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Abstract
Obesity, the global pandemic since industrialization, is the number one lifestyle-
related risk factor for premature death, which increases the incidence and 
mortality of various diseases and conditions, including cancer. In recent years, the 
theory of cancer stem cells (CSCs), which have the capacity for self-renewal, 
metastasis and treatment resistance, has been bolstered by increasing evidence. 
However, research on how obesity affects CSCs to facilitate cancer initiation, 
progression and therapy resistance is still in its infancy, although evidence has 
already begun to accumulate. Regarding the ever-increasing burden of obesity 
and obesity-related cancer, it is pertinent to summarize evidence about the effects 
of obesity on CSCs, as elucidating these effects will contribute to the improvement 
in the management of obesity-related cancers. In this review, we discuss the 
association between obesity and CSCs, with a particular focus on how obesity 
promotes cancer initiation, progression and therapy resistance through CSCs and 
the mechanisms underlying these effects. In addition, the prospect of preventing 
cancer and targeting the mechanisms linking obesity and CSCs to reduce cancer 
risk or to improve the survival of patients with cancer is considered.
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Core Tip: Obesity increases the incidence and mortality of various cancers; however, research on how 
obesity affects cancer stem cells (CSCs) is still in its infancy. In this review, we discuss the association 
between obesity and CSCs, with a particular focus on how obesity promotes cancer initiation, progression 
and therapy resistance through CSCs and the mechanisms underlying these effects. In addition, the 
prospect of preventing cancer and targeting the mechanisms linking obesity and CSCs to reduce cancer 
risk or to improve the survival of patients with cancer is considered.
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INTRODUCTION
For millions of years, humans and their predecessors have evolved under the pressure of undernu-
trition, which selects a genotype that enables overeating, low energy expenditure, a high degree of 
calorie absorption and efficient energy storage in adipose tissue[1]. Therefore, with the development of 
the social economy in the past few decades, overnutrition and an increasingly sedentary lifestyle tip the 
balance from a few calories consumed but more expended to more calories consumed but little 
expended, leading to the pandemic of excess body weight, which is mainly measured by body mass 
index (BMI). Over the past four decades, the prevalence of overweight and obesity has nearly tripled 
globally. Between 1975 and 2016, the worldwide prevalence of obesity increased from less than 1% to 
6%-8% among children, from 3% to more than 11% among men and from 6% to 15% among women[2]. 
Based on data from the Global Burden of Disease (GBD) 2015, overweight or obesity affects over 2.1 
billion people, or nearly 30% of the global population[3]. Obesity was estimated to increase the 
economic burden by approximately 2 trillion United States dollars, or 2.8% of the global gross domestic 
product, and to lead to the loss of an estimated 5-20 years of life expectancy, representing one of the 
most serious unmet public health challenges of the 21st century[4-6].

Malignancy, a set of diseases caused by the interplay between genetic and environmental or 
behavioral factors, ranks as the third leading cause of premature death and disability attributable to 
excess body weight worldwide following cardiovascular disease and type 2 diabetes mellitus[7]. Recent 
studies have demonstrated that excess body weight is associated with higher risks of several types of 
cancer, including esophageal adenocarcinoma, multiple myeloma, and cancers of the gastric cardia, 
colon, rectum, biliary tract system, pancreas, breast, endometrium, ovary, and kidney[8]. In 2019, the 
estimated number of high BMI-related cancer cases accounted for 4.59% and 4.45% of all cancer-cause 
deaths and disability-adjusted life years, respectively[9]. Obesity can not only increase the risk of 
tumorigenesis but also promote the progression and metastasis of developed cancer and can affect the 
therapeutic efficacy and survival of patients with cancer[10].

Regarding the altered biological processes that occur in the context of obesity that contribute to 
cancer, the majority of studies have focused on common themes, including inflammation, hypoxia, 
angiogenesis and altered energy metabolism, which influence the proliferation and survival of cancer 
cells[10]. However, in recent years, emerging challenges in cancer management have promoted the 
proposal of many theories to explain the initiation and progression of cancer; one of them is the 
hypothesis of cancer stem cells (CSCs), which has been bolstered by an accumulating body of evidence
[11]. CSCs, also referred to as treatment-refractory, tumor-initiating cells, constitute a small subpopu-
lation of cancer cells within tumors capable of self-renewal, which can divide and differentiate into 
various tumor cell types (intratumoral heterogeneity). They can secrete antiapoptotic factors, undergo 
epithelial-to-mesenchymal transition (EMT), and display a higher performance of drug efflux pumps. 
Therefore, CSCs are preferentially aggressive and pose a high risk of therapy resistance and disease 
relapse[11]. With the rapidly increasing incidence of cancer attributable to obesity, a better under-
standing of the roles of obesity in CSC biology is of paramount significance. However, research in this 
area is in its infancy. In this review, we discuss the association between obesity and CSCs, with a 
particular focus on how obesity promotes cancer initiation, progression and therapy resistance through 
CSCs and the mechanisms underlying these effects. In addition, the prospect of prevention and 
targeting mechanisms linking obesity and CSCs to reduce cancer risk or to improve the survival of 
patients with cancer is considered.

