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Abstract
Pathological scarring and scleroderma, which are the most common conditions of 
skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular 
matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to 
fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing 
response. The pathogenesis of these diseases has not been fully clarified and is 
unfortunately accompanied by exceptionally high medical needs and poor 
treatment effects. Currently, a promising and relatively low-cost treatment has 
emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell 
therapy, including ASCs and their derivatives-purified ASC, stromal vascular 
fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources 
and easy to obtain. ASCs have been widely used in therapeutic settings for 
patients, primarily for the defection of soft tissues, such as breast enhancement 
and facial contouring. In the field of skin regeneration, ASC therapy has become a 
hot research topic because it is beneficial for reversing skin fibrosis. The ability of 
ASCs to control profibrotic factors as well as anti-inflammatory and immunomod-
ulatory actions will be discussed in this review, as well as their new applications 
in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is 
still unclear, ASCs have emerged as one of the most promising systemic 
antifibrotic therapies under development.

Key Words: Adipose-derived stem cell; Cicatrix, hypertrophic; Keloid; Scleroderma, 
localized; Stromal vascular fraction; Exosomes
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Core Tip: Pathological scarring and scleroderma are the most common conditions of skin fibrosis with high 
medical needs and poor therapeutic effects. Adipose-derived stem cell (ASC) therapy has emerged as a 
promising treatment for skin fibrosis. Here, we discuss the possible mechanism of skin fibrosis as well as 
the latest research about the mechanism of ASC therapy and its application in treating these conditions. 
ASC therapy provides a brand-new insight into the treatment of skin fibrosis.

Citation: Liu YX, Sun JM, Ho CK, Gao Y, Wen DS, Liu YD, Huang L, Zhang YF. Advancements in adipose-
derived stem cell therapy for skin fibrosis. World J Stem Cells 2023; 15(5): 342-353
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/342.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.342

INTRODUCTION
Skin fibrosis is characterized by fibroblast proliferation and extracellular matrix (ECM) deposition. In 
severe cases, it can lead to pathological changes in the skin, such as keloid and hypertrophic scars (HS), 
systemic sclerosis (SSc), and scleroderma[1,2]. The fact that there are no practical disease-modifying 
therapies for those diseases and current treatment is mainly toward managing symptoms and relieving 
complications calls for a new therapy[3,4].

Since 2001, when adipose-derived stem cells (ASCs) were first characterized, ASCs have been broadly 
studied and applied as the most promising sources of cells with regenerative and multilineage charac-
teristics[5]. In recent years, various ASC derivatives, which are rich in not only ASCs but also other 
cellular and tissue components, have been seen as possible alternatives to ASCs and have received 
increasing attention for exploring their potential applications. Due to their immunomodulatory 
properties and abundance of growth factors[6,7], ASCs and their derivatives have become new remedies 
in the treatment of skin fibrosis[8-10].

In this review, we discuss the mechanism of skin fibrosis and the mechanism of ASC therapy. We 
then summarize the application of ASCs and their derivatives in skin fibrosis. Finally, we 
retrospectively describe the safety of ASC therapy and predict the future of skin fibrosis treatments.

MECHANISM OF SKIN FIBROSIS
Many fundamental studies exploring the molecular mechanisms underlying fibrosis have revealed a 
large number of genes, molecules, and cell types that may contribute to this problem[11,12].

Keloid and HS
The pathogenesis of keloids and HS is not fully understood due to the complex dynamic process of 
wound healing. However, among all the factors that stimulate fibroblasts to differentiate into myofibro-
blasts and produce excessive amounts of collagen and ECM, the role of the inflammatory response is 
increasingly considered important[1,11,13]. Downregulation of proinflammatory cytokines such as 
interleukin 6 (IL-6) and IL-8[14] and upregulation of anti-inflammatory cytokines such as IL-10 may 
reduce scar tissue formation[15]. Additionally, inflammatory cells such as macrophages, T cells, and 
mast cells, all increase and take part in a variety of biological activities in keloids and HS[1,16]. 
Although multiple intracellular signaling pathways such as Smad, signal transducer and activator of 
transcription 3, and extracellular signal-regulated kinase 3, are involved in hypertrophic scar formation, 
transforming growth factor-β (TGF-β)/Smad is thought to be a driving force[17,18]. Thus, the basic 
purpose of current prevention and therapy methods is still to reduce inflammatory processes[19].

