated 
molecular patterns (DAMPs)] released by dying and dead cells, primarily via the expressions of Toll-like 
receptors (TLR) and scavenger receptors. Then, the TLRs and scavenger receptors are activated, 
triggering a series of inflammatory events[28-30]. MG has been classified into two polarized 
phenotypes, including classical activation (pro-inflammatory, M1) and alternative activation (anti-
inflammatory, M2). Anti-inflammatory cytokines [such as interleukin (IL)-4, IL-13, IL-10, and 
transforming growth factor (TGF)-β] activate the M2 phenotype. The M2 cells promote translocation of 
the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and proliferation-activated 
receptor gamma, and promote the secretion of anti-inflammatory IL-10, IL-4, TGF-β cytokines and 
growth factors (such as brain-derived neurotrophic factor and vascular endothelial growth factor) to 
suppress inflammation and enhance tissue repair[31,32]. In contrast, lipopolysaccharide (LPS) and 
interferon gamma (IFN-γ) activate the M1 phenotype. The M1 cells promote the transcriptional 
activation of nuclear factor-κB (NF-κB), a member of the signal transducer and activator of the 
transcription family (STAT), and promote the production of pro-inflammatory mediators like IL-12, 
tumor necrosis factor (TNF)-α, IL-6, IL-1β and NO, leading to the secondary brain damage[31,33,34]. 
Meanwhile, the chemokines and cytokines released by M1-MG and adhesion molecules highly 
expressed on endothelial cells can recruit peripheral blood leukocytes (including neutrophils, 
monocytes, and lymphocytes) to infiltrate the brain parenchyma, thereby mediating the adaptive 
immune response[28,30,31]. In the acute phase of brain injury, the M1 phenotype appears to 
predominate, whereas MG favors the M2 phenotype in the later stages. In addition, neurons can control 
MG activation by releasing “on” and “off” signals. MG is able to quickly recognize the “eat me” 
(CX3CL1) or “don't eat me” (e.g., CD47-SIRPα and CD200-CD200R) signal on a neuron and engulf the 
live ischemic neurons[35]. In the same way like MG, macrophages can be polarized into two 
phenotypes, M1 and M2. The two are often described as MG/macrophages, because their roles in stroke 
are mostly similar[36]. However, in contrast, the main inflammatory factors produced by both are 
skewed. MGs secrete relatively high levels of ROS and TNF-α, while macrophages produce relatively 
high levels of IL-1β[37].

Astrocytes (Ast) are among the first brain cells to be activated after an ischemic event. Ast undergoes 
a dramatic transformation called “reactive astrocytosis” after ischemic injury, forming glial scarring[38]. 
Similar to MG, the harmful or beneficial effects of reactive Ast depend on the different phenotypes of 
Ast (neuronal toxicity phenotype A1 and neuroprotective phenotype A2)[38,39]. In addition to the 
activation of Ast by DAMPs, there is growing evidence regarding the importance of MG-Ast crosstalk 
for activating Ast. MG activation, followed by the release of IL-1α, TNF-α and complement component 
subunit 1q, induces the activation of A1-type reactive Ast[38,40]. A1-Ast secrete pro-inflammatory 
mediators, like IL-6, TNF-α, IL-1α, IL-1β, IFN-γ, NO, matrix metalloproteinases (MMP), superoxide and 
ONOO-, inducing neuron and oligodendrocyte death[38,41]. MG also induces the A2 phenotype of Ast 
and attenuates the inflammatory response. Li et al[42] have reported that Zinc finger E-box binding 
homeobox 1 (ZEB1) was highly expressed in MG of the ischemic hemisphere after experimentally 
induced strokes[42]. ZEB1 overexpression mediates the MG response primarily through a TGF-β1-
dependent pathway and subsequently reduces CXCL1 production in Ast, thereby reducing neutrophil 
infiltration in the brain parenchyma. Likewise, Ast also can regulate the phenotype and function of MG 
through crosstalk between Ast and MG[43]. Thus, when the brain is disturbed, MG and Ast seem to 
respond as a unit.

Different from other immune cells, the number of lymphocytes infiltrating into the stroke brain is 
relatively small[27]. T lymphocytes can enter the brain hours after a stroke and are preferentially 
accumulated at the edge of the lesion[44]. The T cells infiltrating into the ischemic tissue mainly 
comprise CD8+ cytotoxic T lymphocytes (CTLs), CD4+ T helper cells (Ths), and regulatory T cells (Tregs)
[45]. Infiltrating MG/macrophages may stimulate the differentiation of activated CD4+ T cells into Th1 



Shan XQ et al. MSC-Exos on IS

WJSC https://www.wjgnet.com 55 March 26, 2023 Volume 15 Issue 3

Figure 1 Schematic representation of the immune response after ischemic stroke. After ischemic stroke (IS), the blood-brain barrier (BBB) is 
disrupted and the central nervous system (CNS) and the peripheral immune system are able to interact with each other. The cerebral blood flow is significantly 
reduced immediately after IS, which limits the availability of glucose and oxygen. The initial ischemic event leads to energy disturbances, acidosis, cellular 
excitotoxicity and oxidative stress ultimately resulting in neuronal damage or death and subsequent activation of the immune response. Dying/dead neurons release 
“danger signals” such as danger associated molecular patterns (DAMPs), cytokines and chemokines to recruit and activate peripheral immune cells (neutrophils, 
macrophages and lymphocytes) and activate glial cells (microglia and astrocytes) in the central CNS. Activated glial cells release a range of cytokines and 
chemokines that also recruit peripheral immune cells into the brain parenchyma and further destroy the BBB. Activated cells polarize into different cell phenotypes or 
subtypes to secrete pro-inflammatory or anti-inflammatory factors that act to damage or protect. (Figure created with BioRender.com). DAMP: Danger associated 
molecular patterns; CNS: Central nervous system; NET: Neutrophil extracellular trap; MMP: Matrix metalloproteinases; iNOS: Influx activates nitric oxide synthase; 
ROS: Reactive oxygen species; IL: Interleukin; TGF-β: Transforming growth factor-β; BDNF: Brain-derived neurotrophic factor; VEGF: Vascular endothelial growth 
factor; TNF-α: Tumor necrosis factor-α; NGF: Nerve growth factor; GDNF: Glial cell-derived neurotrophic factor; IFN-γ: Interferon-γ; BBB: Blood-brain barrier; CTL: 
Cytotoxic T lymphocyte; C1q: Component subunit 1q.

