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Abstract
Allogeneic hematopoietic stem cell transplantation is a deterministic curative 
procedure for various hematologic disorders and congenital immunodeficiency. 
Despite its increased use, the mortality rate for patients undergoing this proce-
dure remains high, mainly due to the perceived risk of exacerbating graft-versus-
host disease (GVHD). However, even with immunosuppressive agents, some 
patients still develop GVHD. Advanced mesenchymal stem/stromal cell (MSC) 
strategies have been proposed to achieve better therapeutic outcomes, given their 
immunosuppressive potential. However, the efficacy and trial designs have 
varied among the studies, and some research findings appear contradictory due 
to the challenges in characterizing the in vivo effects of MSCs. This review aims to 
provide real insights into this clinical entity, emphasizing diagnostic, and 
therapeutic considerations and generating pathophysiology hypotheses to 
identify research avenues. The indications and timing for the clinical application 
of MSCs are still subject to debate.

Key Words: Mesenchymal stem/stromal cells; Graft-versus-host disease; Immuno-
modulatory; Adaptive immunity; Exosomes
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Core Tip: This article provides insights into the use of validated mesenchymal stem/stromal cells (MSCs) 
as a potential treatment strategy for graft-versus-host disease (GVHD) in hematopoietic stem cell 
transplantation (HSCT). Current prevention and treatment options involve immunosuppression, which can 
hinder immune recovery and limit the graft-versus-tumor effect. By using MSCs, clinicians can effectively 
treat GVHD, identify high-risk patients, and stratify patients based on disease severity. Therefore, MSCs 
can aid in promoting engraftment, ameliorating acute GVHD, and preventing chronic GVHD, making 
them an attractive option for HSCT.

Citation: Jaing TH, Chang TY, Chiu CC. Harnessing and honing mesenchymal stem/stromal cells for the 
amelioration of graft-versus-host disease. World J Stem Cells 2023; 15(4): 221-234
URL: https://www.wjgnet.com/1948-0210/full/v15/i4/221.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i4.221

INTRODUCTION
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self renewal abilities[1] that can be 
derived from different tissue sources. They attach to tissue culture dishes and express CD73, CD90, and 
CD105 but lack the expression of CD45, CD34, CD14, or CD11b, CD79α or CD19, and HLA-DR surface 
molecules. In vitro, MSCs can differentiate into osteoblasts, adipocytes, or chondroblasts[2,3]. MSCs can 
be effectively harvested without significant ethical concerns and have low immunogenicity. They have 
emerged as a promising cell source due to their regenerative and immunomodulatory potentials, 
limited ethical concerns, and low risk of tumor formation[4-6].

Malignancy relapse is a significant challenge in allogeneic hematopoietic stem cell transplantation 
(HSCT). Chronic graft-versus-host disease (GVHD) is associated with lower relapse rates, but the 
diagnosis, staging, and risk stratification of GVHD are challenging[7]. In this scoping review, we 
highlight recent evidence on different types of MSCs studied for GVHD, including bone marrow (BM), 
umbilical cord blood, placenta, adipose tissue, and others. MSCs have been found to inhibit immune cell 
proliferation and cytotoxic action, making them a potential treatment option for GVHD[8].

This review aims to provide a critical overview of the mechanisms by which MSC can treat GVHD, 
including immunomodulation, migration, homing, and clinical applications of MSC therapy. We 
searched peer-reviewed literature in PubMed and Embase to gather the latest information on this topic.

THERAPEUTIC STRATEGY OF GVHD
Immune pathways in GVHD
One of the most significant challenges in improving the prognosis for patients undergoing allogeneic 
HSCT is GVHD. This condition can be characterized as a rapid escalation in immune activation caused 
by massive target tissue apoptosis. The prevention of GVHD is primarily based on the use of calcineurin 
inhibitors and methotrexate, while the treatment of ongoing GVHD involves the use of corticosteroids. 
GVHD manifests as acute GVHD (aGVHD) in 53%-62.5% of the patients and chronic GVHD (cGVHD) 
in 20%-50.4% of patients[9,10], and the development of this complication may contribute to 6.3% of 
deaths following HSCT[9]. Although the administration of calcium inhibitors such as calcium 
sulphoaluminate can prevent the development of GVHD in some cases, about 19% of aGVHD II-IV 
cases are often resistant to all conventional therapy, resulting in a high mortality rate for these patients. 
Several potential second-line options have been proposed, including the use of MSCs. MSCs have 
attracted significant interest because they can actively undergo apoptosis by recipient cytotoxic cells
[11]. Figure 1 illustrates the immune pathways involved in GVHD and the sites where therapy is used to 
block GVHD development.

