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Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and 
involves a multi-step process in which intestinal cells acquire malignant characte- 
ristics. It is well established that the appearance of distal metastasis in CRC 
patients is the cause of a poor prognosis and treatment failure. Nevertheless, in 
the last decades, CRC aggressiveness and progression have been attributed to a 
specific cell population called CRC stem cells (CCSC) with features like tumor 
initiation capacity, self-renewal capacity, and acquired multidrug resistance. 
Emerging data highlight the concept of this cell subtype as a plastic entity that has 
a dynamic status and can be originated from different types of cells through 
genetic and epigenetic changes. These alterations are modulated by complex and 
dynamic crosstalk with environmental factors by paracrine signaling. It is known 
that in the tumor niche, different cell types, structures, and biomolecules coexist 
and interact with cancer cells favoring cancer growth and development. Together, 
these components constitute the tumor microenvironment (TME). Most recently, 
researchers have also deepened the influence of the complex variety of microor-
ganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, 
on CRC. Both TME and microorganisms participate in inflammatory processes 
that can drive the initiation and evolution of CRC. Since in the last decade, crucial 
advances have been made concerning to the synergistic interaction among the 
TME and gut microorganisms that condition the identity of CCSC, the data 
exposed in this review could provide valuable insights into the biology of CRC 
and the development of new targeted therapies.

Key Words: Colorectal cancer; Colorectal cancer stem cells; Tumor microenvironment 
factors; Tumor stroma; Gut microbiota; Cancer progression
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Core Tip: Colorectal cancer (CRC) represents one of the most prevalent tumors worldwide. The tumor 
microenvironment (TME) through its proinflammatory role, among others, actively participates in CRC 
progression and the disturbance of gut microbiota (dysbiosis) can influence this inflammatory process. 
CRC stem cells (CCSC) are a tumor cell subpopulation that drives CRC initiation, progression and 
treatment failure. The features and behavior of CCSC are modulated by several factors including TME and 
gut microbiota. Here, we will give an overview of the synergistic interaction among TME and intestinal 
microorganisms that condition the CRC environment and shape CCSC characteristics allowing CRC 
evolution.
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INTRODUCTION
Colorectal cancer (CRC) is a multi-step process where intestinal cells acquire malignant phenotypic 
characteristics that allow them to proliferate, migrate, invade and establish in new tissues[1]. In the last 
decades, screening strategies and treatments have been improved, decreasing the proportion of CRC 
patients by as much as 65%–88%[2]. However, this disease remains the third most prevalent type of 
cancer, having an incidence of 10% and ranking second in mortality (9.4% among all cancer deaths) 
according to global cancer statistics[3]. The leading cause of patient deaths and relapses is the 
appearance of new CRC subtypes and the acquired resistance to currently used therapies[4]. Moreover, 
a great number of CRC are diagnosed with distal metastases and these patients have a poor survival 
rate due to a lack of response to therapy[2]. One of the causes that affect the treatment of this type of 
tumor by inducing resistance and the appearance of recurrences, is the presence of a small subpopu-
lation of cells called CRC stem cells (CCSC). This small number of cells have mutations in specific 
oncogenes that allow them to develop the ability to induce tumor initiation, self-renew, differentiate, 
dedifferentiate, and acquire multidrug resistance[1,5]. The origin of this cell subpopulation is still 
controversial. They may originate from colorectal normal cells, colorectal normal stem cells, or CRC cells 
by genetic alterations or by the influence of environmental factors that induce epigenetic changes[5].

It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and 
interact with cancer cells favoring the growth and development of the tumor. Together these 
components constitute the tumor microenvironment (TME). In the last decades, several investigations 
have demonstrated that tumor surrounding ambiance through its proinflammatory role, among others, 
actively participates in the development, progression and chemoresistance of CRC[1,4].

Researchers have deepened the study of the influence of the complex variety of microorganisms that 
inhabit the intestinal mucosa, collectively known as the gut microbiota, on this inflammatory microen-
vironment. Besides contributing to innate and adaptive immune function, it has been observed that the 
imbalance in the species present in the intestinal microbiota and the consequent variation in microbial 
products can promote the development of CRC and compromise the efficacy of its therapy[6].

Since all the factors mentioned are involved in the CRC progression and therapy resistance and 
considering the great influence of CCSC in several events of this disease, this review aims to analyze the 
available literature that is focused on the interaction of TME and the intestinal microbiota that favors the 
development and maintenance of CCSC properties.

COLON CANCER STEM CELLS: FEATURES AND BEHAVIOR
CRC is a heterogeneous pathology that has a variable clinical course and prognosis[7]. The etiology of 
this disease combines genetic alterations in colorectal epithelial cells with unhealthy lifestyles, such as 
smoking, alcohol consumption and poor nutritional habits[8,9]. In addition, it has been seen that sex, 
age, family history of CRC and the persistence of inflammatory processes or infectious agents in the 
intestinal tract, can be also considered risk factors[5,9-12]. In all these cases, the synergy among genetic 
mutations, epigenetic alterations and the influence of the TME and gut microorganisms promotes the 
acquisition of molecular and phenotypic features that allow tumor progression[5,6,11,13,14]. Therefore, 
within the tumor niche, cells present great heterogeneity but are still strictly organized. In the last 20 
years, the focus has been on the study of cancer stem cells (CSC) derived from colorectal tissue (CCSC), 
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a subpopulation of cells that have a substantial tumorigenic capacity and maintain intestinal tumor 
growth[15]. CSC are responsible for resistance to multiple drugs maintaining a state of undifferentiation 
and slow cell division and also favoring the efficiency of desoxyribonucleic acid (DNA) damage repair 
mechanism[16]. Besides, they have similar features to normal stem cells, such as self-renewal, 
multipotency, cell cycle arrest, quiescence, and reversibility from their resting state[17,18]. As shown in 
Figure 1, the ability of CSC to maintain their population response to symmetric/asymmetric division, 
resulted in the first situation in two identical daughter stem cells and, in the second situation in two 
distinct cells with or without CSC properties[19,20]. In addition to the division theory, CSC undergo a 
bidirectional conversion process between stem and non-stem phenotype[20]. Although initially a 
hierarchical model has been established, in which CSC are the initiators of a monoclonal developmental 
hierarchy, emerging data highlight the concept of phenotypic plasticity of CSC. This new theory is 
supported by a dynamic state of interconversion between CSC and non-CSC that can be driven by the 
TME[21-23]. As the reader can see in Figure 1, during this phenomenon, cells can easily exchange their 
status within the tumor transforming from CSC to intermediate phenotypes to stemless states and vice 
versa[15,18,22,24]. Therefore, based on the data provided by the literature and shown in Figure 1, it can 
be concluded that any cell type is capable of initiating and promoting cancer development[24]. This 
model contributes with new concepts to the classical theory of the origin/behavior of CSC that highlight 
the importance of taking into account the study of phenotypic plasticity and the reversible state of this 
type of cells and that support the criterion that cancer cells with or without stem characteristics must be 
eradicated for successful therapy.