or Th2 cells[46]. Th1 cells are able to secrete pro-inflammatory factors like IFN-γ, IL-2, and IL-12 to 
exacerbate inflammation. In contrast, Th2 cells produce anti-inflammatory factors, such as IL-4, IL-5, IL-
10, and IL-13, to suppress inflammation[47]. CTLs directly or indirectly kill neurons and aggravate brain 
damage through cell interactions and the release of perforin after antigen-dependent activation[48]. 
Tregs exert their protective effects mostly by inhibiting IL-1β and TNF-α through the expression of IL-10
[47,49]. The role of B lymphocytes in the immunology of stroke is not clear yet. Whereas, some studies 
have observed the local production of corresponding antibodies in the cerebrospinal fluid of stroke 
patients, indicating that B lymphocytes are indeed present in the ischemic brain and they may be 
involved in post-ischemic immunological events[50].

Neutrophils are the initial blood-derived immune cells to cross the BBB and invade ischemic tissues, 
and they can be detected as soon as 1 h after the event[51]. Neutrophils are activated and recruited to 
the injured brain parenchyma by inflammatory factors produced from some activated glial cells and 
dying neurons, and adhesion molecules expressed by endothelial cells (e.g., intercellular adhesion 
molecule 1, P-selectin and E-selectin)[27,52,53]. Traditionally, the neutrophil aggregation has been 
considered detrimental to stroke. After infiltration into ischemic tissues, activated neutrophils produce 
inflammatory factors, such as MMP, iNOS, and ROS, and form neutrophil extracellular traps (NETs) to 
increase BBB permeability and exacerbate inflammation[54-56]. In addition, the accumulation of 
neutrophils can further block local blood flow, resulting in “no reflux” of the microcirculation[57]. 
Neutrophils also exhibit two kinds of phenotypes, comprising N1 (pro-inflammatory) and N2 (anti-
inflammatory) phenotypes. Neutrophil’s different phenotypes may shape other cellular effector 
functions and be cleared by phagocytosis of MG/macrophages[58,59].
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In conclusion, the post-stroke ischemic environment induces immune cells to polarize into different 
phenotypes or type, acting either protectively or destructively. Hence, it is probably a promising mean 
to affect the immune cell heterogeneity and improve the post-stroke inflammatory environment.

EXOSOMES AS A REPLACEMENT THERAPY FOR MSCS ON IS
All above, it is clear that the immune responses following IS can influence the development of ischemic 
brain injury. Anti-inflammatory and immunomodulatory therapies have shown beneficial effects on 
several experimental stroke models[60]. Among them, MSCs transplantation is one of the most 
important therapeutic tools involved in regulating immunity and repairing ischemic tissues in clinical 
practice[61]. Initially, researchers have assumed that the primary mechanism of MSCs transplantation 
mainly involved in MSC’s ability to differentiate into parenchymal cells to repair and replace injured 
tissues. However, many preclinical studies suggested that most MSCs were confined to the liver, spleen, 
and lungs, and only a few MSCs could reach the injury site, surviving and differentiating into neurons
[62,63]. Interestingly, despite most transplanted MSCs stagnate in the organ, this does not prevent the 
therapeutic effect of MSCs transplantation. Thus, the distal therapeutic effect after transplantation of 
MSCs may be primarily attributable to the paracrine mechanism of MSCs[63]. MSC-Exos mainly 
mediate the paracrine secretion of MSCs. Exosomes are EVs with a single membrane structure of 30-150 
nm in diameter, carrying proteins, lipids, nucleic acids (DNA, mRNA, miRNA, lncRNA, circRNA), and 
other substances[64]. When exosomes are circulating, the contents encapsulated within them can be 
delivered to target cells, mediating intercellular communication and regulating the function of the target 
cells[64,65]. This is essentially the role of the miRNAs contained by exosomes. MiRNAs are endogenous 
hairpin-loop structured non-coding RNAs, primarily binding to mRNA in specific ways to influence 
post-transcriptional events and regulate cellular behavior[66].

Furthermore, there are multiple advantages of transplanting exosomes rather than the entire 
“factory” (cell) into the body: (1) In terms of biodistribution, as nano-scale cellular secretions that could 
escape the phagocytosis of macrophages and readily cross the BBB to reach the brain parenchyma, they 
are considered to be natural therapeutic agents and innate drug delivery system for brain diseases[67]; 
(2) In terms of stability, exosomes have a stable bimolecular phospholipid structure that prevents the 
contents’ biological activity from being broken down by extracellular hydrolytic enzymes[64]; (3) In 
terms of safety, compared to MSCs transplantation therapy, the cell-free therapy can avoid cell-
mediated adverse effects, such as tumor formation, coagulation dysfunction, and infarction due to 
vascular occlusion[16]; and (4) In terms of development potential, exosomes can be enriched in large 
quantities within the culture medium (mass production) and easily retouched/retrofitted (controllable). 
Moreover, some studies comparing the therapeutic effects of MSC-Exos with MSCs in stroke rat models 
suggest that MSC-Exos treatment is indeed superior to treatment with MSCs themselves[68,69]. For 
above reasons, we believe that MSC-Exos is a crucial effector of MSCs to exert their immunomodulatory 
effects. Together with its unique advantages, MSC-Exos is expected to be a replacement therapy for 
MSCs in the treatment of stroke.