Danger signals in aGVHD development
In a typical case of aGVHD, which occurs following a triptych course, symptoms begin with the 
prodromal phase caused by the underlying disease and conditioning regimens that secrete proinflam-
matory cytokines, mainly tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-
6)[12]. Host conditioning facilitates donor cell grafting. Donor allograft T-cells are the primary effector 
cells for GVHD. However, tissue damage leads to the release of alarmins and the expression of 
pathogen-recognition receptors, triggering the next phase. This phase activates the innate immune 
system and, in turn, the adaptive immune system. Alarmins and exogenous pathogen-associated 
molecular patterns (PAMPs) elicit similar responses to relevant signals, and they belong to the group of 
damage-associated molecular patterns (DAMPs)[13]. DAMPs and PAMPs are potent stimulators for 

https://www.wjgnet.com/1948-0210/full/v15/i4/221.htm
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Figure 1 Immune pathways in graft-versus-host disease and sites where therapy is used to block graft-versus-host disease development 
(red bars). APC: Antigen-presenting cell; ATG: Antithymocyte globulin; CSA: Cyclosporine A; DAMPs; Damage-associated molecular patterns; Foxp3+: Forkhead 
box P3; GCs: Glucocorticosteroids; GVHD: Graft-versus-host disease; MSC: Mesenchymal stem cell; TNF: Tumor necrosis factor; NK: Natural killer cells; PAMPs: 
Pathogen-associated molecular patterns.

host and donor-derived antigen-presenting cells (APCs), which activate and enhance the responses of 
alloreactive donor T cells[14].

The immunosuppressive effects of MSCs are classified into soluble factor-mediated effects and cell-
cell contact-mediated effects. MSCs suppress the proliferation and survival of activated T lymphocytes 
and reduce the release of inflammatory factors such as IL-2, TNF-α, IL-1β, and IFN-γ. By the same 
means, MSCs also reduce the number of Th1/Th2 and Th17 cells. Through cell-to-cell contacts, MSCs 
can stimulate the expression of transcription complexes related to Runt 1 (RUNX1), RUNX3, and CBFβ 
in Treg-specific regulatory regions to improve the stability of Foxp3[15]. MSCs have also been shown to 
be highly effective in inhibiting the cytotoxic effect, proliferation, and secretion of different cytokines of 
NK cells by directly contacting these cells and transforming their phenotype.

The effects of MSCs on B cells involve inhibiting their cell cycle progression by inducing G0/G1 cell 
cycle arrest and suppressing their proliferation. Additionally, the differentiation of B cells into IgM-, 
IgG-, and IgA-secreting cells is impaired by MSCs, thereby limiting their antibody production. 
Furthermore, MSCs can affect the chemotactic function of B cells[16].

GENETIC BASIS OF GVHD
Humanized mouse models
Most relevant models for studying human adaptive immune responses use immunocompromised mice 
whose immune system is reconstituted with human immune cells and immune system components. Lee 
et al[17] used a model of NSG mice reconstituted with human CD34 cells to evaluate the immunological 
safety of therapeutically compromising human MSCs. As major histocompatibility complex (MHC) 
molecules are the primary mediators of the allogeneic immune response, MHC expression levels are 
critical in the potential immunogenicity of cells. To investigate MSCs as a cellular therapy in GVHD, 
Tobin et al[18] treated NSG-PBMC humanized mice with human MSCs as a GVHD model. MSC 
treatment resulted in a reduction in liver and intestinal pathology and a significant increase in the 
survival of the GVHD NSG mouse.

In contrast to aGVHD, some MHC-mismatched animal models may mimic the features of cGVHD. 
However, due to the pathological resemblance between cGVHD and autoimmune diseases, there is a 
clear connection between the two entities, and the difference in cGVHD is primarily caused by the 
donor lymphoid graft[19]. These findings provide compelling evidence for the essential role of human 
leukocyte antigen (HLA) disparity in both aGVHD and cGVHD. The expression pattern of minor 
histocompatibility antigens (miHAs) determines the target organ involvement in aGVHD. The miHAs 
exhibit hierarchical immunodominance, which may contribute to the variability in GVHD variability
[20].
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Translation and clinical advances in GVHD
aGVHD: HLA mismatching is one of the most significant risk factors for aGVHD and cGVHD risk. 
HLA proteins are specifically encoded by MHC. In vitro studies have demonstrated that most T cells 
associated with GVHD are naïve T cells, whereas memory T cells mediate immunity against pathogens 
and the graft-versus-leukemia (GVL) effect[21]. Regardless of the graft source or conditioning intensity, 
the incidence of aGVHD is closely related to the number of HLA disparities. Although the impact of 
HLA disparity has been analyzed in the outcomes following allogeneic HSCT, relatively few studies 
have tried to correlate it with the incidence and severity of cGVHD. Some studies reported an 
association between HLA-A, -B, and -C disparity and aGVHD[22].