CCSC constitute about 2% of the cell population in the tumor nest and this percentage can be higher 
with tumor progression, particularly after chemotherapy or radiotherapy treatments[17,18,25]. Since an 
increase in the proportion of this cell subtype is an indicator of poor prognosis, in the last decades the 
identification and targeting of CCSC have become one of the key topics of study[26]. The recognition of 
CCSC is possible by the detection of typical phenotypic characteristics such as the expression of surface 
markers, membrane transporters and enzymes. Some of them are Prominin-1/cluster of differentiation 
133 (CD133), a transmembrane glycoprotein that is associated with metastasis, invasiveness and 
chemoresistance in CRC[18]; cluster of differentiation 44 (CD44) a receptor of hyaluronic acid in 
extracellular matrix related to the epithelial to mesenchymal transition (EMT) program and poor 
survival in CRC patients[5,27]; cluster of differentiation 166 (CD166) and cluster of differentiation 24, 
both adhesion molecules whose expressions are associated with the aforementioned markers, and that 
contribute to stratify low, intermediate, and high-risk CRC cases[5,28]; leucine rich repeat containing G-
protein coupled receptor 5 (LGR5) a key CCSC biomarker that decreases in advanced stages of CRC[20,
29] and aldehyde dehydrogenase (ALDH), an intracellular enzyme found in high concentrations in most 
of CSC participating in self-renewal, differentiation and self-protection[20,30,31]. In addition, the study 
of the ATP-binding cassette transporter superfamily through Hoechst 33352 dye efflux is also employed 
to detect CCSC[15,32]. In experimental models, the identification and characterization of CCSC can also 
be performed by fluorescence-activated cell sorting, selection by cell culture properties, in vivo 
transplantation of cells derived from spheroids or organoids, and lineage tracing techniques with 
labeled CCSC[22]. The above mentioned markers are hallmarks of CCSC and are involved in CRC 
pharmacotherapy and pathophysiology[33,34], but can also be present in enterocytes and cells of other 
tissues[20]. Hence, to increase the detection sensitivity and specificity, it is essential to combine the 
analysis of different biomarkers with CCSC isolation techniques.

Another substantial aspect to consider in the study of CSC is their association with other cellular 
processes such as EMT, autophagy and the response to cellular stress[15]. In particular, EMT is a 
physiological process that is also involved in tumor progression. The activation of this program reduces 
intercellular adhesion and causes epithelial cells to acquire mesenchymal properties that increase the 
invasiveness and migration of tumor cells[35]. Several studies have reported a link between EMT and 
the acquisition of CCSC characteristics in both, in vitro and in vivo assays[35-38]. These investigations 
show that transcription factors and signaling pathways that are altered in the EMT program are also 
deregulated in CSC, generating this subpopulation to exhibit phenotypes like EMT[39]. However, recent 
evidence indicates that EMT may not be necessary to acquire CSC properties. Then, although these 
processes can go along with each other, they can also happen through independent paths[15]. One of the 
tumor events that is known to be related to EMT and CSC is the high metabolic demand of TME and the 
existence of a tortuous vasculature that promotes a hypoxic environment. This phenomenon induces the 
release of factors such as hypoxia-inducible factor 1α (HIF-1α) that promotes not only EMT but also 
autophagy associated with CSC. In CRC it was demonstrated that blocking this factor with the 
consequent inhibition of autophagy reduces cell proliferation and the acquisition of stem-like characteri-
stics[40].

Another cause that has been reported that promotes a stem-like phenotype on several types of tumor 
cells is the cellular imbalance derived from oxidative stress[15]. In breast and lung cancer cell lines, 
studies demonstrate that oxidative stress upregulates the CSC marker SRY-box transcription factor 2 
(Sox2) activity, and stem-like properties[41,42]. However, in CRC cells it was shown that the reduction 
of intracellular reactive oxygen species inhibits the formation of CRC stem-like cells[43]. Since this type 
of cellular stress is considered potentially cytotoxic, more studies are necessary to know the mechanisms 
by which it has a positive effect on the development of CCSC[15].
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Figure 1 Theory-based models of cancer stem cell. The ability of cancer stem cells (CSC) to maintain their population response to symmetric/asymmetric 
division, resulting in the first situation in two identical stem cells daughters and in the second situation in two distinct cells with or without CSC properties. In addition 
to the division theory, CSC undergo a bidirectional conversion process between stem and non-stem phenotype. During this phenomenon, cells can exchange their 
status within the tumor transforming from CSC to intermediate phenotypes to stemless states and vice versa. Also differentiated cells, normal stem cells or cancer 
cells through the accumulation of genetic and epigenetic changes are capable of initiating and promoting cancer development. These general theories are applicable 
to colon CSC.

Furthermore, it is important to note that like all processes and phenomena related to tumorigenesis 
and malignant progression, CCSC and their features are modulated by the aberrant activation of various 
signaling pathways. Wnt, NOTCH, hedgehog (HH), and transforming growth factor-β (TGF-β) are 
important cascades that are usually misregulated in CCSC and play a central role in the therapy 
resistance of these cells[5,44].

Thus, understanding CCSC features and all the events and factors associated with cell plasticity 
constitute a fundamental tool for the development of new target therapeutic strategies.

INFLUENCE OF THE TME ON CCSC FEATURES
It has been reported that multiple links exist between inflammatory processes and stemness in CRC[2]. 
In this context, the role of the tumor stroma is crucial. The TME in CRC is a physical shelter for CSC[5] 
composed of biomolecules from the extracellular matrix, an aberrant vasculature and multiple stromal 
and immune cell types. These cells include mesenchymal stem cells, cancer-associated fibroblasts 
(CAFs), endothelial cells (ECs), pericytes, and tumor infiltrating immune cells which comprehend: 
Macrophages, neutrophils, natural killer cells, Treg cells and cytotoxic T lymphocytes[2,4]. The 
interaction between CRC cells and the different types of cellular and non-cellular elements of TME 
involves complex and dynamic crosstalk by paracrine signaling[22]. Therefore, self-renewal, differen-
tiation and properties of CRC cells and CCSC are modified by factors released by the surrounding 
stroma[1]. These factors are cytokines, growth factors and small nucleic acids, which have different 
mechanisms of action. Next, we will discuss those derived from TME that modulate CCSC properties 
and that are summarized in Table 1.

Cytokines have been shown to play a key role in CRC stemness. It was reported that TME-derived 
factors with a pro-inflammatory action such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β 
foster EMT phenotype and stem cell proliferation in human colon cancer cells[45,46]. Besides, it is 
known that CAFs, one of the most studied cells in the TME, produce IL-6, which promotes the 
expression of CCSC markers such as ALDH1 and LGR5[1,47].