MSC-EXOS MODULATES IMMUNE RESPONSE AFTER IS
Recently, numerous studies have shown that MSC-Exos can promote recovery after stroke, via 
modulating the innate and adaptive immune responses activated after IS[70-72]. Firstly, MSC-Exos is 
able to regulate cell differentiation, activation, proliferation, and intercellular communication by 
delivering functional molecules to cells involved in immunity, for example, MG, Ast, macrophages, 
neutrophils, lymphocytes, dendritic cells (DCs), etc. (Table 1). There are three primary forms of action: 
(1) Through the signaling molecules on its surface as ligands binding to specific receptors on the target 
cell, the intracellular signaling pathways are regulated; (2) via fusing with the corresponding target cell 
membrane and releasing the contents into the recipient cell; and (3) by entering the target cell in the 
form of endocytosis and bringing the active factors into the cell[73]. Secondly, MSC-Exos can also 
mediate the immune response by down-regulating pro-inflammatory factors and/or up-regulating anti-
inflammatory factors (Table 2).

MSC-Exos regulate the immune response through cells
MSC-Exos and CNS: MG is firstly activated after IS, as an immune sentinel of the CNS, exerting 
neuroprotective or neurotoxic effects[27,74]. A therapeutic strategy balancing the two polarization states 
of MG may become a future adjunctive stroke therapy. One study used protein blotting to analyze TLR-
2, TLR-4 and TLR-6 levels in MG of ischemia/reperfusion (I/R) mice and found that the TLR/NF-κB 
pathway was activated in MG after an ischemic event, leading to the secretion of pro-inflammatory 
factors (IL-1β, TNF-α, IL-6, etc.) and that this signaling pathway was important in promoting M1 
transformation and exacerbating the inflammatory response[75]. TLRs are pattern recognition receptors 
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Table 1 Mesenchymal stem cell-derived exosomes target cells to mediate immune responses on ischemic stroke

Origin Targeted cells Administration/cultivation routes Pathways/factors 
involved Function Ref.

Human umbilical cord-
derived mesenchymal 
stem cell exosome miR-
26b-5p

Microglia Tail vein injection and microglia co-
culture

TLR signaling pathway [75]

Bone marrow-derived 
mesenchymal stem cell 
exosome miR-182-5p

Microglia Inject into the brain TLR4/NF-κB [81]

Mesenchymal stem cell 
exosome miR-223-3p

Microglia Tail vein injection and BV-2 
microglia co-culture

CysLT2R-mediated 
signaling pathway

[87,89]

Mesenchymal stem cell 
exosome miR-26a-5p

Microglia Tail vein injection and BV-2 
microglia co-culture

CDK6 [97]

Human umbilical cord-
derived mesenchymal 
stem cell exosome miR-
146a-5p

Microglia Tail vein injection IRAK1/TRAF6 [85]

Bone marrow-derived 
mesenchymal stem cell 
exosomes

Microglia Tail vein injection NLRP3 inflammasome [99]

Bone marrow-derived 
mesenchymal stem cell 
exosome lncRNA H19

Microglia BV-2 microglia co-culture JAK/STAT [100]

Adipose stem cell-derived 
exosome miR-30d-5p

Microglia Tail vein injection and primary 
microglia co-culture

Autophagy

Balance microglia 
polarization

[91]

Mesenchymal stem cell 
exosome miR-542-3p

Neuroglia Inject into paracele of mice TLR signaling pathway Mitigate OGD-induced 
glial cell damage

[71]

Mesenchymal stem cell 
exosomes

Astrocyte Ventricular injection and astrocyte 
co-culture

Nrf2-NF-κB [104,105]

Bone marrow-derived 
mesenchymal stem cell 
exosome miR-138-5p

Astrocyte Astrocyte co-culture LCN2 [111]

Mesenchymal stem cell 
exosome miR-133b

Astrocyte Tail vein injection CTGF/RhoA

Modulate astrocyte 
activation and 
ameliorate reactive 
astrogliosis

[118,119]

Human adipose-derived 
mesenchymal stem cell 
exosomes

Neutrophil Neutrophil co-culture IL-6 [122]

Wharton's jelly-derived 
mesenchymal stem cell 
exosomes

Neutrophil Neutrophil co-culture _

Increase neutrophil 
lifespan and enhance 
neutrophil phagocytosis

[123]

Adipose-derived 
mesenchymal stem cell-
derived exosomes

Macrophage Macrophage co-culture MafB and Stat6 [129]

Adipose-derived 
mesenchymal stem cell-
derived exosomes

Macrophage THP-1 cell co-culture ROCK1/PTEN

Balance macrophage 
polarization

[130]

Human adipose-derived 
mesenchymal stem cell 
exosomes

T-lymphocyte T-lymphocyte co-culture Markers [135]

Bone marrow-derived 
mesenchymal stem cell-
derived exosomes

B-lymphocyte T-lymphocyte/B-lymphocyte co-
culture

Specific mRNAs [70]

Adipose-derived 
mesenchymal stem cell-
derived exosomes

Dendritic cell Dendritic cell co-culture _

Inhibition of 
lymphocyte activation 
and proliferation

[142]

TLR: Toll-like receptors; NF-κB: Nuclear factor-κB; CysLT2R: Cysteinyl leukotriene receptor 2; LCN2: Lipid chainlipoprotein-2; JAK: Janus kinase; STAT: 
Signal transducer and activator of transcription; IRAK1: Interleukin-1 receptor-associated kinase 1; TRAF6: TNF receptor-associated factor 6; Nrf2: Nuclear 
factor erythroid 2-related factor 2; RhoA: Ras homolog gene family member A; CTGF: connective tissue growth factor; IL-6: Interleukin-6; ROCK1: Rho 



Shan XQ et al. MSC-Exos on IS

WJSC https://www.wjgnet.com 58 March 26, 2023 Volume 15 Issue 3

associated coiled-coil containing protein kinase 1; PTEN: Phosphatase and tensin homolog; _: Refers to studies without detail the pathways

Table 2 Important immunological factors and their impact

Inflammatory mediators Impacts End of MSC-Exos transplantation/culture Ref.