Although MHC antigens guarantee HLA matching, the donor and recipient may differ in various 
proteins presented in the form of HLA-peptide complexes to T cells that act as miHAs. The genomes 
include more than 107 polymorphic sequences outside HLA, and the role of miHAs is supported by 
genome-wide analysis of single-nucleotide polymorphisms[7]. The disparity in a single immuno-
dominant miHA is insufficient to cause aGVHD, although T cells primed against a single miHA may 
induce tissue damage in a human skin explant model[23]. It is unknown whether the number of miHAs 
triggering a GVL response in a given transplant is significant or whether a small number of antigens 
play a dominant role[24].

cGVHD: In contrast, cGVHD has been considered an autoimmune disease based on its clinical features
[25]. Some experimental studies have shown that T cells from animals with cGVHD are specific for a 
public determinant of MHC class II molecules and are therefore considered autoreactive. These autore-
active cells of cGVHD are often associated with an injured thymus and adverse selection.

Recent clinical data has highlighted a significant link between immune responses against ubiquitous 
miHAs and cGVHD. Since cGVHD usually occurs after allogeneic HSCT, aGVHD is its related risk 
factor. Unlike syngeneic GVHD, which results from deficient thymic selection[26], cGVHD typically 
arises after allogeneic HSCT and is characterized by chronic T-cell activation due to continuous 
exposure to miHAs. This chronic stimulation can cause target organ damage that resembles auto-
immune features, where the target is miHAs for cGVHD and non-polymorphic autoantigens for 
autoimmune diseases. A study on female-to-male HSCT demonstrated a good correlation between the 
presence of antibodies to the Y-chromosome-encoded gene and cGVHD[27]. A study in female-to-male 
HSCT demonstrated a good correlation between the presence of antibodies to Y-chromosome-encoded 
genes and cGVHD, suggesting that miHAs may indeed be the targets. However, it is not yet clear 
whether the miHAs targeted in cGVHD are the same as those targeted in aGVHD. A murine study had 
shown that the type and selection of immunodominant miHAs can determine the target and character 
of GVHD damage[28].

Epitope spreading and the failure of appropriate regulatory mechanisms in aGVHD may result in 
donor T cells recognizing both non-polymorphic and miHA epitopes, perpetuating cGVHD. In contrast, 
T cells directed against miHAs with hematopoietic restriction may also mediate a GVL response in the 
absence of GVHD[29]. However, the relevant immunogenic targets for cGVHD remain speculative and 
confidential.

Potent immunomodulatory role of MSCs-derived exosomes in preventing GVHD
The safety and effectiveness questions regarding using MSCs remain unresolved, and conflicting effects 
have been noted due to the heterogeneity observed among MSCs. MSCs-derived exosomes (MSCs-Exo), 
a subgroup of extracellular vesicles released by MSCs, have shown therapeutic benefits for inflam-
matory diseases and cancers due to their ability to transport proteins and nucleic acids from donor cells 
to recipient cells of the same or different tissues, making it a suitable candidate for cell-free therapy. 
MSCs-Exo have been found to reduce inflammation and fibrosis in the skin, lungs, and liver, and inhibit 
Th17 cells while inducing Treg cells, making it a potential alternative method for the treatment of 
cGVHD. The activation of CD4+ T cells and their infiltration into the inflamed mouse lung were 
reduced in MSCs-Exo-treated mice[30]. MSCs-Exo, extracted from healthy donors’ BM, suppress the 
expression of pro-inflammatory factors TNF-α and IL-1β but increase the level of anti-inflammatory 
factor TGF-β during in vitro culture[31].

Typically, MSCs-Exo are characterized by endosomes that bud inward and package into multi-
vesicular bodies (MVBs). These MVBs fuse with the plasma membrane and deliver the exosomes into 
the intracellular space. However, exosomes can enrich several molecules as cargo, such as proteins/
cytokines, DNA, RNA, and other nucleic acids. Exosomes, as secretory components of MSCs, transport 
cytokines, and growth factors of immunoregulation, such as transforming growth factor beta-1 (TGF-β
1), IL-6, IL-10, hepatocyte growth factor, signaling lipids, mRNAs, and regulatory miRNAs, which exert 
biological effects on recipient cells, such as cell-to-cell communication, tissue regeneration, metabolism, 
immune modulation, and homing of immune cells[32,33]. Diverse immune cells establish complex 
interactions with each other. MSCs-Exo might represent a novel cell-free therapy with unique 
competitive advantages over parent MSCs, such as no apparent risk of tumor formation or lower 
immunogenicity.
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IMMUNE CELL LANDSCAPE OF GVHD
Antigen-presenting cells
Antigen-presenting cells (APCs) play a critical role in inducing aGVHD, with dendritic cells (DCs) being 
one of the most formidable cells in this regard[26]. Innate immunity activation during acute inflam-
mation leads to DCs maturation and subsequent T cell priming, which is central to the potential 
antitumor benefits of aGVHD. Experimental data suggest that modulating perceptible DC subsets can 
influence aGVHD[34]. For instance, the absence of RelB signaling in host DCs or enhancing host CD8+ 
lymphoid DC subsets following HSCT significantly reduces aGVHD[35]. Other APCs, such as 
monocytes/macrophages, also play a crucial role in this phase. Some data suggest that the host B cells 
may reduce aGVHD in specific contexts. Although the precise mechanisms remain unclear when acting 
as APCs, MSCs from the donor, or host also reduce aGVHD.