The acquisition of a stem-like phenotype is also influenced by the expression and secretion of growth 
factors[48,49]. It was demonstrated that the epidermal growth factor and the insulin-like growth factor 
regulate and promote CCSC growth[50]. Moreover, Muñoz Galván et al[49] have proved that the 
treatment of CRC derived cells with hepatocyte growth factor (HGF) and/or macrophage migration 
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Table 1 Tumor microenvironment factors associated with stemness in colorectal cancer

TME factor Action Ref.

Growth/inducible factors

Epidermal growth factor Regulates and promotes CCSC growth [50]

Insulin-like growth factor Regulates and promotes CCSC growth [50]

TGF-β Participates in the initiation of the EMT, invasion, metastasis and initiation of 
angiogenesis associated to CCSC

[13,29,
50]

Bone mophogenetic protein 4 Induces differentiation and decreases the tumorigenic potential of CCSC [16,60,
63]

Bone mophogenic protein 2 Stimulates the differentiation of CCSC inducting autophagic degradation of β-catenin [44,63]

Hepatocyte growth factor Activates Wnt signaling and the clonogenicity from CCSC [53,54]

Macrophage migration inhibitory factor Increases CCSC properties [49]

Vascular endothelial growth factor Promotes growth, epithelial to mesenchymal transition and stemness [50,51]

Platelet derived growth factor Promotes growth, epithelial to mesenchymal transition and stemness [50]

Osteopontin Regulates EMT and participates in the activation of the Wnt/β-catenin signaling 
pathway, promoting stemness

[4,156]

HIF-1A Activates Wnt/β-catenin pathway inducing self-renewal of CCSC. Promotes survival 
and maintenance of CCSC

[40,157]

Citokines/immune associated proteins

IL-1β Modulates the expression of CCSC markers [158]

IL-4 Facilitates the communication of CCSC with stromal cell, maintains their properties 
and evades the immune system

[5,44]

IL-6 Promotes the expression of the CCSC markers, ALDH1 and LGR5 [1,47]

IL-8 Induces stemness and EMT [50,159]

IL-17A Promotes invasiveness and self-renewal and increases CCSC properties [12]

IL-22 Promotes invasiveness and self-renewal and increases CCSC properties [12]

IL-33 Induces the expression of core stem cell genes in CRC-derived cells [160]

Chemokine (C-C motif) ligand 2 Promotes CCSC properties [4,49]

Tumor necrosis factor- α Modulates CCSC features and induces cell death [158,
161]

Parathyroid hormone related-protein Activates Wnt/β-catenin pathway and promotes events related to stemness [162-
164]

Non-coding RNA

miR-135 a/b and miR-17 Promote stemness through the activation of Wnt/β-catenin signaling [157]

miR-34 and miR-93 Inhibit stemness [157]

miR-92a-3p Promotes Wnt signaling activation and consequently the expression of β-catenin target 
genes related to stemness, the EMT program, and chemoresistance

[165]

miR-20a and miR-106 a/b Repress TGF-β activity and stemness [157]

miR-146 and Let-7 Affect stem cell fate or proliferation, activation of several stemness markers in a colon 
cancer cell line

[157]

miR-221/222 and miR-21 Induce the development and maintenance of CCSC [157]

miR-21 Promotes the activation of the Wnt/β-catenin signaling pathway and increases the 
population of CCSC

[157]

miR-145 Represses miR-21 and its expression inversely correlates with that of CCSC markers [157,
166]

miR-137 Suppresses CCSC tumorigenicity [167]

miR-147 Decreases the expression of CCSC markers

miR-200, miR-203, miR-141 and miR-429 Regulate CCSC through negative modulation of EMT and self-renewal [157]
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lncRNA H19 Promotes CCSC phenotype and drug resistance [168]

Signaling pathway ligands

Wnt ligands Increase CCSC characteristics and enhances tumor-initiating potential [5,157]

Delta like canonical Notch ligand 4 Participates on CSC maintenance [44]

Jagged1 Participates on CSC maintenance [66]

SHH Promotes CCSC survival, self-renewal and drug resistance [67,68]

Enzymes

Phospholipase D2 Promotes CRC stemness [4,49]

Extra-cellular matrix components

Tenascin, fibronectin, collagen type I, secreted protein 
acidic and rich in cysteine, galectin

Contribute to stemness and CCSC activities [1]

EMT: Epithelial to mesenchymal transition; CCSC: Colorectal cancer stem cells; CRC: Colorectal cancer; lncRNA: Long non-coding ribonucleic acid; miR: 
Micro ribonucleic acid; SHH: Sonic Hedgehog protein; TGF-β: Transforming growth factor beta; IL: Interleukin.

inhibitory factor increases the number and size of colonospheras and significantly enhances the 
expression of putative markers like CD133[49].

Proangiogenic factors like vascular endothelial growth factor (VEGF) and platelet derived growth 
factor are also implicated in promoting growth and metastasis, both processes directly related to 
stemness[50]. Furthermore, it was demonstrated that clusters of ECs improve the survival of CCSC and 
promote their spread[51].

As it is known, all these TME factors modulate the activation of different signaling pathways, altering 
gene expression and thus modifying the molecular and phenotypic profile of tumor cells[5,44,50]. Wnt 
signaling is a key stem cell pathway involved in the maintenance of the CCSC and the TME[13,52]. One 
decade ago, Vermeulen et al[53] observed that high activity of the Wnt signaling was associated with 
CCSC features. Furthermore, this activity was mainly observed near fibroblasts in the tumor niche. 
Vermeulen et al[53] then demonstrated that HGF derived from CAFs activates Wnt signaling and the 
clonogenicity from CCSC[53]. This research had a great impact on the study of CSC and recently, Essex 
and collaborators replicated these studies and obtained similar results. They found that TME regulates 
the activation of the Wnt signaling pathway, increases CCSC characteristics and enhances tumor-
initiating potential[54]. Regarding this, it is known that several Wnt ligands are secreted mostly by 
CAFs[53-56]. Moreover, other TME factors participate in the activation of the Wnt/β-catenin pathway 
(Table 1).

Some ligands from other signaling pathways are also related to stem cell phenotype. TGF-β is a 
growth factor that belongs to a superfamily of molecules including inhibins and bone morphogenetic 
proteins (BMP)[13]. It has the ability to promote or suppress tumor development depending on the 
interactions that take place in the TME[57]. As a pro-tumor factor, TGF-β regulates immune responses 
and participates in many neoplastic events such as proliferation, EMT and stemness[13]. TGF-β 
signaling pathway mutations and CCSC are linked[58] and in accordance with this, Zhou et al[29] found 
an association between TGF-β signaling and the expression of LGR5 biomarker in CRC[29]. Even more, 
Gu et al[59] have recently demonstrated that the expression of genes related to CCSC features like the 
carcinoembryonic antigen-related cell adhesion molecule alters TGF-β signaling and promotes CRC[59]. 
Some other members from the TGF-β family, like bone morphogenetic protein 4 and bone morpho-
genetic protein 2 (BMP4 and BMP2, respectively), have the capacity to induce CCSC differentiation and 
increase the response to standard chemotherapy[16,60-62]. Besides, the modulation of the BMP4 
pathway by hormones like triiodothyronine was reported in CCSC, decreasing its tumorigenic potential
[44,63,64]. This result suggests that CCSC features are modulated not only by local molecules from the 
TME but also by endocrine factors[44].