TNF-α Pro-inflammatory Decline [71,75,81,85,91,100,104,111,130,
140,141,143]

IL-1β Pro-inflammatory Decline [81,85,100,104,111,140,141]

IL-6 Pro-inflammatory Decline [71,75,81,85,91,100,111,122,130,
140-143]

iNOS Pro-inflammatory Decline [81,91]

IFN-γ Pro-inflammatory Decline [135]

IL-8 Pro-inflammatory Decline [130]

NLRP3 Pro-inflammatory Decline [99,145]

CysLT2R Pro-inflammatory Decline [87,89]

CCL-2 Pro-inflammatory Decline [75]

MCP-1 Pro-inflammatory Decline [71,81]

IL-4 Anti-inflammatory Raise [91]

IL-10 Anti-inflammatory Raise [91,100,130,142,143]

TGF-β Anti-inflammatory Raise [130,142]

TNF-α: Tumor necrosis factor-α; IL-1β: Interleukin-1β; IL-6: Interleukin-6; IL-8: Interleukin-8; iNOS: Influx activates nitric oxide synthase; IFN-γ: Interferon 
gamma; CysLT2R: Cysteinyl leukotriene receptor 2; CCL-2: C-C motif ligand 2; MCP-1: Monocyte chemotactic protein; IL-4: Interleukin-4; IL-10: 
Interleukin-10; TGF-β: Transforming growth factor-β; NLRP3: NLRP3 inflammasome; MSC-Exos: Mesenchymal stem cell-derived exosomes.

widely expressed on the surface of immune cells and play a key role in the immune response. NF-κB is a 
key regulator of the immune response and is intricately involved in MG/macrophage M1 and M2 
phenotypic signaling[31,76,77]. Various miRNAs encapsulated in exosomes can regulate the expression 
of TLRs on MG surface, which act on NF-κB to influence MG polarization[29,30,78]. It has been reported 
that Cholesterol 25-hydroxylase (CH25H) is significantly increased during inflammation and 
contributes to the immune response by recruiting Iba-1-positive MG and activating TLR-3[79]. 
Meanwhile, an experiment used microarray to analyze the expression differences of miRNAs in 
ischemic brain tissue after exosome treatment, and found that miR-26b-5p expression increased 
significantly after exosome treatment and could target CH25H in MG to inactivate the TLR pathway to 
inhibit M1 polarization[75]. Besides, miR-542-3p prevents the expression of pro-inflammatory factors 
and the production of ROS by post-ischemic activated glial cells through inhibiting TLR[71]. miR-202-3p
[80], miR-182-5p[81], MiR-181c[82], and miR-1906[83] also play a role in inhibiting M1 polarization 
through downregulation of TLR expression. Also, in a further explanation of the potential mechanism of 
miRNA-mediated TLR/NF-ĸB pathway, Liu et al[84] have documented that miR-216a-5p activates the 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling cascade through inhibition of 
TLR4/NF-κB, enabling the M1 to M2 phenotypic shuttle[84]. Some data also suggest that miR-145-5p 
downregulates inflammatory responses by inhibiting the IL-1 receptor-associated kinase 1 (IRAK1)/
TNF receptor-associated factor 6 (TRAF6) signaling pathway to reduce and increase the amount of M1-
MG and M2-MG, respectively[85]. In contrast, overexpression of IRAK1 and TRAF6 is involved in the 
activation of TLR/NF-ĸB pathway and promotes the release of proinflammatory factors[78,85,86]. 
Hence, miR-145-5p may indirectly affect the TLR/NF-ĸB pathway by inhibiting the IRAK1/TRAF6 
pathway. Exploring the crosstalk between TLR/NF-κB and other pathways may better interfere with 
MG polarization. As described above, exosome miRNAs acting on the TLR/NF-κB pathway and its 
upstream/downstream signaling pathways could influence MG phenotype as well as the expression of 
pro/anti-inflammatory factors to improve inflammation.

In the regulation of MG polarization, the TLR/NF-ĸB pathway has been studied the most. However, 
in stroke, MG polarization is complex and actually regulated by multiple factors. Thus, other pathways 
affecting the activation state of MG are discussed below. miR-223 is one of the most abundant miRNAs 
in MSCs and their exosomes. In vivo and in vitro experiments have revealed that miR-223-3p down-
regulates the transcription and expression of Cysteinyl leukotriene receptor 2 (CysLT2R) to induce a 
conversion from deleterious M1 to beneficial M2 phenotype[87]. CysLTs secreted by dying/dead cells 
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are potent medium for inflammation. They are activated in various cell types during brain injury, 
further exacerbating the development of inflammation[88]. Zhao et al[89] conducted an in-depth study 
involving the miR-223-3p inhibiting CysLT2R expression in vivo and in vitro. They found that miR-223-
3p reversed M1 polarization by apparently downregulating the expression of ERK1/2 downstream of 
CysLT2R, which led to a decrease in the secretion of pro-inflammatory factors and an increase in the 
secretion of anti-inflammatory and neurotrophic factors, thereby slowing down inflammatory damage
[89]. In addition, miR-223-3p also effectively inhibits N-methyl-leukotriene C4/Leukotriene D4 to 
promote M1 to switch to M2[87,90]. Through targeting the autophagy-associated proteins Beclin-1 and 
Atg5, miR-30d-5p greatly inhibited autophagy-mediated polarization of MG towards M1 and reduced 
OGD-induced inflammatory responses[91]. Notably, autophagy may exert both beneficial and 
detrimental effects under IS conditions, depending on the degree of autophagy[92,93]. A moderate 
increase in MG autophagic activity can reduce MG activation and promote MG polarization towards the 
M2 phenotype, exerting a neuroprotective effect. Instead, excessive autophagy exacerbates cerebral 
ischemic injury. It has been demonstrated that regulation of autophagic flux and exosome biogenesis in 
MG plays a vital role in neuronal survival under conditions of cerebral ischemia[94]. Interestingly, the 
similar property was also reported in Ast[95,96]. As such, balancing the autophagic flux of immune cells 
after stroke may be a promising target for treating stroke. Cheng et al[97] have demonstrated that miR-
26a-5p was downregulated and CDK6 was upregulated in MSCs-derived exosomes of middle cerebral 
artery occlusion (MCAO) and OGD model[97]. They then hypothesized that CDK6 might be a direct 
target of miR-26a-5p and further confirmed the correlation between exosome miR-26a-5p and CDK6 
using a luciferase reporter gene assay. The data showed that miR-26a-5p inhibited MG apoptosis and 
attenuated I/R injury in mice by mediating CDK6 downregulation[97]. Besides, miR-424 can also reduce 
ischemic brain injury by targeting key activators of the G1/S transition in MG (including CDK6, 
CDC25A, and CCND1) to inhibit BV-2 MG activation[98]. CDK6 seems to be a good target of miRNAs 
in neuroprotection. As well as alleviating inflammation, MSC-Exos can also alleviate neuronal death by 
regulating MG polarization to downregulate inflammatory mediators relating to pyroptosis[99]. In vitro 
data suggest that the non-coding RNA H19 carried by MSC-Exos could attenuate M1 polarization and 
inflammatory responses by sponging miR-29b-3p and further inhibit neuronal apoptosis[100]. miR-29b-
3p may prevent ischemic-hypoxic brain injury by activating the PI3K/Akt pathway via downregulating 
the protein phosphatase and tensin homolog (PTEN)[101]. Most studies have reported routes associated 
with miRNAs affecting M1 polarization, while studies acting on pathways associated with M2 
polarization are still lacking and deserve further exploration.