https://www.wjgnet.com/1948-0210/full/v15/i4/120.htm
https://dx.doi.org/10.4252/wjsc.v15.i4.120
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OBESITY AND CSCS IN CANCER INITIATION
In the context of an increase in the global prevalence of obesity, large-scale epidemiological studies have 
demonstrated a compelling increased risk of tumorigenesis in individuals with obesity, and several 
landmark studies have summarized this evidence. To evaluate the strength and validity of the evidence 
for the association between adiposity and the risk of developing or dying from cancer, an umbrella 
review of the literature comprising 204 meta-analyses of large studies with limited heterogeneity or 
evidence of bias was published in 2017, which concluded that the associations for 11 cancers were 
supported by strong evidence, while others could be genuine, but substantial uncertainty remains[8]. In 
2016, data from a meta-analysis reported by the International Agency for Research on Cancer supported 
relative risks of 1.5 to 1.8 in obesity for these tumor sites[12]. In GBD 2019, 13 cancer types were also 
found to be affected by a high BMI[9]. Although some inconsistencies in cancer types contributing to 
obesity were reported across these studies, a consistent and compelling association has been 
demonstrated in many cancer types, including esophageal adenocarcinoma, multiple myeloma, and 
cancers of the gastric cardia, colon, rectum, biliary tract system, pancreas, breast, endometrium, ovary, 
and kidney (Figure 1). In the majority of these cancers, the CSC theory has been established in tumori-
genesis. For example, in the intestine, inactivation of the adenomatous polyposis coli (APC) gene can 
lead to the rapid and lethal generation of adenomas in intestinal stem cells (ISCs) but not in non-stem 
cells[13]. Breast cancer was found to originate from a rare population of mammary gland progenitor 
cells, the depletion of which significantly impaired tumor growth[14]. Therefore, to increase the risk of 
these cancers, obesity may disturb the normal biology of stem/progenitor cells residing in these tissues, 
which is conducive to their transformation.

Except for compelling epidemiological evidence, no attempts have been made to investigate the 
biology of cancer-related adult stem cells in populations with obesity. Multiple animal models have 
been developed to recapitulate the effects of obesity or a pro-obesity diet on the initiation of cancer and 
have suggested that a high-fat diet (HFD) can promote tumorigenesis in the colorectum, prostate and 
liver[15-17]. However, the cellular origin of cancer was not defined in these studies. In recent years, 
research revealing the links between obesity or HFD and adult stem cells has increased (Table 1)[18-28]. 
Although discrepancies exist, the majority of these studies reported one or more of the following 
findings: Obesity or a HFD increases the depth or number of crypts in the intestine; non-stem cell 
progenitors in a HFD setting acquire stem cell attributes; the number and the capacity to form organoids 
of stem cells or progenitor cells are increased by a HFD; stem cells undergo autonomous changes in 
response to a HFD that poise them for niche-independent growth. Although studies exploring the 
initiation of carcinogenesis from these stem cells are very limited, the alterations in stem cells reported 
in these studies can predispose them to transformation. First, obesity or a HFD expands the pool of cells 
- both stem cells and progenitor cells - that can serve as the cellular origin of nascent cancers. Second, 
stem cells from mice on a HFD become functionally uncoupled from their niche in the organoid assay 
and in vivo, consistent with the hallmarks of cancer cells. Third, several studies have shown the possible 
links between these perturbations and tumorigenesis. For instance, when injected with azoxymethane, 
aberrant crypt foci (ACF), an early-appearing lesion of colon carcinogenesis, were increased in male 
mice fed a HFD[21]. In another study, more spontaneous intestinal low-grade adenomas and 
carcinomas were observed in HFD-fed mice than in standard diet-fed mice[19].

At present, elucidating how obesity and a pro-obesity diet contribute to the cellular origin of cancer in 
the intestine is the central focus of research, and data on stem cells in other tissues are very limited. 
Several reasons can explain such a tissue preference for studying the impact of obesity and HFD 
physiology on the initiation of cancer. First, robust epidemiological evidence has been accumulated for 
the increased risk of colon cancer in obese populations, and a better understanding of the altered 
biology of ISCs that occurs in the context of obesity will provide immeasurable public health benefits
[10]. Second, the stem cell theory advanced most rapidly in ISCs, from which the histological 
architecture of the intestine has been well established[29]. Third, ISCs reside in the base of the intestinal 
crypt and directly interact with luminal nutrients, bacteria, and other intraepithelial and subepithelial 
cells, making the intestine an ideal system for studying the pathophysiological changes on a HFD[29]. 
Finally, the natural orifice of the intestine makes in situ manipulations for tumor induction or diagnostic 
tests easier than other in vivo cancer models[30]. Despite all of this, as consistent and compelling associ-
ations have been demonstrated between obesity and more than 10 cancer types, elucidating how stem 
cells in tissues other than the intestine are perturbed by obesity or HFD holds the same importance. 
Currently, the majority of obesity models are induced by HFD; however, other dietary patterns, such as 
a high-sugar diet and Western-styled diet, have also been shown to be obesogenic, and the effects of 
these dietary patterns on the initiation of cancer warrant further studies. Furthermore, the alterations in 
stem cell biology in tissues with increased cancer incidence warrant further investigation in obese 
human beings, not just in animals.
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Table 1 Murine models of high-fat diet-induced obesity and cancer stem cells

Tissue Findings Ref.