Notch signaling is also associated with the expression of CSC features in CRC cells[16,65]. In fact, it 
was reported that delta like canonical notch ligand 4 and jagged 1, both notch ligands, are overex-
pressed in this type of tumor providing essential signals for CCSC maintenance[44,66]. Moreover, since 
HH signaling is implicated in CRC development[20], in the last years several investigations were 
conducted on the association between this pathway and CCSC properties. Regan et al[67], have shown 
that the activation of the non-canonical HH pathway is required for CCSC survival and depends on 
sonic hedgehog protein (SHH) ligand[67]. Recently, it has been also observed that the modulation of 
HH-related proteins expressions by non-coding ribonucleic acids (ncRNAs) impacts on CCSC self-
renewal capacity and drug resistance[68]. In line with this, Skoda and collaborators showed that 
treatment with HH pathway inhibitors such as vismodegib and sonidegib weakens the ability of CCSC
[69]. Since no significant differences have been found in clinical trials[70], more studies are needed to 
determine the effects of the inhibition of this pathway in CRC patients.
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Besides the aberrant activation of several signaling pathways, hypoxia is known as a hallmark of 
CCSC and TME interaction[5]. This is a condition in the tumor niche whose main cause is the poor 
vasculature associated with the tumor and the upregulation of HIF-1α, a factor released mainly by ECs
[40,71,72]. This condition activates Wnt/β-catenin pathway inducing self-renewal and maintenance of 
CCSC[50,73]. Also, HIF-1α promotes cancer cell proliferation and CCSC survival[40].

Furthermore, short ncRNAs like microRNAs (miRs) and long ncRNAs are secreted not only by tumor 
cells but also by stromal cells in the TME[4]. In the last decades, the study of ncRNAs has gained 
importance in CRC. In the framework of factors and signaling pathways related to CCSC biology, these 
small nucleic acids have a key role[74]. miRs related to stemness in CRC are exposed in Table 1.

As previously mentioned, the interaction between CRC cells and their TME also involves non-cellular 
elements. Colonic stromal cells mediate the remodeling of the extra-cellular matrix favoring the healing 
or progress of the disease[75]. Recently, it has been demonstrated, by lineage tracing, that components 
of the extra-cellular matrix regulate dormancy in CCSC[76]. Tenascin, fibronectin, collagen type I, 
secreted protein acidic and rich in cysteine (SPARC), galectin and some other components of the tumor 
matrix are associated with stemness and CCSC activities[1].

Finally, another important concept to consider in the tumor nest is that CCSC also release various 
factors and cytokines that enable them to communicate with stromal cells, maintain their properties and 
evade the immune system, such as IL-4 and the cluster of differentiation 200[5,44].

The aforementioned data (and shown in Table 1) suggest that TME instructs the development, 
properties, plasticity, maintenance and dissemination of CCSC. In the last decade, the remarkable 
influence of the stroma on CRC development prompted the postulation of a novel classification of this 
disease based on its impact on tumor gene expression[5]. This CRC staging contains four consensus 
molecular subtypes (CMS) plus a group called "unclassified" since their features do not fit into the other 
CMS. All these subtypes are summarized in Table 2[1,5,77-79]. As the reader can see in this table, the 
influence of TME determines a low or high degree of immune and inflammatory response depending on 
the CMS, highlighting the importance of factors from TME in the distinctive characteristics of each CRC 
subtype. Taking into account that the mentioned inflammatory/immune process (that is relevant for 
CRC classification) can be influenced by the intestinal microorganisms, next we will discuss the 
interactions of this microbiota with tumor cells and their microenvironment that modulate the behavior 
and characteristics of CCSC since it is the focus of this review.

ESTABLISHED DYNAMICS BETWEEN THE GUT MICROBIOTA, THE TME AND CCSC
As we mentioned in this work, the inflammatory microenvironment contributes to promoting CRC 
initiation and progression. However, the role of the cell types involved in this process, including 
intestinal microorganisms, has not been completely understood yet.

The human microbiome, a concept that is mentioned throughout this section, represents microor-
ganisms with their genetic elements and the interactions arising with the environment in which they are 
found[80]. Advances in the characterization of this human microbiome have led to the consideration 
that the role of the microbiota in metabolic functions and maintenance of homeostasis is more important 
than previously believed. Currently, the human is considered as a holobiont organism inhabited by 
millions of microorganisms including bacteria, archaea and fungi[81]. The gut microbiota is a complex 
ecosystem that contains more than 500 bacteria species involved in physiological processes like immune 
regulation and maintenance of human health[6] and its composition relies fundamentally on diet and 
lifestyle[74].

In physiological conditions, stromal and immune cells from the gut mucosa interact with this 
ecosystem to maintain intestinal equilibrium[82]. Cells from the immune system recognize antigens 
from foreign cells and generate memory and effector cells, which control or avoid the generation of 
diseases[82].

It has been observed that sustained shifts in this ecosystem, known as intestinal dysbiosis, have 
unfavorable repercussions on health[74,83]. In this sense, the presence of harmful microorganisms 
(“drivers”) could induce changes in the intestinal mucosa and favor the colonization by opportunistic 
bacteria (“passengers”)[84]. This model is known as driver-passenger[84] and could involve changes in 
the immune system allowing the advance of the damage in the intestinal epithelium tissue[85,86]. This 
imbalance of the local microbiota promotes the restructuring of the intestinal environment and alters the 
immune status of the host contributing to the appearance of malignant cells and a favorable niche for 
tumor development, invasion and metastasis[85,87,88]. The mechanisms of these microorganisms that 
influence directly the immune system are different and involve the synthesis of immunomodulatory 
compounds and metabolites, like short-chain fatty acids (SCFAs), polyamines and other fermentation 
products[89,90]. Moreover, it is known that the intratumoral composition of microorganisms affects T-
cell-mediated cytotoxicity and anti-tumor immune surveillance[91]. The unfavorable changes in the 
intestinal microbiota can promote a pro-inflammatory environment and impair anti-cancer immunity
[91]. In this context, cells from TME secrete factors like interferon-γ, TGF-β, IL-6, IL-8, CXCL1 and 
TNF-α,and favoring the differentiation of T helper 17 Lymphocytes to develop an adaptive immune 
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Table 2 Consensus molecular subtypes of colorectal cancer

CMS1-immune (14%) CMS2-canonical 
(37%)

CMS3-metabolic 
(13%) CMS4-mesenchymal (23%) Unclassified (13%)