Ast, the most abundant brain cells in the CNS, plays an essential role in neuroinflammation and 
neuroregeneration[40,41]. Following ischemic injury, Ast is activated by DAMPs and/or MGs and 
undergoes a transformation known as “reactive astrogliosis”[38]. Features include hypertrophy of the 
shape and overexpression of glial fibrillary acidic protein (GFAP)[102]. The activated Ast phenotype 
matches MG and is divided into pro-inflammatory A1 and anti-inflammatory A2. Notably, recent 
studies have shown that the inflammatory response mediated by Ast appears to last longer and induces 
more damage than MG[103]. This possibility further underlines the importance of targeted inhibition of 
Ast activation or induction of Ast phenotypic transformation in the treatment of IS. It has been 
demonstrated that Nrf2-related pathways are involved in the inflammatory response of Ast[104-106]. In 
one study, immunofluorescence experiments were performed after in vivo and in vitro administration of 
MSC-Exo, respectively, and protein blots showed that MSC-Exo reduced the expression of GFAP (Ast 
marker), C3 (A1 marker) and ki67 (cell proliferation marker) in LPS-stimulated cultured primary 
hippocampal Ast[104]. Meanwhile, the data show that MSC-Exo could reverse hippocampal Ast 
oxidation (e.g., upregulation and nuclear translocation of Nrf2) and inflammation phenotypes (e.g., NF-
κB activation and translocation)[104]. These results suggest that MSC-Exo can inhibit inflammation-
induced Ast activation by modulating the Nrf2-NF-κB signaling pathway. Nrf2 is a regulator of redox 
homeostasis and a target for the induction of inflammatory responses. In brain diseases with 
simultaneous inflammation and oxidative stress (e.g., IS), the interaction between Nrf2 and NF-κB 
signaling pathway is the fundamental mechanism regulating these responses[107]. miR-146a-5p, one of 
the most abundant cargo miRNAs in human umbilical cord-derived MSC-Exos, dramatically decreased 
the expression of A1 markers [C3 and lipid chain lipoprotein-2 (LCN2)) by inhibiting the NF-κB 
signaling cascade, thereby reversing the neurotoxic phenotype of Ast[108]. Among them, LCN2 has 
been identified as a potent mediator of astrocyte neurotoxicity[109]. LCN2 secreted by reactive Ast can 
accelerate or propagate neuronal cell death and promote the activation of resting Ast and MG[109]. 
Moreover, a recent study identified high LCN2 expression in a mouse transient MCAO model and 
detected that IS patients with higher plasma LCN2 levels were more likely to develop a post-stroke 
infection[110]. Overexpression of miR-138-5p negatively regulates the LCN2 expression in Ast, thereby 
inhibiting inflammation and reducing ischemic nerve injury[111].

More importantly, the increase of reactive Ast results in further glial scarring. In the acute phase of IS, 
these physical barriers can limit the inflammation spread and infarct area to maintain CNS homeostasis. 
However, in the recovery phase of IS, their presence may impede the circulation and neurological tissue 
regeneration, affecting functional recovery in late stroke[41]. It has been demonstrated that in several 
previous cerebral ischemia and hypoxia models, transplantation of MSCs markedly reduced reactive 
Ast and further eliminated glial scarring around the lesion, promoting neuronal regeneration and 
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relieving inflammation[112,113]. Recently, the in vitro studies reported that MSCs improved brain 
function after transplantation mainly by reducing the number of hypertrophic Ast and GFAP overex-
pression through inhibition of p38 MAPK, JNK, and its downstream targets p53 and STAT1 activation 
by paracrine factors[114]. In addition, miR-124 attenuated Ast proliferation and migration by blocking 
the STAT3 pathway, thereby reducing the width of glial scarring and improving neurological function
[115]. Meanwhile, miR-124 may also involve in the reprogramming neuronal progenitor cells by Ast 
through decreasing Notch1 expression and increasing Sox2 expression[115]. As Ast and neurons 
originate from the same precursor cells, Ast can be reprogrammed into neurons under some specific 
conditions, which can be achieved, for instance, by adjusting the expression of certain specific 
transcription factors (including Notch1, NeuroD1, Mash1, Ascl1, etc.) in vivo[115-117]. If Ast transdiffer-
entiated neurons homed to the ischemic lesion and replaced lost neurons, this would help limit glial scar 
formation and neural connectivity after injury, contributing to neural remodeling. This may be used as 
an alternative therapy for neuronal replenishment after stroke in the future. Furthermore, exosomes can 
also mediate communication between MSCs and Ast to enhance neurological recovery after stroke. 
MSCs communicate with Ast and neurons by releasing miR-133b-containing exosomes and transferring 
miR-133b into neurons and Ast to promote neuroprotection regeneration[118]. Xin et al[119] further 
showed that miR-133b shared into Ast downregulated the expression of connective tissue growth factor, 
thereby reducing glial scar thickness in cerebral infarction[119]. All in all, Ast may be a potential target 
for the intervention in stroke. However, whether the responsiveness and function of Ast should be 
further reduced or enhanced may depend on the duration of the ischemic lesion, the location of the Ast, 
and the specific subtype of Ast.