SSc and scleroderma
SSc is an immune-mediated rheumatic disease that is characterized by excessive collagen from 
myofibroblasts in the skin and some internal organs, microangiopathy, and impairment of the humoral 
and cellular immunity system[20,21]. Scleroderma features, without the involvement of internal organs, 
are similar to SSc[4]. SSc pathogenesis involves early vasculopathy and innate and adaptive immune 
system dysfunction[12]. Initial vasculopathy and immune system dysfunction are both involved in SSc 
pathogenesis and cause SSc inflammation and tissue fibrosis[22]. Immune cells, endothelial cells, and 
fibroblasts interact with each other and release cytokines and growth factors[21]. Workers are convinced 
that type-1-interferon and interferon-inducible genes play a role in SSc pathogenesis[23]. Additional 
important factors include platelet-derived growth factor, endothelin 1, insulin-like growth factor 1, and 
TGF, which is thought to be a major regulator of fibrosis pathways[24]. Combined treatment that targets 
epigenetic/genetic, vascular, and immunologic defects and progressive fibrosis is urgently needed[12,

https://www.wjgnet.com/1948-0210/full/v15/i5/342.htm
https://dx.doi.org/10.4252/wjsc.v15.i5.342
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21,25].

MECHANISM OF ASC THERAPY
ASCs have long been thought to have immune privileges as mesenchymal stromal cells, which do not 
induce a severe allogeneic response when injected into another organism[26,27]. However, they have 
been demonstrated to evoke cellular and humoral responses in vivo, which may lead to the rapid 
elimination of transplanted cells[27]. However, ASCs function primarily through a “hit-and-run 
mechanism” with consequently a small effect on therapeutic efficacy, at least in the short or middle term
[28,29]. Indeed, most ASCs do not require cell-to-cell contact to function but rather function through 
paracrine mechanisms that release cytokines, growth factors, and extracellular microvesicles in the 
surrounding environment[30]. As reported, the therapeutic effect of ASCs and their derivatives depends 
on paracrine secretion[31-34]. ASC-secreted active substances such as cytokines[35], growth factors[36], 
chemokines[37], and extracellular vesicles[38], regulate the microenvironment around fibroblasts and 
themselves[39,40] (Figure 1).

Regulation of the microenvironment
Immunomodulation and anti-inflammatory: After injection, ASCs activate adaptive cellular responses, 
secreting IL-1, prostaglandin E2 (PGE2), IL-4 and IL-10, and TGF-β, which modulate and stimulate 
innate immune cells[41]. It was reported that ASCs suppress CD4+ and CD8+ T-cell expansion and 
differentiation while promoting regulatory T-cell proliferation and enhancing their immunosuppressive 
activity[42]. Additionally, ASCs secrete immunosuppressive substances such as nitric oxide, PGE2, 
hepatocyte growth factor (HGF), and indoleamine 2,3-dioxygenase, which downregulate TGF-β in skin 
fibrosis and attract bone marrow (BM) cells involved in tissue repair[43,44].

Despite their immunomodulatory ability, the anti-inflammatory effects of ASCs have been gaining 
increasing attention. ASCs can drive anti-inflammatory M2 macrophage polarization and ameliorate 
macrophage infiltration[34,45]. Additionally, in a rabbit model of HS, ASCs mediated the inhibition of 
M1-polarized macrophages and defection of inflammation. Moreover, the expression of inflammatory 
cytokines and proteins such as IL-6 and monocyte chemotactic protein-1, which affect inducible nitric 
oxide synthase and cyclooxygenase-2, was notably decreased in the treated groups[46-48].

Angiogenic effects: The angiogenic effects of ASCs have been broadly discussed with regard to 
myocardial infarction, nerve injury, and tissue transplantation[49-52]. The secretion of vascular 
endothelial growth factor (VEGF) as well as the transcription of angiogenic genes are improved by ASCs
[52,53]. ASC transplantation greatly improves revascularization and tissue perfusion in ischemic scars 
by stimulating endotheliocyte proliferation in blood vessels, hastening the resumption of blood 
circulation, providing oxygen and nutrition, and improving scar texture[54]. There is also an interplay 
between ASCs and endothelial precursor cells (EPCs). Growth factors produced by ASCs, such as VEGF, 
increase the migration and survival of EPCs, while EPC-produced platelet-derived growth factor BB 
stimulates ASC proliferation and migration[36].