Hypermutated Epithelial Epithelial TGF-β activation. 
Angiogenesis

General features

Microsatellite unstable WNT and MYC 
signaling activation

Metabolic dysregu-
lation

Upregulation of EMT

Mixed phenotype of 
multiple CMS

Mutations BRAF, MSH6, RNF43, 
ATM, TGFBr2, PTEN

APC, KRAS, TP53, 
PIK3CA

APC, KRAS, TP53, 
PIK3CA

APC, KRAS, TP53, PIK3CA

Decrease of CAFs Decrease of CAFs Decrease of CAFsTME

High immune and 
inflammatory signature

Low immune and 
inflammatory signature

Low immune and 
inflammatory signature

Increase of CAFs; 
Immunosuppressive signature

This Table is based on Islas et al[1], 2022; Fidelle et al[79], 2020; Trinh et al[169], 2018; Becht et al[78], 2016; Guinney et al[77], 2015. APC: Adenomatous 
polyposis coli gene; ATM: Ataxia telangiectasia mutated gene; BRAF: Serine/threonine-protein kinase B-raf gene; CAFs: Cancer associated fibroblasts; CMS: 
Consensus molecular subtype; EMT, Epithelial to mesenchymal transition; KRAS: Ki-ras2 kirsten rat sarcoma viral oncogene homolog gene; MSH6: MutS 
homolog 6 gene; PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene; PTEN: Phosphatase and tensin homolog gene; RNF43: Ring finger 
protein 43 gene; TGF-β: Transforming growth factor beta; TGFBr2: Transforming growth factor beta receptor 2 gene; TME: Tumor microenvironment; TP53: 
Transformation-related protein 53 gene.

response that contributes to immune-prone carcinogenesis and CRC development[79,87,92]. In this 
regard, increasing evidence suggests that gut microorganisms condition CRC patients response to 
immunotherapy, because they alter the expression of elements such as anti-programmed cell death 
protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
[91,93]. PD-1/PD-L1 has been highly studied in the last years on the tumor-microbiome-immune axis
[91]; in fact, several investigations provide evidence that PD-L1 is overexpressed on different tumor cells 
and stromal immune cells, allowing tumors to evade attacks via T-cell infiltration[91,94,95].

The increased expression of PD-L1 in CRC cells both in vitro and in vivo is a mechanism involved in 
the influence of certain pathogenic bacteria associated with an immunosuppressive TME[96]. In 
contrast, bacteria associated with healthy microbiota improve the efficacy of anti-PD-L1 therapy by 
enhancing the accumulation of cytotoxic T cells in the TME[97]. This suggests that TME reprogramming 
through manipulation of the microbiota can modulate the response to immunotherapies in CRC[98]. 
Concerning all this information, CRC could be considered as a bacterial-induced disease and 
disturbance in microbiota could be potentially useful as diagnostic biomarker, indicator of risk and 
predictor of response to therapies for this type of cancer[74,88].

On the other hand, CRC modifies the local metabolic environment[99]. In this context, it is important 
to mention that metabolites and factors derived from CRC cells and TME cells such as spermidine, L-
valine, L-lysine or stearic acid confer an advantage for the growth and development of certain bacterial 
species, conditioning changes in the intestinal microbiota[99]. Although different factors produce 
changes in gut microbiota, recently it has been seen that the shift in the metabolome of tumor cells and 
TME cells is a key aspect in this event[86,99,100]. Thus, TME can be the consequence or the cause of 
intestinal dysbiosis.

The gut microorganisms cited below in this section are described in the available literature due to 
their role in CCSC development and maintenance. They are also summarized in Table 3.

Regarding CSC properties, some pathogenic bacteria such as Helicobacter pylori and Porphyromonas 
gingivalis can promote the expression of markers associated with stemness such as CD44 and CD133 in 
gastrointestinal tumors[101,102]. This association between the presence of certain bacteria genera in the 
gut and the expression of CSC markers has led to the study of the effects of microorganisms shifts and 
bacterial metabolites on CRC. Several models of tumorigenesis induced by bacteria have been proposed, 
suggesting how the interactions of host-microorganism promote the development and progression of 
this type of cancer[101]. In fact, it is known that the metabolites from the intestinal microbiota have the 
potential to act as tumorigenic factors. However, others can act as anti-tumorigenic factors since many 
of these microbiota-derived products are capable of inhibiting CRC progression[103]. Kim et al[43] have 
demonstrated that ursodeoxycholic acid, a secondary bile acid produced by Clostridium species, 
including Clostridium absonum and Clostridium baratii, regulates the oxidative stress suppressing CCSC 
growth and CRC cells proliferation[43]. Moreover, it has been observed that niacin, a product of the 
metabolism of some intestinal bacteria, such as Lactobacillus acidophilus, has different effects on CCSC. 
Depending on the dose, this vitamin can promote proliferation or death in this cell subtype[104]. 
Additionally, bowel microorganisms produce SCFAs such as butyrate, propionate and acetate[92]. It has 
been reported that these SCFAs favor beneficial bacteria proliferation and stimulate regulatory T cells to 
reduce inflammatory mediators, regulating immune response[105]. Butyrate participates in epithelial 
integrity maintenance and has antitumor effects. Several investigations show that in CRC, this product 
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Table 3 Microorganisms present in the intestinal mucosa associated with stemness in colorectal cancer

Microorganism Action Ref.
Bacterioides dorei, Bacterioides vulgatum, Parabacterioides 
distasonis, Lachnoclostridium sp., and Mordavella sp

Inhibit the action of factors related to CCSC phenotype. Inhibit CRC development and 
progression

[59,
114]

Bacterioides fragilis Releases an enterotoxin that promotes immune TME cells activation with secretion of 
factors related to CCSC

[118]

Citrobacter rodentium Protects the inflammatory CCSC niche [121]

Clostridium septicum Contributes to CRC development and to the activation of signaling pathways associated 
with CCSC

[59]

Enterococcus faecalis Induces the expression of TGF-β, thereby activating signaling pathways associated with 
CCSC. Activates Wnt/β-catenin signaling and pluripotent transcription factors 
associated with CCSC

[113,
115]

Escherichia coli Upregulates the expression of CCSC-associated genes. Releases genotoxin colibactin 
which induces the production of growth factors related to CCSC

[112,
117,79]

Fusobacterium nucleatum Stimulates the secretion of immune factors related to CCSC [79]

Helicobacter pylori Promotes the expression of markers associated with stemness [101,
102]

Lactobacillus acidophilus Promotes proliferation or death in CCSC depending on dose [104]

Porphyromonas gingivalis Promotes the expression of markers associated with stemness [101,
102]

Shigella, and Citrobacter Upregulate the expression of CCSC-associated genes [112]

CCSC: Colorectal cancer stem cells; CRC: Colorectal cancer; TGF-β: Transforming growth factor beta; TME: Tumor microenvironment.