Intestine Increased crypt depth and villus height; increased number of Olmf4-positive ISCs; increased size of the enterospheres that developed 
from ISCs

[18]

Intestine Increase in crypt depth; non-stem progenitor intestinal cells gain more stemness features and self-renewal; 50% increase in the number 
of Olfm4+ ISCs; 23% decrease in the number of Paneth cells; more likely to initiate mini-intestines; organoids had higher frequencies of 
Lgr5+ ISCs; ISCs by themselves had an increased capacity to initiate organoids

[19]

Intestine Combined with Pten inactivation, obesity is insufficient to drive Lgr5+ ISC-derived tumorigenesis [20]

Intestine Increased aberrant crypt and crypt foci; increased proliferation of colonocytes per mouse [21]

Intestine Higher number of Lgr5+ stem cells per crypt [22]

Intestine Increased number of ISCs and progenitor cells; crypts are further likely to form mini-intestine organoids in a 3D culture [23]

Intestine Increased intestinal epithelial cell proliferation [24]

Intestine Reprograms Bmi1+ cells to function and persist as stem-like cells in mucosal homeostasis and tumor development [25]

Intestine Increased number of crypts; increased total numbers of ISCs and percentage of ISCs in S-phase; reduced numbers of Paneth and goblet 
cells

[26]

Lung Increased number of AT2 cells; higher stem cell colony forming efficiency [27]

Esophagus Increased numbers of epithelial progenitors in Barrett’s esophagus [28]

ISC: Intestinal stem cell; Lgr5: Leucine-rich repeat-containing G protein-coupled receptor 5; AT2: Alveolar type-2.

Figure 1 Relative risk of individual cancers at high body mass index. Data were obtained from a meta-analysis reported by the International Agency for 
Research on Cancer working group. The number represents the relative risk and its 95% confidence interval of the highest body mass index category vs normal body 
mass index. NA: Not available.

OBESITY AND CSCS IN CANCER PROGRESSION AND THERAPY RESISTANCE
In addition to promoting tumorigenesis, obesity might also promote the progression of established 
cancers, affect the efficacy of present forefront antitumor therapies and shorten the survival of patients 
with cancer. For instance, a meta-analysis including 86490 patients treated for clinically localized 
prostate cancer showed a moderate and consistent relationship between obesity and biochemical 
recurrence, and there was a 10% increase in biochemical recurrence per 5 kg/m2 increase in BMI[31]. In 
the Carolina Breast Cancer Study phase 3, a high waist-to-hip ratio was found to be associated with a 
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high risk of metastasis[32]. Poor survival was also reported in overweight or obese patients with 
colorectal, endometrial and breast cancer[33-35]. In addition to the increased likelihood of recurrence, 
the poor prognosis of obese patients with cancer also results from the reduction in the efficacy of 
antitumor therapies[36]. Mechanistically, the link between obesity and increased recurrence, therapy 
resistance and poor survival is likely multifactorial, with some differences related to more advanced 
stages being attributed to reduced participation in routine screening or the systemic effects of obesity on 
drug pharmacokinetics and metabolism[37,38]. In addition to these explanations, emerging evidence has 
shown that the activation of stem cell programs in cancers can lead to progression, metastatic growth 
and therapy resistance[11].

The key roles of obesity in the activation of stem cell programs have attracted much attention in 
recent years; however, as in studies on the effects of obesity on cancer-initiating cells, the promotion 
effects of obesity on cancer through CSCs are also mainly limited to animal models, which are utilized 
to investigate how specific obesity-related factors induce the stemness of cancer cells. Knowledge about 
CSCs in obese patients with cancer is still not clear. For example, obesity increases inflammation in the 
tumor microenvironment (TME) through local and systemic adipokines, proinflammatory cytokines or 
hormones, which modulate the stemness of cancer cells[39]. In a mouse model of hepatocellular 
carcinoma, diet-induced obesity increased inflammatory signaling via STAT3, and this finding was 
associated with larger tumors with a cancer-stem-cell-like phenotype[40]. Prolonged culture of breast 
cancer cells, which developed from a fat-rich environment, with adipocytes increased the proportion of 
cells expressing stem-like markers in vitro and the abundance of cancer cells with metastatic potential in 
vivo[41]. Regarding the involvement of CSCs in therapy resistance, leptin was found to interfere with 
the efficacy of 5-fluorouracil (5-FU) in colon tumor stem cells by increasing cell viability and reducing 5-
FU-induced DNA damage[42].

EMT is a reversible cellular process during which epithelial cells transiently acquire mesenchymal 
phenotypes, such as an elongated, fibroblast-like morphology as well as an increased capacity for 
migration and invasion[43]. It is now widely accepted that EMT has well-established roles in cancer 
metastasis[43]. In the majority of carcinomas, only CSCs exhibit aspects of EMT-program activation[44]. 
Various extracellular stimuli, including obesity-related factors, have been implicated in the induction of 
EMT programs. For instance, esophageal cancer cells cocultured with visceral adipose tissue taken from 
obese patients resulted in the induced expression of genes involved in EMT, which was also noted in 
tumor biopsies from obese patients[45]. Cytokines and growth factors released by adipose stem cells 
(ASCs) can induce EMT-like changes in various cancer cells[10]. The adipokine leptin has also been 
found to activate EMT programs to enhance the proliferation and metastasis of breast cancer cells[46]. 
Therefore, obesity can propel primary tumor cells toward EMT events, leading to malignant 
progression.