Natural killer, γδ T, and natural killer T cells
Natural killer (NK) cells can directly kill tumor cells without specific immunization and also have a 
modulatory effect on aGVHD. In an allo-HSCT donor-to-F1 model, NK cells recognize the absence of 
donor class I on host APCs and eliminate them, resulting in a reduction of aGVHD reduction. Upon 
activation, NK cells may induce apoptosis of target cells through contact-dependent cytotoxicity 
primarily via perforin and granzyme[36]. Pro-apoptotic granzymes enter through perforin pores in the 
plasma membrane of target cells. Besides the cytotoxic activity, NK cell activation increases the secretion 
of various cytokines and chemokines, such as IFN-γ. However, the role of NK cells in GVHD remains 
controversial.

The infusion of donor γδ T cells may increase aGVHD, while the absence of host γδ T cells may 
reduce APC activation and aGVHD in an MHC-mismatched model. Conversely, in the absence of host 
γδ T cells, GVHD severity was not modified in an MHC-matched, miHA-disparate model of cGVHD. 
aGVHD could be more significant in patients with more considerable donor γδ T cells. The significance 
of γδ T cells in aGVHD and cGVHD is not fully understood and may reflect differences in immuno-
biology between the two or be solely a consequence of variation in the experimental models.

NKT cells, which are CD1d-reactive, are believed to play an immunoregulatory role in suppressing 
dysfunctional immune reactions, including GVHD[37]. The cumulative frequency of regulatory T cells 
(Tregs) is negatively correlated with GVHD development[38], and exogenous NKT cell infusion can 
reduce the degree of GVHD[39]. However, Treg populations have unstable Foxp3 expression, partic-
ularly those expanded in vitro. Because the expression Foxp3 is needed for the suppressive function, 
further research is necessary to determine if Foxp3 expression can be simplified, especially under pro-
inflammatory conditions characteristic of the GVHD milieu[40].

T cells
The complex interactions between MSCs and T cells have been extensively studied, particularly in vitro 
culture techniques. MSCs may facilitate activated T cells in the phase G0/G1 cell cycle, yet apoptosis is 
not applicable[41-43]. MSCs may suppress or downregulate the proliferation of both naïve and memory 
T cells through cell-cell contact or mitogenic stimuli. This suppression is generally not MHC-restricted. 
MSCs can further decrease IFN-γ producing T cells and contribute to the T-cell skewing toward Th2 
cells producing IL-4. cGVHD is a Th2 cell dominant disease process[12].

Regulatory T cells
MSCs activate immune responses that induce the expression of Tregs, which are a cluster of cells with a 
CD4+CD25+ Foxp3+ phenotype that regulate the body's immune response. Tregs highly and 
constitutively express CTLA-4, which binds to CD80, and CD86 on DCs, leading to impaired DC 
maturation and blocking CD80/CD86 to CD28 on conventional T cells, thereby preventing costimu-
lation, and T-cell activation. Lower Tregs and deficient Foxp3 expression have been associated with 
cGVHD in peripheral blood and mucosal biopsies. However, levels of Foxp3 mRNA in the CD25+ T cell 
compartment do not predict the development of cGVHD, demonstrating that the presence, or absence of 
Tregs must be considered in the context of their impact on aGVHD and cGVHD. An intriguing 
possibility is that the negative impact of calcineurin inhibitors on Tregs could exacerbate cGVHD as a 
consequence of the suppression of the alloreactive donor cytopathic and Tregs.

B cells
Host B cells attenuate aGVHD in an IL-10-dependent manner. Recent data provide a rationale for the 
pathogenic role of donor B cells in cGVHD[12], including a robust correlation between cGVHD and (1) 
The effects of antibodies against Y-chromosome-encoded miHA; (2) higher numbers of B cells with 
altered TLR9 responses; (2) levels of a B-cell-activating factor, which enhances survival and differen-
tiation of activated B cells; and (4) in animal models, levels of autoantibodies. Besides, emerging data 
from the depletion of B cells with rituximab further supports the theory of the pathogenic action of B 
cells in cGVHD[44]. However, whether B cells are the effectors or inducers of cGVHD remains 
unknown.
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SEARCH STRATEGY, STUDY SCREENING, AND SELECTION
We systematically searched the electronic bibliographic databases MEDLINE, EMBASE, and Google 
Scholar for studies published before November 2022 using the keywords: “graft-versus-host disease” 
OR “acute GVHD” OR “chronic GVHD”AND “mesenchymal stem cells” AND “mesenchymal stromal 
cells” AND “treatment response” AND “outcome.” Publications were included if they met the 
following inclusion criteria: (1) Original research; (2) published in 2002 or later; and (3) specifically 
reporting on the use of MSCs in GVHD patients. Publications were excluded based on the following 
criteria: (1) Non-English literature; (2) small populations (n < 20 patients) or case studies; and (3) mixed 
population with non-GVHD patients. A meta-analysis was not performed for the limited number of 
published studies meeting the inclusion criteria. Pre-post design studies and case series were not 
included for lack of sustainability of the results. Additionally, reference lists of retrieved articles were 
cross-referenced for additional eligible articles.