Regulation of fibroblasts
Proliferation and differentiation: Activated dermal fibroblasts change their phenotype into myofibro-
blasts in response to injury or stress, which increases their expression of α-smooth muscle actin (α-SMA) 
and contractile ability[55,56]. Previous studies have demonstrated that ASC conditioned medium (ASC-
CM) contains abundant growth factors and cytokines, such as IL-10, adrenomedullin, and HGF[7,57]. 
HGF, proven to inhibit fibroblast differentiation into myofibroblasts, contributes to limiting the 
profibrotic functions of myofibroblasts[58,59]. It has also been reported that ectodysplasin-A2, insulin-
like growth factor binding protein-related protein-1/insulin-like growth factor-binding protein-7 
(IGFBP-rp1/IGFBP-7), and thrombospondin-1 are increased in concentration in serum-starved ASC-
CM, which could play a role in the inhibition of fibrosis[60]. These ASC-secreted immunosuppressive 
substances suppress fibrosis by various mechanisms, including reducing the expression of TGF-β1 and 
collagen and promoting the expression of matrix metalloproteinases (MMP), thus significantly 
repressing the activity of fibroblasts in vitro and in vivo[34,61].

Expression of ECM: The synthesis of collagen, hyaluronic acid, and fibronectin by myofibroblasts, in 
particular, is essential for the prolonged and excessive formation of ECM constituents[56,62]. Inhibition 
of HS-derived fibroblast (HSF) proliferation and reduction in α-SMA, type I collagen, and type III 
collagen expression can partly explain the molecular mechanism of the effects of ASCs on HSs[46,63,
64]. In another study, ASC-CM reduced the synthesis of collagen and the expression of connective tissue 
growth factor, fibronectin, and α-SMA[65]. However, in a coculture model of ASCs and normal human 
dermal fibroblasts, ASCs increased the formation of collagen types I, III, and VI in the ECM[66]. It 
appears that ASCs could target abnormal fibroblasts and reduce pathological deposition of ECM.
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Figure 1 The brief mechanism of adipose-derived stem cell therapy in skin fibrosis. ECM: Extracellular matrix; ASC: Adipose-derived stem cell; HGF: 
Hepatocyte growth factor; IGFBP-rp1/IGFBP-7: Insulin-like growth factor binding protein-related protein-1/Insulin-like growth factor-binding protein-7; EDA-A2: 
Ectodysplasin-A2; IL-10: Interleukin 10; IL-4: Interleukin 4; IL-1β: Interleukin 1β; TGF-β: Transforming growth factor beta; PGE2: Prostaglandin E2. Figure 1 is created 
with BioRender.com.

ASC THERAPY APPLICATION
ASC therapy, including the application of ASCs and their derivatives, can be roughly divided into ASC-
based therapy and stem cell-free therapy. ASC-based therapy is mainly composed of various ASCs and 
stromal vascular fractions (SVFs), which have been broadly studied and applied in the clinic (Figure 2). 
Stem cell-free therapy, such as exosomes and ASC-CM, is increasingly popular, with fewer moral and 
safety concerns.

ASCs
One of the most promising stem cell groups, ASCs, are abundant in adipose tissue, easy to extract, and 
have few adverse effects. Compared to BM-mesenchymal stem cells, ASCs exert potent anti-inflam-
matory and remodeling properties with similar therapeutic effects[30].

Intralesional injection of ASCs reduces the formation of scars while improving color quality and scar 
pliability, potentially leading to an effective and novel anti-scarring therapy[59,67,68]. These studies 
revealed that ASCs not only inhibited fibroblast proliferation and migration but also reduced the 
expression of molecules such as TGF-β1 and Notch-1. The antifibrotic effect on fibroblasts was most 
likely mediated by the inhibition of multiple intracellular signaling pathways[18,65].

As they are inherently heterogeneous, different ASC subgroups have been studied in the hope of 
finding suitable subgroups for specific diseases.