MSC-Exos and peripheral immune system
Neutrophil: Neutrophils are the first peripheral immune cells to infiltrate into the brain parenchyma 
crossing the damaged BBB. Neutrophil infiltration after IS is now believed to be detrimental to stroke
[27,54,56]. MSC-Exos can mitigate the harmful effects of neutrophils in several ways. Firstly, MSC-Exos 
can reduce neutrophil infiltration and inhibit neutrophil respiratory burst, thereby decreasing the 
expression of inflammatory mediators, including IL-1b, IL-6, and TNF-α, as well as suppressing the 
production of ROS in neutrophils[120]. Also, further studies have revealed that MSC-Exos may prevent 
the subsequent recruitment of monocytes/macrophages and lymphocytes after reducing neutrophil 
infiltration at the cerebral ischemia site[121]. Secondly, MSC-Exos inhibits neutrophil apoptosis and 
enhances neutrophil phagocytosis, then contributing to the clearance of cellular debris and eliminating 
inflammation and infection. This may result from the presence of IL-6 in MSC-Exos and its transfer into 
the neutrophil cytoplasm, which subsequently exerts an autocrine effect on neutrophils, thereby 
prolonging the survival of these cells and maintaining their effective function and viability to further 
improve the inflammatory response[122,123]. Thirdly, MSC-Exos inhibits the formation of terminal 
complement complexes on neutrophils via CD59, thus attenuating neutrophil activation and inhibiting 
the release of NETs and IL-17 from neutrophils[124]. Besides, human umbilical cord blood-derived 
MSC-derived EVs (exosomes) can also repair and enhance neutrophil mitochondrial function by 
transferring functional mitochondria, then reducing the formation of NETs[125]. Of greater importance, 
Soni et al[72] further investigated the differences in the regulation of neutrophil function by exosomes 
from different sources of MSCs. The results suggested that bone marrow-derived MSCs-derived 
exosomes (B-Exos) were more effective in prolonging the neutrophil lifespan. In contrast, adipose-
derived MSCs (ADMSCs)-derived exosomes (A-Exos) were more prominent in increasing the 
phagocytic capacity of neutrophils and inhibiting the formation of NETs[72].

Macrophage: Activated macrophages are morphologically like MGs, which can be divided into 
neurotoxic M1 and neuroprotective M2 types[36]. Numerous experiments have demonstrated that MSC-
Exos can effectively inhibit the effector function of M1 pro-inflammatory macrophages and/or promote 
the effector function of M2 anti-inflammatory macrophages, which contributes to alleviating the 
immune inflammatory response. It has been suggested that IFN regulatory factor (IRF) 5 could be 
reversibly induced by inflammatory stimuli in macrophages and IRF5 is associated with the plasticity of 
macrophage polarization (up- or down-regulation of M1 or M2 macrophage phenotypic marker 
expression)[126]. Overexpression of miR-22-3p promotes the polarization to macrophage M2, 
suppresses the inflammation, and attenuates I/R injury through downregulating IRF5, which is 
supported by increased expression of the M2 macrophage marker mannose receptor (CD206) and 
decreased expression of the M1 macrophage marker CD86[127]. B-Exos-derived miR-125a also exerts 
neuroprotective effects by targeting negative regulation of IRF5 to promote M2 phenotypic polarization
[128]. Furthermore, A-Exos can promote M2 polarization by activating the M2 macrophage-specific 
transcription factors MafB and Stat6 to induce the expression of genes related to anti-inflammatory 
functions, supported by a mechanism that upregulates the expression of the M2 macrophage markers 
CD163, arginase-1 (Arg1) and CD206[129]. A-Exos also increased CD163, Arg1, CD206, TGF-β1, and IL-
10 expression levels and decreased TNF-α, IL-6, and IL-8 expression levels by targeting the Rho 
associated coiled-coil containing protein kinase 1/PTEN pathway. The above results suggest that A-
Exos may improve the inflammatory environment by promoting M2 polarization to increase the 
secretion of anti-inflammatory molecules and/or inhibiting M1 polarization from decreasing the 
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secretion of pro-inflammatory factors[130]. And similar to MG, miR-21, miR-146a, and miR-301a can 
also regulate macrophage polarization by inhibiting the TLR/NF-κB pathway[131-133].