RESULTS
This review provides an overview of clinical studies, animal models, and limited human patient trials 
regarding MSCs. MSCs have been widely studied and increasingly used in GVHD treatment since the 
first report of promising results by Le Blanc et al[45] However, the studies have reported varying 
outcomes, which could be contributed to differences in cell concentration and MSC infusion dose. While 
MSC infusion has shown quite promising results following GVHD prophylaxis failure, some clinicians 
still prefer using methylprednisolone and calcineurin inhibitors before cell therapy with MSCs.

In addition to suppressing inflammation, MSCs have other beneficial effects, including increased 
angiogenesis, reduced apoptosis, and modified extracellular matrix dynamics. These cells mediate 
immune system components like macrophages and neutrophils, improving tissue microenvironments. 
After the injury, MSCs can either promote or suppress the immune system to guide the whole-tissue 
regeneration process[1]. Clinical responses to MSC infusion assessed as early as one week after 
treatment may predict patients' overall survival, indicating the potential of MSCs in treating GVHD[45].

Although the paracrine effects of MSCs are known to mediate the modulation of the immune 
response, the mechanisms underlying this modulation are not yet fully understood. However, it has 
been found that under conditions of chronic hypoxia or co-stimulation with IFN-γ, MSCs express 
proteins that have the immunosuppressive capacity, such as IDO, HLA-G, PGE2, and FasL, which can 
modulate the immune response[46]. While other cytokines play a crucial role in immunosuppression, 
blocking highly expressed proteins can result in the setback of the human immunosuppressed state, 
leading to the growth, and proliferation of immune cells. Moreover, MSCs do not trigger the activation 
of immune cells as they lack CD40, CD80, CD86, and HLA-DR-stimulating molecules. Given that GVHD 
occurs following the infusion of immune cells donated by the same donors, suppressing the immune 
activity can improve the patient’s prognosis. MSCs’ expression of paracrine effects can regulate these 
donor immune cells through various mechanisms (Table 1)[47-62].

When MSCs are exposed to an insult, such as injury, or bacterial infection, MHC-II molecules 
facilitate the presentation of bacterial antigens, which induces further activation of T cells expressing 
IFN-γ. MHC-II is downregulated at high levels of IFN-γ, while B7-H1 is upregulated[45]. These 
presentation pathways are illustrated in Figure 2.

MSCs have been used to treat various conditions, including diabetes mellitus (DM), cardiovascular 
diseases, GVHD, and autoimmune diseases. Despite persistent questions, the immunomodulatory 
effects of MSCs make them a top choice for cell therapy. MSCs are early multipotent progenitors and 
non-hematopoietic cell populations that can be expanded ex-vivo to achieve large numbers necessary 
for in vivo use. Recently, adipose tissues, umbilical cord, placenta, and dental pulp have been recognized 
as multipotent sources of MSCs. MSCs can differentiate into a variety of cell types capable of osteogenic, 
chondrogenic, adipogenic, myogenic, and neurogenic differentiation. However, not all individual cells 
cultivated in tissue culture flasks result in the same degree of multipotency. Self-renewing progenitors 
can be identified in human BM, and it is currently unknown whether MSCs from other tissues exhibit 
this property. BM-MSCs are a critical source of multipotent stem cells and serve as a standard for 
comparing MSCs from different sources (Table 2)[49,63-85].

The term "mesenchymal stem cells" has been proposed as a more appropriate term than MSCs. These 
cells possess not only multipotency but also significant immunomodulatory and engraftment-
promoting properties. They create a specialized microenvironment for HSCs by promoting the secretion 
of various inflammatory cytokines, chemokines, growth factors, extracellular matrix, and extracellular 
vesicles that are crucial for HSC differentiation, proliferation, and maintenance[86-88]. After in vivo 
biological application, MSCs secrete a range of cytokines and regulatory molecules with anti-inflam-
matory, wound healing, and regenerative effects, promoting the repair of endogenous tissues or tissue 
replacement. Beres et al[40] demonstrated that even in otherwise immunocompetent humans, allogeneic 
MSCs may graft, and differentiate through significant histocompatible barriers.
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Table 1 Immunosuppressive effect exerted by mesenchymal stem/stromal cells from different sources on immune cells

MSC types Mechanism of immunosuppressive effect Ref.