THE LINKS BETWEEN OBESITY AND CSCS
As discussed above, CSCs participate in every step of tumorigenesis promoted by obesity. 
Understanding the key links between obesity and CSCs, therefore, offers important potential to decrease 
the incidence and improve the outcomes of obese patients with cancer. Several main factors are 
considered to connect obesity and cancer: Components of pro-obesity diets, metabolic and hormonal 
alterations associated with obesity, dysfunctional adipose tissue in the TME, low-grade obesity-related 
inflammation, self-renewal and stemness pathways, and microbiome dysbiosis. Each of these factors is 
intimately linked to and cross-talks with each other. For example, fatty acids in pro-obesity diets 
accumulate in adipocytes, leading to expansion and dysfunction of adipose tissue, which is intimately 
linked to endocrine and paracrine dysregulation, such as increased circulating insulin, insulin-like 
growth factor-1 (IGF-1) and leptin. All of these alterations activate and maintain a prolonged low-grade 
inflammatory state, predisposing individuals with obesity to an increased cancer risk and poor 
outcomes[47-49]. Although these factors were mainly investigated in nonspecific conditions, their 
involvement in CSC biology is also beginning to accumulate evidence (Figure 2).

Components of pro-obesity diets
Although the mechanistic links are not completely understood, nutrient-sensing signaling activated by 
components of a pro-obesity diet has been shown to influence stem cell behavior and tumorigenesis. 
This was also indirectly suggested in a leptin-receptor-deficient (db/db) mouse model, which becomes 
obese on control diets and does not rely on a HFD. In db/db mice, the number of ISCs was reduced, while 
ISC function was not affected, highlighting that components of a pro-obesity diet can regulate stem cells 
independently of obesity[19]. As early as 1989, Blakeborough et al[50] reported that diets high in fat 
support a Bacteroides-dominated colonic microflora and increase the excretion of secondary bile acids to 
augment free radical production, which may overcome the antioxidant defense mechanisms of stem 
cells, causing DNA damage, tumorigenesis and proliferation of transformed stem cells. Since then, 
numerous studies have suggested for decades that a pro-obesity diet engages many diverse pathways in 
stem cells in various tissues that collectively contribute to tumorigenesis. For instance, a HFD increases 
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Figure 2 Mechanisms linking obesity and cancer stem cells. In the obese microenvironment, the stem cell pool is increased and loses niche dependence, 
predisposing these stem cells to transformation. Several main factors are considered to connect obesity and cancer stem cells (CSCs): Components of pro-obesity 
diets, metabolic and hormonal alterations associated with obesity, dysfunctional adipose tissue in the tumor microenvironment, low-grade obesity-related 
inflammation, self-renewal and stemness pathways, and microbiome dysbiosis. These factors are intimately linked to and cross-talk with each other, synergistically 
leading to the activation of CSC programs through various signaling pathways. ASC: Adipose stem cell; BAs: Bile acids; CSC: Cancer stem cell; CTC: Circulating 
tumor cell; FAs: Fatty acids; FABPs: Fatty acid binding proteins; FAO: Fatty acid oxidation; IGF: Insulin-like factor; IGFR: Insulin-like receptor; LDs: Lipid droplets; 
LEP: Leptin; LEPR: Leptin receptor; LRP: Low-density lipoprotein receptor-related protein; NCID: Notch intracellular cytoplasmic domain; PI3K: Phosphatidylinositol 
3-kinase; PPAR-δ: Peroxisome proliferator-activated receptor δ; TAZ: Transcriptional coactivator with PDZ-binding motif; TFs: Transcription factors; TLR: Toll-like 
receptor; TNF: Tumor necrosis factor; TNFR: Tumor necrosis factor receptor; YAP: Yes-associated protein; NF-κB: Nuclear factor-kappaB.

leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) expression and promotes tumor 
growth in a xenograft model independent of obesity. Mechanistically, dietary fats stimulate vitamin A-
bound serum retinol-binding protein 4 and retinoic acid 6, which are implicated in colon stem cell self-
renewal, to activate the JAK-STAT3 pathway and boost Lgr5 expression and the tumorigenicity of ISCs
[51].

The representative components of a pro-obesity diet, that is, fatty acids such as palmitic acid or oleic 
acid, were found to enhance the number and self-renewal potential of ISCs and to permit organoid body 
formation without supporting signaling from their niche cells in a well-designed study[19]. The 
molecular mechanism by which fatty acids deregulate ISCs to promote tumorigenesis was also 
delineated in this study. It was proposed that fatty acids can be transported to the nucleus by fatty acid-
binding proteins or can be produced directly by lipid metabolism in the nucleus, where they increase 
the number and self-renewal of ISCs via peroxisome proliferator-activated receptor δ (PPAR-δ), a 
nuclear receptor that senses fatty acid derivatives, the synthetic activation of which mimics both the in 
vivo and in vitro impact of a HFD and fatty acid treatment[19]. In contrast, loss of PPAR-δ completely 
abrogated the effects of fatty acids on Lgr5+ ISC function with respect to organoid-initiating capacity
[19]. The downstream signaling mediating the effects of PPAR-δ activation was attributed to WNT/β-
catenin, as demonstrated by increased β-catenin staining and upregulation of its target genes (Jag1, Jag 2 
and Bmp4) in ISCs and progenitors from HFD- and PPAR-δ agonist-treated mice[19]. Free fatty acids 
produced by obese fat lipolysis also serve as ligands for Toll-like receptor 4 (TLR4) on cancer cells to 
activate nuclear factor-kappaB (NF-κB), leading to an increase in CSCs[52]. Another critical element in a 
pro-obesity diet that is significantly elevated in some obese individuals, cholesterol, was also 
demonstrated to affect stem cell function, thus promoting tumorigenesis. In Drosophila, dietary 
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cholesterol modulated the differentiation of ISCs by stabilizing the Delta ligand and Notch extracellular 
domain and altering their trafficking in endosomal vesicles, while a low-sterol diet slowed the prolif-
eration of enteroendocrine tumors initiated by Notch pathway disruption[53]. In a rodent animal model, 
evidence also showed that dietary cholesterol acts as a mitogen for ISCs, while disruption of cholesterol 
homeostasis dramatically enhances tumor formation in APCmin mice[54].