inhibits events associated with CSC such as invasion and proliferation[6]. Interestingly, butyrate inhibits 
cell proliferation to a greater extent in CRC derived cells than in non-cancerous cells[92]. Although 
butyrate was reported as an anti-tumor and chemopreventive agent[92,106], other studies have shown 
that it has variable outcomes on CCSC[92]. So, more investigations are necessary to determine the 
mechanistic action of this type of fatty acid. Experiments with other SCFAs like acetate and propionate 
with similar results demonstrated that these acids have opposing effects[6,107]. Besides that, a large 
number of microbial products such as deoxycholic acid, lithocholic acid chenodeoxycholic acid, 
taurochenodeoxycholic acid and others, are associated with the promotion of gastrointestinal tumors 
including CRC[6,108]. Recent studies have found that in CRC patients the microbial composition of the 
colonic crypt is different from that of the intestinal lumen. In the environment of the crypt of the 
colorectal tumor, groups such as Proteobacteria and anaerobes, such as Acinetobacter, Stenotrophomonas 
and Delftia were found[109]. Therefore, specific microorganisms could have a role in the maintenance of 
CCSC, located in the crypt, through the production of specific metabolites[110]. However, more studies 
are needed in this field since the molecular mechanisms underlying the effects of intestinal microbial 
products on CCSC have not yet been fully elucidated.

Currently, the study of mechanisms involved in the communication between the microbiota, the 
tumor cells and their microenvironment has gained impact on CRC. One reported mechanism for this 
interaction is through pattern recognition receptors located on intestinal epithelial cells that have the 
ability to detect distinctive microbial macromolecular ligands called pathogen-associated molecular 
patterns such as lipopolysaccharides and peptidoglycans[111]. Congruently, a recent work documented 
an altered function of CSC in a CRC murine model due to intruding bacteria like Escherichia, Shigella, 
and Citrobacter. This effect results in the activation of a toll-like receptor (TLR), a class of pattern 
recognition receptors, and the consequent upregulation of stem cell-associated genes such as Cd44v6 
and Lgr5[110,112]. In line with this, the microorganisms are capable of activating several signaling 
pathways in tumor cells and/or TME cells inducing the secretion of factors associated with CCSC 
features. In this context, it has been observed in a murine model that microorganisms such as Entero-
coccus faecalis cause colitis after infection and induce expression of TGF-β, thereby activating the Smad 
signaling pathway[113]. A recent study has demonstrated an inverse correlation between the expression 
of molecules associated with TGF-β signaling pathway and stem cells- related genes in CRC. Moreover, 
the authors of this work have compared feces from mice with defects in TGF-β signaling with feces from 
wild-type (WT) mice, and have shown that the first ones had increased bacterial species associated with 
the development and progression of CRC, such as Clostridium septicum, and diminished amounts of 
favorable microorganisms including Bacteroides vulgatus and Parabacteroides distasonis[59]. Similar results 
were obtained by Wang and collaborators who showed that the amounts of beneficial species (
Bacterioides dorei, Lachnoclostridium sp., and Mordavella sp.) are recovered in WT mice but not in those 
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with mutated TGF-β signaling after chemotherapy treatment[114]. These investigations demonstrate the 
close relationship between the microbiota, the production and release of TGF-β and CCSC in the tumor.

Concerning other signaling pathways, Wang et al[115] have shown that Enterococcus faecalis are 
capable of polarizing macrophages by activating Wnt/β-catenin signaling and pluripotent transcription 
factors associated with the dedifferentiation, reprogramming and development of CCSC such as cellular 
myelocytomatosis oncogene, Kruppel-like factor 4, octamer-binding transcription factor 4 (Oct4), and 
Sox2[115]. These events respond to the microbiota-induced bystander effect theory based on the fact that 
macrophages induce genetic mutations and chromosomal instability in intestinal cells[116].

Other signaling pathways associated with pro-inflammatory and growth factors can be activated in 
response to bacterial products. For instance, the unbalance in the amount of the gut bacteria Escherichia 
coli, correlates with CRC progression by producing the genotoxin colibactin[79]. This toxin accelerates 
tumor progression and involves the production of growth factors related to CCSC, such as the HGF and 
the consequent activation of its signaling pathway[79,117]. Also, the enterotoxin produced by Bacteroides 
fragilis promotes immune TME cells activation with the secretion of IL-17 which favors CCSC properties
[118]. Furthermore, as we have previously mentioned, gut microorganisms shape the immune 
environment promoting tumor evolution and CCSC features. For example, Fusobacterium nucleatum 
stimulates IL-8 secretion by TME cells and the inhibition of T and NK cell functions[79]. This bacteria 
has been deeply studied, since clinical analysis of specimens from CRC patients showed that the levels 
of F. nucleatum are significantly higher in neoplastic tissues than in adjacent normal tissues, and 
correlate with tumor invasion and metastasis[119]. These results support the role of F. nucleatum in the 
regulation of CCSC plasticity and EMT[101]. Also, it is known that F. nucleatum and other microor-
ganisms like Epstein–Barr virus are capable of incorporating human ncRNAs favoring microbial growth
[74]. In this regard, Tarallo et al[120] found a human and microbial ncRNA signature in CRC in which 
many miRs associated with CSC features, are overexpressed including miR-21 and miR-200[74,120]. A 
recent study conducted by Wang showed that Citrobacter rodentium infection induces the inhibition of 
miR-34a, which protects the inflammatory CCSC niche[121]. These investigations suggest a close 
relationship between the intestinal microbiota and the regulation of ncRNAs involved in CCSC 
properties.

Finally, not only the shift in the number of microorganisms is responsible for stemness and CRC 
progression, but the interaction and collaboration between several types of bacteria in biofilm 
communities also participate in bowel inflammation and CRC. It was demonstrated that biofilms 
correlate with an increase in IL-6 secretion by TME cells playing a key role in proliferation, cell 
transformation and stemness[79].

The data in this section demonstrate a close interrelationship between the gut microbiota, the TME, 
and CCSC. This information highlights the relevance of further investigating the intestinal microbiota 
switch in patients with CRC and the associated mechanisms that lead to TME changes and promote 
stemness.

THERAPEUTIC TARGETING OF TME AND THE GUT MICROBIOTA: A KEY TOOL TO 
MODULATE STEMNESS IN CRC
Standard chemotherapeutic approaches for CRC are based on attacking the replicative mechanisms of 
tumor cells to induce tumor regression. However, considering CSC properties, this subpopulation 
usually results unharmed by the treatment because they present a low division rate as well as a great 
capacity to correct DNA defects[122]. This entails therapy resistance of CSC and the subsequent 
treatment failure and disease progression. It is interesting to note that in CRC, CSC represent around 
2.5% of neoplastic cells but due to their phenotypic plasticity, they constitute a dynamic population[123,
124]. This fact, together with the lack of response to therapies, highlights the need of new clinical 
strategies targeting CCSC[125].