Lymphocyte: First of all, T lymphocytes are at the heart of the adaptive immune system. Despite some 
subtypes of T lymphocytes exert a neuroprotective role in the early post-stroke phase, such as Tregs and 
Th2, on the whole, they have a negative impact on IS, as do neutrophils[45,134]. Accordingly, it appears 
to be a viable clinical treatment for stroke to modulate the differentiation, activation and function of 
various T lymphocyte subsets. In vitro studies indicated that A-Exos significantly inhibited the 
activation and proliferation of CD4+ and CD8+ T cells and reduced IFN-γ release, with directly 
immunosuppressive properties[135]. In vivo experiments showed that a dramatic reduction in the 
number of CTL was observed in a rat model of cerebral infarction injected intra-arterially with MSC-EV
[136]. Another study has documented that MSC-Exos also promoted the Treg proliferation and induced 
the conversion of Th1 to Th2 by enhancing intracellular IL-10 and TGF-β secretion, thereby boosting its 
immunosuppressive capacity[137]. Soni et al[72] have further explored and found that MSC-Exos 
containing miR-146, miR-155, miR-21, and miR-29 may regulate the activation pathways of Th1 and Th2
[72]. And they showed that different sources of MSC-Exos all inhibited the proliferation of T 
lymphocytes. But in comparison, Wharton Jelly-derived exosomes and B-Exos had a better inhibitory 
capacity than A-Exos[72]. Additionally, DCs activate T cells through delivering co-stimulatory 
molecules, such as CD80 and CD86, to naive T cells[138]. However, MSC-Exos can reduce T-lymphocyte 
activity, increase IL-10 and TGF-β secretion, and reduce IL-6 secretion by inhibiting the maturation and 
differentiation of DCs[135]. Next, activation and isotype-transformed B-lymphocyte infiltration 
contribute to poor outcomes after IS. It has been previously reported that MSCs can reverse the 
unfavorable outcome by inhibiting B lymphocyte activation, proliferation, differentiation, and 
chemotactic response[139]. Recent studies have demonstrated that when co-cultured with lymphocytes 
derived from healthy human peripheral blood, B-Exos significantly inhibited lymphocyte proliferation 
and immunoglobulin M production, particularly exhibiting effects on B lymphocyte-specific mRNA 
expression[70].

MSC-Exos regulate the immune response through inflammatory mediators
In addition to immune cells, changes in inflammatory mediators, such as cytokines and chemokines, are 
also observed in ischemic area. Among them, TNF-α, IL-1β, and IL-6 are the more typical pro-inflam-
matory factors, and their expression is significantly upregulated after ischemic events. MSC-Exos 
containing lncRNA ZFAS1[140], lncRNAH19[100], miR21-3p[141], miR-146a-5p[85], miR-138-5p[111], 
and miR182-5p[81] was able to reduce immunosuppression by downregulating the secretion of TNF-α, 
IL-1β, and IL-6. Of these, lncRNA ZFAS1 and lncRNAH19 may be associated with the competitive 
binding of miR-15a-5p and miR-29b-3p[100,140]. MSC-Exos also down-regulate other pro-inflammatory 
factors such as IFN-γ, iNOS, and IL-8[81,91,130,135]. Apart from down-regulating pro-inflammatory 
factors, some MSC-Exos can up-regulate the expression of anti-inflammatory factors such as IL-10, IL-4, 
and TGF-β1[91,100,130,142,143]. Furthermore, some studies have shown that MSC-Exos could reduce 
the secretion of chemokines (e.g., C-C motif ligand 2) and cellular chemotactic proteins (e.g., monocyte 
chemotactic protein), thereby inhibiting the migration and aggregation of peripheral immune cells and 
alleviating the inflammatory response[71,75,81]. Inflammasomes are equally important inflammatory 
mediators in regulating the onset and progression of IS. NLRP3 inflammasome contains a caspase-1 
precursor that cleaves to caspase-1 (Cl) upon stroke stimulation. C1 not only is a critical executioner of 
pyroptosis (cleave full-length GSDMD to release GSDMD N-terminus) but also can convert precursors 
of IL-1β and IL-18 into mature pro-inflammatory cytokines exacerbating inflammation[144]. Liu et al[99] 
found that NLRP3 inflammasome was downregulated in MCAO mice after MSC-Exos treatment, 
thereby reducing inflammation and pyroptosis. They also observed that MSC-Exos contributed to MG 
polarization towards the M2 phenotype by inhibiting NLRP3[99]. On the one hand, it may be due to the 
high plasticity of the MG phenotype, which can dynamically switch according to brain environmental 
variables[74]. On the other hand, it may be related to the amount of autophagy[91,99,145].

Collectively, MSC-Exos could improve the immune inflammatory response after IS via affecting the 
activation of MG/macrophages and Ast, reducing reactive astrocyte hyperplasia, decreasing excessive 
infiltration of neutrophils, balancing the functional status of T cell subsets, suppressing the proliferation 
of B cells, inhibiting DC maturation, and regulating the secretion of inflammatory mediators. Therefore, 
MSC-Exos exhibits immunomodulatory effects and may help to reduce neurological damage and 
promote neurological repair after IS.

FROM BENCH TO BEDSIDE: RESPONSES TO THE LIMITATIONS OF MSC-EXOS 
THERAPY FOR IS
To date, a growing number of studies have demonstrated the great potential of MSC-Exos in treating IS. 
However, lacking target ability of natural exosomes produced by MSCs has greatly limited their clinical 
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application[146]. Regarding exosome producing, the cell membrane invaginates to form endosomes, 
which in turn form multivesicular bodies (MVBs), and the MVBs finally fuse with the plasma membrane 
to release luminal vesicles (called exosomes) into the extracellular matrix (ECM)[147]. At present, basing 
on the production process of exosome, two strategies are proposed to improve the targeting ability of 
exosomes, comprising “cell engineering” (pre-isolation) and “exosome engineering” (post-isolation)
[147] (Figure 2). For example, the cyclin (Arg-Gly-Asp-DTyr-Lys) peptide [c(RGDyK)] and the rabies 
virus glycoprotein (RVG) peptide have been used explicitly to target the brain. B-Exos loaded with 
cholesterol-modified miR-210 coupled to c(RGDyK) could bind to integrin αvβ3 on the BBB and deliver 
miR-210 to the site of cerebral infarction, thereby ameliorating post-stroke symptoms[148]. Additionally, 
c(RGDyK)-modified MSC-Exos loaded with curcumin (cRGD-Exo-cur) was used in a study, followed by 
tail vein injection to target the area of cerebral ischemic injury and enter neurons, MG and Ast, 
effectively inhibiting the inflammatory response and cellular apoptosis[146]. RVG fused with exosomes 
protein lysosome-associated membrane glycoprotein 2b could bind to acetylcholine receptors on the 
BBB and effectively deliver miR-124 to the infarct site, therefore promoting post-IS neurogenesis and 
reducing ischemic injury[149]. In another study, high-mobility group box 1 (HMGB1)-siRNA was 
loaded into RVG-modified exosomes (RVG-Exos) by electroporation and injected into an MCAO model 
via tail vein. The results showed that RVG-Exos loaded with HMGB1-siRNA was effective in reducing 
the level of brain apoptosis and infarct size and had the potential to target IS[150].