Although bile acids are not elements in a pro-obesity diet, their excretion is essential for the digestion 
and absorption of dietary fat and is increased when a HFD is consumed. Bile acids are endogenous 
agonists of the G protein-coupled bile acid receptor, the activation of which augments Yes-associated 
protein 1 (YAP1) signaling, leading to increased stem cell number and proliferation and enhanced 
organoid-forming capability of ISCs[55]. In addition, bile acids, such as tauro-β-muricholic acid and 
deoxycholic acid, can antagonize intestinal farnesoid X receptor (FXR), a master regulator of bile acid 
homeostasis. Antagonizing FXR in the intestinal lumen enhances the proliferation and DNA damage of 
stem cells, initiating the transformation of ISCs to a malignant phenotype and promoting adenoma-to-
adenocarcinoma progression[56]. Conversely, selective activation of intestinal FXR by its agonist can 
restrict abnormal ISC growth and skew differentiation toward goblet cells, thus curtailing HFD-induced 
intestinal cancer progression[56].

Metabolic alterations
Aerobic glycolysis has long been viewed as the main metabolic characteristic of cancer cells. However, 
in recent years, CSCs have been found to be intimately dependent on lipid metabolism to maintain their 
self-renewal capability. Therefore, in addition to the abovementioned studies that investigated the 
regulation of CSC function by lipids as elements of a pro-obesity diet, numerous studies have explored 
the effects of lipids on CSCs at the cellular metabolism level. Metabolism of fatty acids and cholesterol, 
including de novo biosynthesis, storage and fatty acid oxidation (FAO), supports the stemness, prolif-
eration and chemotherapy resistance of CSCs[57]. Metabolic analysis demonstrated that lipid synthesis, 
including de novo lipid biosynthesis, lipid desaturation, and cholesterol synthesis, displays high activity 
in CSCs, indicating that lipid synthesis plays critical roles in stemness maintenance[58]. Human breast 
cancer-derived data suggest that FAO promotes cancer cell stemness and chemoresistance. Blocking 
FAO resensitizes them to chemotherapy and inhibits CSCs in mouse breast tumors in vivo[59]. 
Furthermore, cytarabine-resistant acute myeloid leukemia cells, which are enriched in leukemic stem 
cells, exhibited increased FAO[60]. FAO is also responsible for the stemness and chemotherapy 
resistance in gastric cancer induced by mesenchymal stem cells (MSCs)[61]. To meet the critical 
functions of lipids in CSCs, lipid droplets, organelles that store neutral lipids, accumulate and are more 
abundant in CSCs in numerous types of cancer[57]. Although evidence connecting lipid metabolism and 
CSCs is increasingly accumulating, whether obesity can augment the lipid metabolic alteration in CSCs 
is not clear because studies on the metabolic adaptations of CSCs in obese environments are limited. 
However, the incidence of hyperlipidemia is higher in obese populations, and in obese individuals, 
CSCs more readily reside in a fat-rich TME, which may provide more lipids to CSCs. Therefore, theoret-
ically, lipid metabolic alterations in obesity support the stemness of cancer cells, although further 
studies are warranted to validate such effects.

Another common metabolic alteration of obese patients is insulin resistance, leading to increased 
levels of circulating insulin and IGF-1, which contribute to the increased risk and mortality of several 
cancers in obese individuals. Mice with diet-induced obesity exhibited increased concentrations of 
plasma glucose, insulin, and IGF-1, which were significantly correlated with increased proliferation and 
self-renewal of ISCs, as well as decreased Paneth cell numbers[26]. In addition, insulin significantly 
increased the capacity of organoid formation in vitro[26]. Reports have suggested that the PI3K/AKT 
pathway is the major contributor to the abnormal renewal of ISCs endowed by insulin/IGF-1[62]. 
Therefore, insulin/IGF-1 signaling was suggested to mediate the effects of obesity on the function of 
stem cells, which is conducive to their transformation. Even insulin/IGF-1 levels in newborns are 
associated with the risk of future breast cancer, possibly resulting from an increased total number of 
stem cells[63]. Parallel to their function in normal stem cells, evidence suggests the roles of insulin/IGF-
1 in cancer progenitor/stem cells from solid and hematopoietic malignancies. Insulin/IGF-1 and their 
receptors are overexpressed or overactivated in human thyroid, hepatic and breast CSCs and participate 
in the self-renewal, EMT and chemoresistance of cancer cells[64]. These emerging discoveries will 
undoubtedly promote renewed efforts aimed at targeting the insulin/IGF-1 system that contribute to 
CSC biology.