A subpopulation of ASCs that are positive for CD74+ possesses enhanced antifibrotic abilities both in 
vitro and in vivo. Additionally, CD74+ ASC-assisted fat grafts reduce dermal thickness and fibrosis in 
radiation-induced fibrosis mouse models[69]. Another CD73+ ASC subpopulation has expressed 
significantly lower levels of procollagen lysyl hydroxylase 1, a potent stimulator of fibrosis, showing 
better therapeutic effects on wound healing[70].

To modify or enhance some properties of ASCs and overcome the limitations of curative effects of 
ASCs only, ASCs are coated or activated with small molecule drugs or genetically overexpressing 
molecules that are involved in fibrosis formation.

After overexpressing MMP-3, ASCs-MMP-3 possess not only the ability of ASCs to accelerate wound 
healing but also the capability of MMP-3 to reduce scarring[71]. Compared with mASCs alone, 
migration ability and HGF production are significantly higher in mASCs activated with LMWH, 
showing higher anti-inflammatory and anti-fibrotic capability, and might be a promising candidate for 
SSc treatment[72]. IL-10-ASCs have been proven to have the capacity to suppress the development of 
HS by reducing inflammation during wound healing as well as the proliferation and migration of HSFs 
that produce ECM[73]. Poly(3-hydroxybutyrate-cohydroxy valerate) loaded with ASCs contains the 
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Figure 2 The culture and classification of adipose-derived stem cells and their derivatives. A: Culture of adipose-derived stem cells (ASC) and their 
derivatives; B: Classification of ASC and their derivatives. EPCs: Endothelial precursor cells; ECM: extracellular matrix; Exo: Exosomes; ASC: Adipose-derived stem 
cell; ASC-CM: ASC-conditioned medium; ASC-Exo: ASC exosomes; SVF: Stromal vascular fraction. Figure 2 is created by Figdraw.

bioactive cues required to improve wound healing and scarring[74].

SVF
SVF is an aqueous fraction that contains ASCs, EPCs, endothelial cells, macrophages, smooth muscle 
cells, lymphocytes, pericytes, and preadipocytes, among other components. The advantages of SVF over 
ASCs are thought to be in two areas. First, the heterogeneous cellular composition of SVF may be 
responsible for the superior therapeutic results seen in comparative animal studies. Second, in contrast 
to ASCs, SVF can be obtained significantly more quickly without the need for cell separation or special 
cultivation conditions. As a result, the therapeutic cellular product is relatively safe and is only required 
to meet minimal regulatory requirements[75]. However, it should be emphasized that whereas ASCs are 
useful for both allogeneic and autologous treatments, SVF is only appropriate for autologous treatments 
because it contains a variety of cell types that are known to trigger immunological rejection. hASCs have 
seemed to be more effective than SVF in HS, related to their higher levels of MMP-2 and MMP-2/tissue 
inhibitors of metalloproteinase-2 ratio, as well as higher expression of TGF-3 and HGF[76]. Whether SVF 
is indeed superior to ASCs in skin fibrosis treatment needs further research[6,77].

In addition to HS and keloids, SVF is also broadly applied clinically to scleroderma and SSc. SVF gel 
has superior anti-inflammatory and antifibrotic effects on scleroderma[78]. Moreover, SSc does not 
impair SVF's ability to heal vascular damage, hence justifying the use of this novel autologous 
biotherapy[79]. SVF injection is a potentially effective treatment that seems to last for at least one year. 
Quality of life, Raynaud's phenomenon, finger edema, and hand impairment and discomfort were 
significantly improved[80-83].

Stem cell-free therapy
The secretome of ASCs, with a focus on exosomes, appears to be a suitable and safe alternative with 
more effectiveness and fewer adverse effects due to restrictions on the use of stem cells in cell-based 
treatment. Moreover, the ability to biobank the ASC secretome is a significant benefit of cell-free 
therapy. In this review, we concentrate on the current understanding of the secretome of ASCs, such as 
ASC exosomes (ASC-Exos) and ASC-CM, used in skin fibrosis stem cell-free therapy (Figure 3).

ASC-Exo: As one of the components of paracrine signaling, ASC-Exos are small, single membranous 
secretory organelles rich in proteins, lipids, nucleic acids, and carbohydrate conjugates[26,84,85]. 
Among other research discoveries, they are thought to have a variety of activities, such as reshaping the 
ECM and transmitting signals and molecules to other cells. In addition, they are not rejected by the 
immune system, have homing effects, and the dose is easily controlled[86,87]. Compared to ASCs, ASC-
Exos offer a great opportunity to create new cell-free therapeutic techniques that could circumvent the 
challenges and dangers related to using natural or synthetic stem cells[86,88].