Next, the “low yield bottleneck” of MSC-Exos is also one of the main causes limiting its clinical 
application. Some researchers have illustrated that the pretreatment of MSCs appears to increase the 
yield of MSC-Exos. For instance, the three-dimensional porous scaffold structure increases the surface 
area for cell-ECM interaction, compared to the traditional two-dimensional culture of BMSCs. In 
addition, the three-dimensional culture more closely resembled the natural ECM conditions, providing 
a better environment for cell attachment and growth, thus substantially increasing the yield of MSC-
Exos[151]. Some studies have indicated that cultures using microcarriers and hollow fiber bioreactor can 
provide cells a larger attachment area and further enhance the secretion of MSC-Exos[152,153]. 
Moreover, a recent study found that pretreatment of MSCs with small molecule modulators (N-methyl-
dopamine and norepinephrine) tripled the production of exosomes without altering the intrinsic 
regenerative effects of MSC-Exos and the level of total exosomes protein expression[154].

To sum up, enhancing the targeting of exosomes by modifying them and improving the yield of 
exosomes by pretreating MSCs can both improve the therapeutic ability of exosomes. And further 
exploration of exosome improvement methods offers the possibility of transitioning from bench to 
bedside.

CONCLUSION
IS is a severe cerebrovascular disease that adversely affects patient’s health and quality of life. A 
growing body of evidence suggests that the immune inflammatory response plays a critical role in 
pathogenesis of IS. It has emerged as a promising target for intervention in stroke therapy. After IS, the 
boundary between the CNS and peripheral immune system disappears due to the disruption of the 
BBB. Subsequently, the CNS and peripheral immune system can interact with each other, providing a 
unique opportunity to regulate the pathological process of IS and the repair process. At the same time, 
immunomodulation is one of the main mechanisms by which MSC and MSC-Exos exert their 
therapeutic effects on IS. MSC-Exos is expected to be an alternative therapy to MSC in treating stroke 
due to its parental cell-like capabilities and specific advantages. MSC-Exos exerts immunomodulatory 
effects mainly by affecting the inflammatory phenotype of glial cells in the CNS, inhibiting peripheral 
immune cell activation, proliferation, differentiation, and hyperinfilation, and regulating the secretion of 
immune-related molecules. Meanwhile, to complement or enhance the therapeutic suitability of 
exosomes, researchers are actively exploring novel methods to expand, modify or enhance their 
therapeutic capacity, such as modifying exosomes (to improve targeting) and pretreating MSC (to 
increase exosome yield).

Although the results of numerous preclinical studies have shown MSC-Exos to be one of the key 
breakthroughs in treating IS. However, the study of MSC-Exos in the treatment of IS is still in its infancy 
in clinical practice. Currently, there is only one study in the Clinical Trials Registry database to 
determine the effect of MSC-Exos administration on improving functional impairment after IS. This trial 
used the administration of miR-124-enriched isoform MSC-Exos to treat IS and entered into a phase I/II 
clinical trial (NCT03384433)[155]. There are many challenges to overcome to transfer MSC-Exos therapy 
further into the clinic: (1) Optimal duration of treatment and effective dose. Numerous studies have 
shown that post-IS inflammatory cells play a dual role (beneficial and detrimental) and the inhibition of 
the same pathway at the wrong time may exacerbate ischemic damage[27,36,38,45]. Therefore, during 
developing new therapeutic strategies for IS, we need to pay more attention to the duration of 
treatment. Interestingly, there are also cases where the timing of transplantation based on previous 
cellular therapies may affect the therapeutic outcome[156]. Thus, we need to further investigate the 
optimal timing of treatment with exosomes that may be influenced by parental cells. Most preclinical 
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Figure 2 Strategies to enhance the targeting of mesenchymal stem cell-derived exosomes. Multiple strategies to be done before exosomes can be 
successfully translated into new technologies to improve the targeting ability of donor cells and therapeutic efficacy of chemical and biomolecular drugs. Current 
preclinical studies are focused on parental cells' modification (pre-isolation) (A); manipulation of exosome (post-isolation) (B). (Figure created with BioRender.com).

trials have currently chosen to administer a single dose of MSC-Exos in the acute phase of the stroke 
while showing beneficial effects. As such, the next step should investigate the effects of delayed-time 
dosing compared to acute phase dosing, in order to determine the optimal timing of treatment. 
However, determining the optimal timing of dosing may be difficult in practice, so we could further 
consider multiple repeat dosing; (2) A single research direction. Current experimental studies on the 
immunomodulatory aspects of MSC-Exos treatment with IS have focused on MG/macrophages, while 
other immune-related cells or factors remain poorly studied. Furthermore, the immune response 
following IS results from crosstalk within and between different cell types, which is complex and 
chronological. However, most experimental studies have usually explored a single mechanism of action 
mainly in a particular cell. There is no consensus on the exact molecular mechanism of MSC-Exos 
treatment of IS and further in-depth studies in multiple directions are urgently needed; (3) Lack of 
clinical trials; and (4) Stroke models combined with relevant clinical conditions. Current studies 
targeting MSC-Exos for treating IS have almost always been conducted in healthy animals. Therefore, 
when using stroke models, it should be as close as possible to achieve the clinical situation, like 
hypertension, diabetes, heart disease, atherosclerosis, secondary infections, etc., as these diseases may 
affect the formation, treatment, and prognosis of stroke. To summarize, there are still many animal 
experiments and clinical trials to be finished before the fact that MSC-Exos can be applied as a routine 
treatment for stroke. However, based on the available evidence, we believe that MSC-Exos therapy is an 
emerging therapeutic strategy based on cellular therapy with great potential for future use in IS 
treatment, particularly in immunomodulation.
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