Hormonal alterations
Adipose tissue has long been viewed as an energy reservoir; however, this perspective has changed in 
recent years, as numerous bioactive adipokines, including more than 50 different metabolic and 
hormonal factors, cytokines and chemokines, were reported to be released by adipose tissue[65]. Two of 
the major adipose tissue-derived hormones are leptin and adiponectin, which have opposite effects. In 
contrast to lean adipose tissue, which mainly secretes the antimitogenic adipokine adiponectin in 
obesity, increased preadipocytes yield high levels of leptin, which has proangiogenic and promitogenic 
effects[66,67].
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Leptin acts as a growth factor for many tissues, such as the mammary gland, lung, liver, and colonic 
epithelium[68]. The links between leptin and CSCs have been comprehensively studied in breast cancer
[69]. In a diet-induced obese mouse model, mammary epithelial polarity was disrupted, which can 
contribute to overactivation of the PI3K/AKT pathway downstream of the paracrine effect of leptin 
expressed by neighboring adipocytes. Leptin expands the pool of stem/progenitor cells in the breast 
epithelium and causes mitotic spindle misalignment, which is an early step in tumor initiation[70]. The 
leptin receptor was found to be expressed on breast CSCs, and in orthotopically transplanted breast 
cancer, leptin can promote CSC enrichment[71,72]. Inactivation of the leptin receptor attenuated the 
expression of CSC transcription factors and reduced the self-renewal of cancer cells in tumor sphere 
assays[71]. Leptin-mediated cancer initiation, progression and therapy resistance through CSCs in other 
cancers have also been extensively investigated[69]. For instance, leptin was found to initiate the early 
transformation of colon cancer. ACF multiplicity, as early-appearing lesions of tumorigenesis, was 
increased by a HFD in ob/ob mice or in a genetic mouse (db/db) model with leptin receptor deletion[73,
74]. However, in db/db mice fed a control diet, the function of ISCs and the activity of PPAR-δ and Wnt/
β-catenin signaling were not changed, indicating that obesity and elements in a pro-obesity diet may 
cause different alterations in the function of stem cells[19]. In addition, no leptin receptor was found on 
colonic stem cells, and leptin did not increase the pool of Lgr5+ stem cells, suggesting that leptin may be 
dispensable in the early stages of colon carcinogenesis[22]. Collectively, these findings indicate that 
although the crucial role of leptin in CSCs may be affected by the cellular origin of cancer, the potential 
of leptin pathways in cancer initiation and progression will lead to future areas of therapeutic 
management.

Although data are scarce, other adipokines with altered secretion in obese adipose tissue were also 
shown to affect the function of CSCs. For example, DeClercq et al[22] specifically investigated the effect 
of a HFD on colonic stem cell maintenance during cancer initiation and found that the number of stem 
cells and their proliferation capacity were significantly increased, while the incidence of apoptosis was 
decreased. The authors proposed that these effects are the result of decreased adiponectin signaling 
based on the findings that the reduction in stem cell number and increase in apoptosis were diminished 
in organoid cultures from obese mice treated with an adiponectin receptor agonist[22]. In addition, 
following a decrease in adiponectin signaling, obesity can increase tumorigenesis in the intestine[22]. 
Resistin, another adipokine, was highly associated with the transcription of genes related to CSCs in low 
malignant breast cancer cells and noncarcinogenic breast epithelial cells[75]. These adipokines with 
different effects on CSCs and their therapeutic translational potential need further research.

Dysfunctional adipose tissue in the TME
Despite the systemic effects of adipose tissue on CSCs through the secretion of circulating metabolic and 
hormonal factors, adipose tissue also constitutes an important part of the microenvironment of several 
cancers, and its dysfunction resulting from obesity is considered a critical determinant of cancer 
progression[76]. For example, cancer-associated adipose tissue obtained from obese patients with breast 
cancer was found to increase inflammatory breast cancer aggressiveness via the regulation of CSC 
markers[77]. Coculture of breast cancer cells with human-derived adipocytes increased the abundance 
of mammosphere-forming cells and stem-like cancer cells in vitro and increased tumor-initiating cells 
and metastasis in mouse models[41]. Mechanistic investigations demonstrated that immature adipocyte 
contact activates Src, thus promoting embryonic stem cell transcription factor upregulation, including 
Sox2, c-Myc, and Nanog, to mediate CSC expansion[41]. Moreover, Sox2-dependent induction of miR-
302b further stimulated c-Myc and Sox2 expression and potentiated cytokine-induced CSC-like 
properties[41]. However, adipose tissue from different anatomical sites may have different effects on 
CSCs. For example, serial transplantation of pluripotent stem cells cultured in conditioned medium of 
breast cancer cells into mammary fat pads evoked the same features of breast cancer, while this result 
was perturbed following subcutaneous transplantation, indicating that mammary adipose tissue can 
synergize with secretory factors produced by cancer cells to transform normal cells into CSCs, while 
subcutaneous adipose tissue cannot[78]. Such performance differences may be caused by the various 
metabolic characteristics of adipose tissue from different anatomical sites determined by sex steroid 
hormones[79].