As we explain throughout this review, the influence of the TME and the intestinal microorganisms on 
CSC properties makes these factors a promising tool in therapy. Many therapeutic agents are capable of 
inhibiting those events associated with the maintenance of CCSC. For instance, Apatinib napabucasin, 
Bigelovin, Wogonin and Metformin are drugs whose mechanisms are associated with the inhibition of 
EMT or angiogenesis in CRC[1]. Moreover, it has been demonstrated that therapeutic agents such as 
Genistein cause the inhibition of CSC characteristics by glioma-associated oncogene1 signaling pathway
[126]. Targeting the activation of those signaling pathways associated with CCSC can also be considered 
as a mechanism to reduce stemness in CRC tumors and thus improve the response to the therapy. 
LGK974, Foxy-5, PRI-724[127] and DKN-01[126] are agents that act targeting the Wnt/β-catenin 
pathway. However, the clinical application of most of these drugs is still under study.

The tumor protective niche also could be modified to eradicate CCSC and overcome chemoresistance. 
As we have mentioned in previous sections, in the TME, immune cells modulate cancer development 
and progression. For that reason, in the last decade the treatment of patients with immune checkpoint 
inhibitors such as CTLA-4 and PD-1/PD-L1 has been studied. Even though employing these drugs 
leads to various systemic and organic complications, immunotherapy may be promising in sorting these 
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obstacles and could ameliorate the response of CRC patients to the treatment[1,128]. In fact, coadjuvant 
therapy with FOLFOX (a combination of leucovorin, fluorouracil and oxaliplatin which are first-line 
chemotherapeutic drugs)[129], and PD-1/PD-L1 inhibitors had an objective response rate of 50% in 
clinical trials[130]. In addition, in a phase II trial in CRC metastatic patients, immune checkpoints 
inhibitors like nivolumab and nivolumab-ipilimumab show improvement in patients survival rate[130]. 
Moreover, monoclonal antibodies against CAFs and antifibrotic drugs were also tested in clinical 
studies[5]. Another type of antitumor therapy was accomplished through the production of a cell-based 
vaccine with specific antigens of CCSC[5].

In addition, plenty of compounds were designed in the last decade to target CCSC signaling 
pathways[5]. These strategies include the inhibition of HH signaling components, NOTCH pathway 
inhibitors, anti-angiogenic agents and Wnt ligand blockers. All these drugs are undergoing clinical trials
[129]. Despite being an encouraging strategy, it still has limitations like the inhibition of signaling 
pathways involved in physiologic processes.

In the last years, the particularities exhibited by extracellular vesicles (EVs) have led researchers to 
consider them as a therapeutic delivery strategy of great value in CRC and other types of tumors. 
Within the different types of EVs are the exosomes, which are secreted by a variety of cells. These 
vesicles carry out the molecular content of donor cells and enable cellular communication over short 
and long distances. These EVs are loaded with coding nucleic acids, ncARNs and bioactive proteins 
which determine their functions. Exosomes can target a specific tissue and internalize in a cell type by 
the recognition of surface ligands/receptors[131]. In this regard, Han et al[132] investigated the delivery 
of human cord blood-derived MSC exosomes loaded with miRs as CRC targeted therapy. The results 
showed an inhibition of tumor growth in vitro and in vivo, as well as a selective increase of these 
ncRNAs in CRC cells[132]. The relation between miRs and CCSC was mentioned in previous sections so 
their delivery may be strong weapons to confront drug resistance and CCSC maintenance[5]. Circular 
RNAs are ncRNAs that exhibit cell-type and tissue-specific signatures. There has recently been consid-
erable attention on these ncRNAs as they modulate miRs expression[129]. In CRC, recent studies have 
focused on their study as biomarkers. However, they have not been applied in patients’ therapy yet[133,
134]. Moreover, the importance that these small molecules could have in CRC is unknown[129].

Foods containing biologically active ingredients are termed functional foods or nutraceuticals[135,
136]. In the past years, the influence of diet on CRC development and evolution was demonstrated. A 
diet with natural products like phytochemicals and nutritional herbs has shown protective effects in 
overcoming CRC associated dysbiosis[137,138]. Diets enriched in dairy are a major source of products 
that are known to have a protective effect on CRC development such as, calcium, vitamin D and folate
[138]. Sulforaphane, a sulfur-rich compound found in cruciferous vegetables like broccoli, has been 
documented to diminish CSC markers and improve the chemotherapeutic efficacy of drugs commonly 
used in CRC treatment such as cisplatin, doxorubicin and fluorouracil[137]. It has been observed that 
dietary polyphenols like quercetin have similar effects[137,139]. Other polyphenols or flavonoids are 
known to target ABCG-2 transporters and miRs strictly associated with CCSC[139]. Curcumin is one of 
several substances present in turmeric plants. It has been demonstrated that this bioactive agent inhibits 
the activation of several signaling pathways related to CSC characteristics. The treatment with this 
natural product on a CSC model diminished the expression of CD44 and CD133 markers[137]. 
Moreover, some other natural products have been observed that interfere with intrinsic CSC pathways, 
like epigallocatechin-3-gallate (EGCG), resveratrol and genistein[140].

Diet can also manipulate the gut microbiota. Indeed, this is achieved by the administration of 
probiotics in the diet. As probiotics and their active metabolites can exert immunomodulatory and anti-
tumorigenic effects[135], the study of them and their metabolites has gained ground in recent decades. 
Probiotics are live microorganisms, normally lactic acid bacteria, recognized as safe by the United States 
Food and Drug Administration[135]. Defined as “live microorganisms that, when administered in 
adequate amounts, confer a health benefit on the host”[141], they can improve health by administration 
along vegetable fibers and other prebiotics stimulating beneficial bacterial growth in the intestine[142].

Probiotics administration can be done by different routes, commonly through functional foods, but 
also by commercial supplements or vaccines[135,138]. It is known that probiotic oral vaccines promote 
mucosal immunity that prevents enteric infections and could complement the standard therapy in the 
patient[143]. Microorganisms administration including probiotics and synbiotics (pharmaceutical 
preparation that contains probiotics and prebiotics that implies a synergy between both) are a potential 
resource for prophylaxis and therapy in CRC[138,144]. In addition, the luminal cocktail of microor-
ganisms in the bowel can be modified not only by dietary approaches but also with the use of antibiotics 
or fecal microbiota transplantation (FMT)[145,146]. In particular, FMT has gained considerable interest 
in recent years as a strategy to treat different gastrointestinal disorders[147-149]. It consists of 
introducing a healthy microbial population from a disease-free host into a diseased host that has a 
dysbiotic community to restore microbial homeostasis[150]. Although there are limited data on the use 
of FMT in the treatment of CRC, several studies are under development to answer relevant questions 
such as if CRC can be detected, treated or prevented with this method. Rosshart and collaborators 
observed that mice treated with this method improved their resistance against colorectal tumorigenesis 
induced by azoximetane[151]. Besides, it has been seen that FMT in Balb-c mice prevents intestinal 
damage, and chemotherapy-induced toxicity[152]. Interestingly, the fecal microbiota from CRC patients 
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has been shown to cause tumors in healthy and germen-free Apcmin/+ mice through the activation of the 
Wnt signaling pathway. In these mice, the intestinal barrier is also altered and the presence of pro-
inflammatory cytokines is increased[153]. These data reveal that the composition of the microbiota may 
play a determinant role in TME conditions during tumorigenesis. Nevertheless, the subjacent 
mechanisms of all these treatments or how they ameliorate the side effects of chemotherapy is not clear 
yet.