Recipient-derived MSCs from patients with GVHD are analogous to MSCs from healthy volunteers Copland et al[47]

After MSC infusion, the ratio of Th1 cells to Th2 cells was reversed, with an increase in Th1 and a decrease in Th2 
achieving a new balance

Zhou et al[48]

BM-MSCs reduce the incidence and severity of GVHD by improving thymic function and induction of Tregs but not 
increase the risks of infections and tumor relapse

Zhao et al[49]; 
Selmani et al[50]

BM-MSCs

HLA-G5 secreted by MSCs is critical to the suppressive functions of MSCs Selmani et al[51]

MenSCs MenSCs exhibit a higher capacity to migrate into the intestine and liver and not to their anti-inflammatory capacities Luz-Crawford et 
al[52]

FL-MSCs FL-MSCs demonstrates much longer-lasting immunomodulatory properties by inhibiting directly the proliferation 
and activation of CD4+ and CD8+ T cells

Yu et al[53]

UC-MSCs showed minimal expression of HLA-DR after activation and posed minimal risk of initiating an allogeneic 
immune

Kim et al[54]

UC-MSCs alleviate SLE through upregulating Treg cells, which was partly dependent on HLA-G Chen et al[55]

UC-MSCs

UC-MSCs ameliorate GVHD and spare GVL effect via immunoregulations Wu et al[56]

WJ-MSCs WJ-MSCs exert immunosuppressive effects by cell-cell contact with activated T cells and in part through the soluble 
factor indoleamine 2,3-dioxygenase

He et al[57]

MC-, WJ- and 
BM-MSCs

The mixed populations of MSCs displayed all of the positive attributes of WJ-MSC and BM-MSC Mennan et al[58]

AT-MSCs The use of AT-MSC rather than BM-MSC could further preserve NK cell activity and favor GVL Blanco et al[59]

hG-MSCs hG-MSC treatment inhibited local inflammation of injured skin by suppressing inflammatory cells, reducing pro-
inflammatory cytokine tumor necrosis factor-α, and increasing anti-inflammatory cytokine interleukin-10, which was 
promoted by hypoxia

Jiang et al[60]

CP-, BM- and 
AT-MSCs

CP-MSCs may have additional advantage over the other MSCs in terms of immunomodulation Lee et al[61]

DP-MSCs Immunomodulation and expression of trophic factors by dental MSCs increase their resistance to allogeneic NK cell 
lysis and their potential in vivo lifespan

Martinez et al[62]

AT: Adipose tissue; BM: Bone marrow; CP: Chorionic plate; DP: Dental pump; FL: Fetal liver; hG: Human gingiva; GVHD: Graft-versus-host disease; GVL: 
Graft-versus-leukemia; MenSC: Menstrual blood-derived mesenchymal stem cell; MSC: Mesenchymal stem cell; UC: Umbilical cord; WJ: Wharton jelly.

Similar to hematopoietic stem cells, MSCs have multi-organ specificity, and plasticity. In 2006, the 
International Society for Cellular Therapy officially defined MSCs as plastic practitioners under 
standard growing conditions, expressing CD73, and CD90 surface molecules while lacking CD11b, 
CD14, CD19, CD34, CD45, CD79a, and HLA-DR[2]. In addition, MSCs can differentiate into various 
mesodermal lineages including osteoblast, adipocyte, and chondroblast, to different degrees.

MSCs are capable of modulating both innate and adaptive immunity through the release of various 
soluble factors, including indoleamine 2,3-dioxygenase[11], IL-10, prostaglandin 2, nitric oxide, 
transforming growth factor-β, HLA-G5, and anti-inflammatory molecule TNF-α-induced gene/protein 6
[89]. These molecules are believed to play a key role in the immunomodulating effects of MSCs, which 
have been shown to be beneficial in certain immunopathological diseases, such as aGVHD, and type 1 
DM. However, the precise mechanisms underlying this therapeutic potential are not yet fully 
understood. The literature suggests that the immunomodulating potential of MSCs involves interactions 
with both humoral and cellular components of the innate and adaptive immune systems. The literature 
refers to several fundamental cellular interactions. An integrated perspective on the utility of MSCs for 
GVHD has been strengthened by the recent findings that MSCs are induced to undergo necrosis/
apoptosis by the recipient’s cytotoxic cells and that this process is assumed to elicit MSC-induced 
immunosuppression[90]. This finding made it possible to reconcile the dilemma between the effect-
iveness of MSC and its apparent lack of engraftment and highlighted the crucial role of the patient in the 
promotion and administration of immunosuppression of MSCs. Recent research has shed light on the 
role of the patient in promoting and administering immunosuppression of MSCs, with evidence 
suggesting that MSCs are induced to undergo necrosis/apoptosis by the recipient’s cytotoxic cells, 
leading to MSC-induced immunosuppression[90]. Table 2 provides an overview of recent studies on 
this topic, with 97 articles selected for full-text evaluation based on agreed-upon title and abstract 
criteria.