Among various adipose tissue cell types, ASCs are key players in adipose tissue. Under obese 
conditions, the biology of ASCs is dramatically altered, and ASCs can be recruited to sites of inflam-
mation, including tumors[80]. ASCs are able to produce a large variety of circulating growth factors, 
cytokines and adipokines, which play important roles in CSC function. In addition to their systemic 
effects, ASCs represent an important cellular component in the TME. Therefore, in a breast cancer 
patient-derived xenograft model, cancers grown in the presence of ASCs had increased numbers of 
CD44+CD24− CSCs in the peripheral blood and had a higher tendency to form metastases[81]. This 
effect may be mediated by leptin, as the stable knockdown of leptin in obese ASCs led to a significant 
reduction in circulating CSCs[81]. In addition, ASCs reshape the TME and support the generation of 
CSCs, which are associated with radioresistance and chemotherapy resistance[82].
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Low-grade obesity-related inflammation
In recent decades, the contribution of inflammation to cancer initiation, progression and therapy 
resistance has regained enormous interest, and the association between inflammation and CSCs has also 
been explored extensively[83]. Obesity has long been considered a facilitator of mild, chronic, systemic 
inflammation. Along with the expansion of adipose tissue in obesity, hypoxia causes adipocyte stress 
and malfunction, recruiting different types of immune cells[84,85]. Both adipocytes and immune cells 
release numerous adipokines, cytokines, chemokines and hormones, which perpetuate the inflam-
matory state[84,85]. Therefore, it is reasonable to speculate that obesity can affect CSCs through low-
grade inflammation. Although chronic inflammation is not induced consistently in obese mouse models, 
which may be related to the differences in feeding patterns and other combined interventions, current 
evidence indicates that inflammation might have a role in alterations in stem cells leading to tumori-
genesis. Inflammatory mediators were found to be increased in the intestinal mucosa in mice with 
obesity or those fed a HFD, resulting from cytokine release by myofibroblasts and immune cells[86]. 
Local inflammation has been demonstrated to expand colon cell progenitors or stem cells and to induce 
their proliferation in the intestine. For example, HFD-induced obesity elevated both the colonic prolif-
erative zone and stem cell zone in a pig model, and the proliferative zone was associated with an 
increase in the innate inflammatory markers TLR4, NF-κB, IL-6, and lipocalin-2[87]. In addition, 
activation of NF-κB, the central pathway downstream of the majority of proinflammatory cytokines, 
following local inflammation enhanced the reprogramming of non-stem enterocytes to acquire stem-
cell-like properties, which expanded the pool of stem cells and generated tumor-initiating cells[88]. 
HFD-induced obesity promoted the phosphorylation of GSK3β and then increased the nuclear translo-
cation of β-catenin, thereby activating the expression of WNT signaling target genes[89]. These effects 
were diminished by the deletion of tumor necrosis factor-alpha (TNF-α), indicating the role of inflam-
mation induced by TNF-α in colon tumorigenesis associated with obesity[89]. Another inflammatory 
mediator, prostaglandin E2, was also found to be elevated by HFD in the circulation or in local tissues, 
leading to an increased number and division rate of stem cells[22].

Other proinflammatory mediators have also been demonstrated to facilitate CSC expansion. For 
example, IL-6 can induce malignant features in human ductal breast carcinoma stem/progenitor cells
[90]. IL-8 treatment leads to breast cancer cells partially acquiring some stem-like cell attributes, thereby 
increasing their aggressiveness[91]. Chemokine (C-C motif) ligand 2, derived from cancer-associated 
fibroblasts, stimulates the stem cell-specific, sphere-forming phenotype in breast cancer cells and CSC 
self-renewal[92]. Although these studies were not carried out under obese conditions, these proinflam-
matory mediators are consistently elevated in obese individuals and are upregulated upon contact with 
cancer cells. The enrichment of CSCs may be partially attributed to these cytokines, as a few studies 
indeed found that proinflammatory cytokines, including IL-6, IL-8 and monocyte chemoattractant 
protein 1, are overexpressed in cancer-associated adipose tissue from obese patients and induce the 
stemness of cancer cells, while such effects were not found in nonobese patients[77]. Considering the 
importance of localized and systemic inflammation in the induction and maintenance of stemness in 
cancer cells and the definite association between inflammation and obesity, elucidating how these 
inflammatory pathways increase the risk of cancer incidence, progression and therapy resistance via 
CSCs holds great promise to decrease the burden of cancer in obesity.

Self-renewal and stemness pathways
Stem cells are proposed to reside in a distinctive microenvironment, that is, the stem cell niche, which 
induces and maintains the self-renewal and differentiation of stem cells. In the TME, niche signals also 
play critical roles in cancer cells acquiring more stemness. Although the pathways responsible for 
establishing a CSC phenotype are diverse and differ among cancer entities, developmental signaling 
pathways, including the Notch, WNT, Hedgehog and Hippo pathways, are commonly altered in CSCs 
and interact with each other and with other common oncogenic signaling pathways and have key 
regulatory functions that support the maintenance and survival of these cells, making them prime 
targets for anti-CSC therapy[82]. Obesity, HFD and abnormal adipocytes may engage in these self-
renewal and stemness pathways directly or indirectly through increased local and systemic levels of 
many cytokines and adipokines. For example, in ISCs and progenitors from mice fed a HFD, the 
expression of Jag1 and Jag2, which are ligands for the Notch pathway and are normally expressed by 
neighboring niche cells, was increased by the activation of WNT/β-catenin, indicating that a HFD drives 
ISCs to niche independence[19]. Within the ISC niche, MSCs were expanded and secreted predominant 
levels of Wnt2b in the colon of HFD-fed mice, which promoted the growth of tumorigenic properties 
and accelerated the expression of CSC-related markers in colon organoids[93]. CSCs isolated from obese 
mice also exhibited enhanced Notch2 expression[94]. However, such direct evidence supporting the 
association between obesity and alterations in stemness pathways is scarce, and more studies are 
needed to test this model. Nonetheless, some emerging data demonstrate alterations in these stemness 
pathways in obesity-induced cancers. For instance, HFD consumption could upregulate the expression 
of β-catenin proteins in a mouse xenograft tumor model[95]. Notch signaling activity was increased in 
breast cancer cells following coculture with obesity-altered ASCs[96]. In addition, YAP, the major player 
in the Hippo pathway, dictates mitochondrial redox homeostasis to facilitate obesity-associated breast 
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cancer progression[97]. Although the contributions of CSCs were not examined in these studies, 
regarding the definitive effects of these signaling pathways on CSCs, it is reasonable to speculate that 
the upregulated activity of these pathways in obesity may promote the progression of cancer through 
CSCs and that targeting these pathways may be more promising in obesity-induced cancers.