In summary, we need a favorable and efficient clearance of tumor cells, all tumorigenic cells 
including CCSC and a restructuring of the TME for the complete eradication of CRC. Based on 
everything described in this review, a specific combination of techniques and therapies for each tumor 
and patient would be necessary to achieve this goal.

FUTURE PERSPECTIVE
According to the information stated in the previous sections, in CRC occurs an alliance between the 
TME, intestinal microorganisms and CCSC that favors tumor progression. In this scenario, it is 
emerging a new query regarding the direct effects of CCSC on gut microbiota. Perhaps the appearance 
of CCSC by spontaneous mutations favors (through paracrine signals and the release of specific factors) 
a dysbiotic and pro-inflammatory environment but in this regard, new investigations are necessary to 
evaluate the regulation of CCSC on CRC microbiota. So, there is great potential in the study of the 
interrelationship between these three components in the tumor niche, mostly for the development of 
new therapies aimed at the eradication of CCSC and non-stem cells, the restructuring of the TME and 
the growth induction of microorganisms that are beneficial to the intestinal mucosa.

Many of the therapies currently in use or under clinical evaluation are associated with systemic 
toxicity since they do not act on a well-defined target[137]. Therefore, the combination of radiotherapy 
and chemotherapy has still remained the strategy of choice in CRC[145] and not much attention is paid 
to nutritional accompaniment. Since the gut microbiota seems to be a pivotal factor in inflammatory 
disease and CRC development, overcoming therapy resistance could also improve with changes in diet. 
For this purpose, is crucial the development of foods containing compounds with anti-CCSC activity 
such as flavonoids but with better bioaccessibility and bioavailability[154]. Moreover, bacteriotherapy is 
a great opportunity to customize CRC treatment and the following tools that we will mention could be 
useful in this type of therapy. The modification of patient microbiome tending to resolve dysbiosis 
through the administration of beneficial bacteria could significantly improve conventional treatment
[93]. Even more, considering that some microbial species exhibit tumor targeting specificity, this 
strategy could ameliorate cytotoxicity in non-tumor cells. Regarding bacterial products, given their low 
molecular weight and hydrophobicity, they can easily enter tumor tissues and exert their action[155]. 
These features result in the use of microorganisms with potential preventive or palliative action in CRC 
currently receiving special attention. In fact, microbe-based therapies, and bacteria-mediated 
modulatory strategies are studied to be used for the delivery of drugs to the tumor site and to produce 
anti-cancer vaccines[145,155]. However, the information about the toxins, metabolism of microbial-
derived agents and complications from bacteriotherapy is still limited155]. Thus, placing emphasis on 
clinical research that allows the use of these new therapies, overcoming the obstacles related to it, will 
be essential in the coming years.

In addition, as we discussed in the previous section, it is also necessary to focus on the restructuring 
of the TME in favor of improving conventional CRC treatment. Restructuring the extracellular matrix, 
modulating the immune response with vaccines, antibodies, or inhibitory drugs, employing drugs that 
induce changes in the secretion profile of TME cells, switching macrophages polarization and inhibiting 
CAFs and processes like fibrosis and inflammation are some of the potential effective techniques under 
investigation[1,5,116,128].

The development of vaccines containing CSC-specific antigens is also under investigation[5]. 
However, since many of the antigens present in this cell subtype are also found in differentiated cells or 
normal stem cells, this is a challenge to overcome for successful therapy.

So, the combination of conventional therapies with new targeted inhibitors (e.g. inhibitors of signaling 
pathways or molecules derived from TME) plus an appropriate diet that favors beneficial colonic 
microbiota, as well as the use of targeting methods such as charged nanoparticles or specific bacterial 
species, could constitute a reliable alternative to fight with CRC chemoresistance and relapses. The use 
of different in vitro and in vivo preclinical models of CCSC such as colonospheras, organoids and 
xenografts, is essential to achieve this goal and bring it to clinical research.

In the near future, the challenge will be the development of selective and combined therapies to 
promote: (1) CSC eradication; (2) Eradication of cancer cells, owing to their phenotypic plasticity, even 
in the absence of CSC features; and (3) Reduction of the damage to cells outside the tumor bulk.

In any case, it is clear that the standardization of treatment protocols is not always effective for this 
disease. It is advisable to resort to a combined and personalized therapy that considers the needs and 
responses of each patient.
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Figure 2 The interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. (1) 
Gut microorganisms and/or their derived products in a dysbiosis context influence the restructuration of tumor microenvironment (TME), favoring the release of 
several factors (growth factors, cytokines, non-coding ribonucleic acids and enzymes), immunological changes and an inflammatory environment; (2) The factors 
released by TME cells impact on intestinal microbiota promoting the growth of unhealthy microorganisms and their sustained unbalance; (3) Moreover, these TME 
factors can modulate the properties and behavior of colorectal cancer stem cells (CCSC) promoting effects such as their growth, survival, maintenance and 
tumorigenic potential; (4) In this context, CCSC response expressing factors that enable them to communicate with stromal cells and also influence a TME 
restructuration; (5) Microorganisms and/or their derived products can directly modulate the features and properties of CCSC, which in response; and (6) Probably 
affect the intestinal microbiota. All these associated events contribute to colorectal cancer progression. CCSC: Colorectal cancer stem cells; TME: Tumor 
microenvironment.

CONCLUSION
Figure 2 shows the interplay between the TME and the gut microbiota that influences the properties/
behavior of CCSC. Besides, the reader can appreciate that CCSC influence on cells from TME favoring 
CRC progression but probably also on gut microbiota. The knowledge described in the present review 
provides data that may promote future research aimed at addressing the complexity of the components 
in the CRC-associated microenvironment and microbiota. Compounding such complexity, CRC is not 
an isolated neoplasm, but it’s rather emerging as a dynamic pathology whose actors are capable, 
regrettably, of contributing to evasion mechanisms of the current therapeutic strategies. Although the 
incidence and mortality from CRC have decreased in recent years, a large number of patients still suffer 
from relapses due to resistance to treatment. The development of metastases and chemoresistance is 
undoubtedly one of the greatest challenges in CRC therapy. As we have seen in this work, the 
properties of the CCSC make this cell subtype have the main responsibility for the recurrences. The shift 
in the tumor niche and the intestinal microbiota favors the acquisition of CSC characteristics, promoting 
a worse prognosis of CRC. Although much is currently known about the interrelationship between 
components of the TME, the microorganisms present in the intestinal mucosa and CCSC, there is still 
much to be discovered in this field.
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