Innate immunity is primarily centered around the complementary system, with C3, and C5 being 
cleaved into anaphylatoxins C3a and C5a by convertases at the sites of inflammation. The labile C3 
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Table 2 Effects of different mesenchymal stem/stromal cells on refractory acute graft-versus-host disease

Study type Patient 
No. Indication MSC type Response 

criteria Main findings Ref.

Phase 2 55 Steroid-resistant, 
severe, aGVHD

BM Glucksberg CR: 30/55, better OS/TRM for 
complete responder

Le Blanc et al
[63], 2008

Phase 2 31 Gr. II-IV aGVHD BM Glucksberg CR: 77%; PR: 16% Kebriaei et al[64], 
2009

Pilot study 20 Co-transplantation 
with NMA 
mismatched HSCT

BM Glucksberg Decreased 1 yr GVHD death (10% vs 
31%, P = 0.04). Better NRM & OS

Baron et al[65], 
2010

Retrospective 37 Resistant Gr. III-IV 
aGVHD

BM Glucksberg CR: 65%, better TRM and OS Ball et al[66], 2013

Multicenter trial 50 Resistant Gr. IV 
aGVHD

BM Not mentioned OR: 33%, CR: 17%, initial response 
and young age have better survival

Resnick et al[67], 
2013

Prospective, single-
arm, open-label

75 Severe refractory 
aGVHD

BM IBMTR SI OR on day +28: 61.3%, better OS for 
responder on day +100 (78.1% vs 
31.0%; P < 0.001)

Kurtzberg et al
[68], 2014

Phase 1 40 Resistant Gr. II-IV 
aGVHD

BM Glucksberg CR: 27.5%, OR: 67.5% on day +28; 
more CR in pediatric group

Introna et al[69], 
2014

Phase 2 25 Refractory aGVHD BM Glucksberg 71% responded, CR 11/24, better OS 
for CR

Sánchez-Guijo et 
al[70], 2014

Prospective, 
nonrandomized

28 vs 19 
without 
MSC

Refractory aGVHD BM Glucksberg Decreased incidence and severity of 
cGVHD. Better OR and CR.

Zhao et al[49], 
2015

Phase 2 48 Steroid-resistant 
aGVHD

BM Glucksberg CR: 25% on day 28, 50% lasting > 1 
mo, with better OS

Te Boome et al
[71], 2015

Compassionate use 58 Steroid-resistant 
aGVHD

BM IBMTR SI OR: 47%, but no improvement in OS von Dalowski et 
al[72], 2016

Phase 2/3 25 Refractory Gr. III-IV 
aGVHD

BM Glucksberg Better OS for OR at 4-wk (CR: 6/25, 
PR: 9/25)

Muroi et al[73], 
2016

Pilot study 33 Refractory aGVHD BM IBMTR SI CR: 18/33, PR: 7/33, better OS in CR, 
no TRM in CR

Erbey et al[74], 
2016

Compassionate use 26 Severe resistant 
aGVHD

BM Not mentioned OR: 77% on day +28 (CR: 5/26, PR: 
15/26)

Kuçi et al[75], 
2016

Phase 2 prospective 
RCT

62 vs 62 
without 
MSC

cGVHD prophylaxis 
in haplo

Cord NIH score cGVHD: 27% (MSC) vs 49% in 2 yr (P 
= 0.021)

Gao et al[76], 
2016

Phase 1/2 26 Steroid-refractory 
aGVHD

BM Glucksberg OR: 62% on day 28. Higher response 
rate in children. High NRM in adults

Salmenniemi et al
[77], 2017

Pilot study 22 Refractory GVHD (Gr. 
2-4 a or cGVHD)

BM or adipose 
tissue

Glucksberg/NIH 
score

CR: 45.8%, PR: 33.3%, better OS in 
CR/PR

Cetin et al[78], 
2017

Retrospective 46 Refractory Gr. III/IV 
aGVHD

BM Not mentioned 50% responded with better OS (P = 
0.0004)

Dotoli et al[79], 
2017

Phase 1/2 33 Steroid-refractory 
aGVHD

BM Glucksberg CR: 34%, PR: 50% on day 28. Better 
OS on day 90 and 1 yr (P = 0.006, 
0.002)

Fernández-
Maqueda et al
[80], 2017

Phase 1/2 69 Refractory aGVHD BM Glucksberg OR: 83% on day 28 Bader et al[81], 
2018