Microbiome dysbiosis
The epithelial barrier surfaces of our body host a diverse microbial community, or microbiota, that is 
composed of a variety of microorganisms, such as bacteria, fungi, and viruses[98]. Substantial studies 
have reported that obesity or HFD markedly affects the composition of the commercial microbiota, 
especially in the intestine[48]. Obesity-induced perturbation of the gut microbiota has been 
demonstrated to influence stem cell phenotypes. For example, structural changes in the microbiota were 
associated with HFD-induced myeloid progenitor skewing of the differentiation capacity of 
hematopoietic stem cells[99]. The intestinal tract bacteria Lactobacillus induces the release of adiponectin 
by niche cells through NF-κB activation[100]. In pigs with HFD-induced obesity, the elevation of the 
proliferative zone and stem cell zone was associated with increased abundance of the gut bacterial 
phyla Proteobacteria and Firmicutes[87]. In addition to these initial data suggesting the association 
between obesity-related microbiome dysbiosis and the possible development of CSCs, evidence linking 
the microbiome in obesity to CSC function is lacking. Whether obesity-induced alterations in the 
composition of the host microbiota affect initiation, progression and therapy resistance and the 
underlying mechanisms need more investigation with the hope of providing more strategies for cancer 
prevention and treatment.

CLINICAL SIGNIFICANCE
If the above-discussed links between obesity and CSCs are founded on convincing evidence, an obvious 
question is whether targeting both can prevent or improve the outcomes of cancer. At present, targeting 
both obesity and CSCs has great challenges; however, progress is gradually being made. For example, 
bariatric surgery has been popularized globally, leading to more weight loss and longer maintenance 
than diet and lifestyle changes[101]. Intriguingly, in these patients with obesity who received bariatric 
surgery, a decrease in overall cancer diagnoses was observed[102,103]. However, surgical intervention 
does not guarantee the recovery of obese patients to a normal state and is typically a harmful method. 
Theoretically, obesity prevention represents the most promising and scientific solution, which requires 
joint efforts and cooperation from throughout the whole world[104]. However, under obesity pandemic 
conditions, exploring strategies to lower the incidence of obesity-related cancer represents the primary 
goal. Unfortunately, no experience has been gained. As low-grade inflammation plays a central role in 
linking obesity and cancer, anti-inflammatory therapy may be a promising direction, which has been 
validated in the prevention of colorectal cancer[105]. For obese patients with established malignancies, 
there is an urgent need to improve therapeutic efficacy and long-term survival. As mentioned above, 
various mechanisms have been proposed to link obesity and CSCs; thus, whether blocking these 
connections can prevent or delay the initiation and progression of cancer needs further study. Encour-
agingly, such strategies have been explored extensively, and some of them have already advanced into 
clinical use. For example, the clinical development of therapeutics targeting CSC-associated develop-
mental signaling pathways has resulted in improved patient outcomes[82]. Some inflammatory factor-
targeting therapies also show promising results in improving outcomes in patients with cancer[106]. 
Lifestyle interventions, such as reduced dietary intake and increased physical activity, were 
demonstrated to cause weight loss, leading to altered expression of inflammatory factors and 
maintenance of stem cell homeostasis[107,108]. Therefore, what awaits us next is to validate their 
efficacy in obese people with cancer.

CONCLUSION
As stated above, notwithstanding the clear and compelling link between obesity and CSCs, as well as an 
understanding of the mechanisms connecting them, this research area is still in its infancy. Most 
scientific research exploring the association of CSCs and obesity originates from mouse models or was 
inferred indirectly from the conclusions of different research fields. Therefore, there are still many major 
questions waiting for answers. For example, how can the profound differences in cancer incidence 
across different anatomical sites influenced by obesity be explained? Do the differences in the microen-
vironment across adult stem cell niches contribute to these variations? Regarding alterations in stem cell 
biology, how much overlap is there among animal models and obese patients? What role does the 
microbiome play in mediating the induction, maintenance and therapy response of CSCs? Does obesity 
differentially regulate normal and malignant stem cells, and how does it do so? How does obesity 
influence the crosstalk between CSCs and immunoediting? To what extent are stem cells conditioned in 
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obesity reversed when obesity is improved? Does obesity enhance the establishment of premetastatic 
niches? Can strategies aimed at targeting the mechanisms linking obesity and CSCs prevent the 
initiation and delay the progression of cancer?

Despite a wealth of unknowns, it is clear that obesity increases the stem cell pool and induces 
biological modulation in these cells, which predisposes these stem cells to transformation. Regarding the 
increased prevalence of obesity and its convincing association with cancer, programs are urgently 
needed to decrease the incidence of obesity. At this time, primary obesity prevention through public 
health policies, including dietary and lifestyle changes, represents a compelling approach toward a 
reduction in the incidence of obesity and its associated cancer. Identifying obese patients with increased 
cancer risk and developing appropriate management of obesity or applying cancer prevention methods 
such as anti-inflammatory agents in these populations represents another compelling approach toward 
a reduction in the burden of cancer in obesity. Several mechanisms have been proposed to explain the 
association between obesity and CSCs, and large amounts of agents targeting these pathways have been 
developed. Testing them in patients with obesity and comparing their efficacy with that in nonobese 
individuals are important components of future translational research and clinical trials.
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