Observational 
study

34 vs 34 
without 
MSC

aGVHD BM or adipose 
tissue

IBMTR SI Better OS compared with historical 
control, P = 0.0678. MSC has no 
association with risk of infectious 
complication

Stoma et al[82], 
2018

Retrospective 11 (study 
group 2)

Severe refractory 
aGVHD

Placenta 
derived 
decidual 
stromal cell

Glucksberg 73% 1 yr OS in study group 2 
(albumin), 47% in group 1 (AB 
plasma), P = 0.016

Ringden et al
[83], 2018

Retrospective 22 Severe refractory 
aGVHD

Cord IBMTR SI CR: 45.5%, PR: 13.6% Bozkurt et al[84], 
2019
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Phase 3 RCT 151 vs 72 
placebo

Severe refractory 
aGVHD

BM IBMTR SI Difference of durable CR (lasting > 28 
d) not achieved (35% vs 30%, P = 
0.42); Pediatric pts had better OR 
(64% vs 23%, P = 0.05)

Kebriaei et al[85], 
2020

aGVHD: Acute graft-versus-host disease; BM: Bone marrow; cGVHD: Chronic graft-versus-host disease; CR: Complete remission; IBMTR SI: International 
Bone Marrow Transplant Registry severity index; MSC: Mesenchymal stem/stromal cells; OS: Overall survival; PR: Partial remission; RCT: Randomized 
controlled trial.

Figure 2 The complex network of antigen presentation and immunomodulation. Mesenchymal stem/stromal cells (MSCs) exert immunomodulatory 
functions mainly via interactions with immune cells through cell-to-cell contacts and paracrine activity. The MSC secretome includes several cytokines, growth factors, 
and chemokines, and their immunomodulatory functions vary depending on the source of the MSCs, the target cells, and the microenvironment. COX-2: 
Cyclooxygenase-2; IDO: Indoleamine-pyrrole 2,3-dioxygenase; IFN: Interferon; IL: Interleukin; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; 
PGE2: Prostaglandin E2; TLR: Toll-like receptors; TNF-α: Tumor necrosis factor-α; DC: Dendritic cell; LPS: Lipopolysaccharide; NK: Natural killer cells.

convertases cleave C3 into C3a and C3b which can thereafter participate in forming distinct complexes 
and activate pathways for proliferation and protection against apoptosis through receptor binding. 
MSCs also secrete the factor H, which inhibits complement activation by limiting the activity of C3 and 
C5 convertases. In mice, MSCs promote pro-inflammatory repolarization and produce chemostatic 
cytokines, including IL-6, IL-8, GM-CSF, and macrophage inhibitory factors. IL-8, in particular, is a pro-
inflammatory chemokine produced by multiple cell types that recruits leukocytes to sites of infection or 
tissue injury. Additionally, MSCs can inhibit mast cell degranulation and histamine release by binding 
allergens to allergen-specific IgE via FcRε on mast cells, providing a potential therapeutic benefit for 
allergic reactions[91].

The molecular interaction between NK cells and MSCs is complex and depends on the immune 
microenvironment and NK cell activation status. MSC can inhibit cytokine proliferation and production 
and interfere with NK cell cytotoxicity. They also inhibit monocyte maturation and differentiation into 
DCs, which are the primary type of APC and play a key role in T lymphocyte activation through antigen 
presentation. Monocytes and macrophages are important for tissue development, homeostasis, and 
injury repair. Activated MSCs produce chemokines that attract circulating monocytes to sites of inflam-
mation and injury[92].

MSCs can regulate the adaptive immune system through multiple redundant pathways. They 
suppress the proliferation of T cells, IFNγ production, CD4 T cell differentiation, and CD8 T-cell 
cytotoxicity. Di Nicola et al[41] reported that MSCs can suppress T lymphocyte proliferation in vitro with 
autologous and allogeneic MSCs, including T lymphocytes cultured with DCs or lymphocytes in mixed 
lymphocyte reactions. MSCs can express and secrete programmed death-ligand 1 and 2, which suppress 
T-cell proliferation in the presence of MSCs, secrete IL-2, induce apoptosis, and promote the induction 
of an irreversible hyporeactive state[93]. In vivo studies suggested that MSCs may restore the balance 
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between T helper 1 and 2 cells in diseases associated with a shift to dominance of these T cell subpopu-
lations[94]. In vitro models have shown that MSCs induce Tregs and maintain survival and suppressive 
phenotypes[95].

CONCLUSION
This article provides insights into the use of validated MSCs as a potential treatment strategy for GVHD 
in HSCT. Current prevention and treatment options involve immunosuppression, which can hinder 
immune recovery and limit the graft-versus-tumor effect. By using MSCs, clinicians can effectively treat 
GVHD, identify high-risk patients, and stratify patients based on disease severity. Therefore, MSCs can 
aid in promoting engraftment, ameliorating aGVHD, and preventing cGVHD, making them an 
attractive option for HSCT.
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