ASC-Exos release miR-29a-3p, which can suppress the expression of several profibrotic, antiapoptotic, 
remodeling, and methylase genes[89]. ASC-Exos are now a viable new option for the systemic treatment 
of keloids. They significantly suppress the development of ECM in keloids by decreasing collagen 
synthesis and impairing the microvessel structure, enhancing the expression of TGF-3 while inhibiting 
the protein expression of Smad3 and Notch-1[84]. By suppressing the expression of the TGF-1/Smad 
pathway, ASC-EXOs may prevent keloid fibroblasts from proliferating and migrating and consequently 
promoting death[90].
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Figure 3 Adipose-derived stem cell conditioned media, exosomes, and adipose tissue extracts synthesis and therapeutic application. 
ASC: Adipose-derived stem cell; ASC-CM: ASC-conditioned medium; ASC-Exo: ASC exosomes; FBS: fetal bovine serum; PBS: Phosphate-buffered saline. Figure 3 
is created with BioRender.com.

In hypertrophic scar fibrosis, ASC-exosomal miR-192-5p targeted IL-17RA to control the Smad 
pathway, and miR-29a inhibited the TGF-2/Smad3 signaling pathway, which could be responsible for 
the antifibrotic effects[91,92]. Another postoperative study showed that hASC-Exo therapy inhibited 
collagen deposition and myofibroblast aggregation in vivo and reduced the development of HS[93].

ASC-CM: Active chemicals released by ASCs, such as cytokines, exovesicles, exosomes, DNA, and 
RNA, are found in ASC-CM and can facilitate tissue healing and control immunity. ASC-CM can lower 
treatment costs and avoid the safety issues associated with stem cell therapy[94]. One disadvantage of 
CM over stem cells is the short life of active components. Stem cells can anchor inside a tissue or organ 
after local administration and function there for a long time, but CM-containing substances such as 
growth or enzyme factors are rapidly diluted and eliminated by diffusion[95,52].

ASC-CM may reduce collagen deposition and scar formation, inhibiting the p38/mitogen-activated 
protein kinase signaling pathway can have an anti-scarring effect, and the use of ASC-CM may offer a 
unique therapeutic approach for the treatment of HS[96]. According to in vitro and ex vivo experiments, 
chyle fat-derived stem cell-CM reduced the expression of type I collagen (Col1), type III collagen (Col3), 
and SMA, which prevents fibrosis in HSFs[63]. ASCs-CM dramatically elevated MMP-1 expression and 
dose-dependently decreased cell survival, expression of fibrosis markers, tissue inhibitor of metallopro-
teinases-1, the amount of collagen produced, and the ratio of Col1/Col3. These findings show that ASC-
CM efficiently blocks fibrosis-related factors and controls ECM remodeling in HSF[64]. Combining ASC-
CM with therapeutic therapies is another development. A histologic study revealed that ASC-CM 
increased the density of cutaneous collagen and elastin and arranged them in a certain order. A good 
combination therapy for treating atrophic acne scars and skin rejuvenation is ASC-CM with FxCR[97]. 
Stronger antifibrotic effects of CD74+ ASC-conditioned media may have resulted from increased 
production of HGF, FGF2, and TGF-3 and lower levels of TGF-β1[69]. ASC-CM and polysaccharide 
hydrogels might cross-bind in situ, which could significantly improve the therapeutic results by 
reducing scar proliferation, offering a promising alternative for the prevention of HS[98].

UPDATES ON THE CLINICAL APPLICATIONS OF ASC THERAPY
To evaluate the effectiveness of ASCs, numerous clinical trials have been carried out; however, they 
have largely focused on SSCs. More research is required to determine the long-term safety of ASCs, 
detailed mechanisms of effect, and the capacity to translate experimental results into clinical practice.

ASCs are used to treat secondary-progressive multiple sclerosis in 30 individuals. However, 
assessments of treatment efficacy revealed a mild tendency toward effectiveness. Establishing the 
possible therapeutic benefit of this technique would require larger studies and presumably treatment at 
earlier stages[99].

To compare the effectiveness of an injection of ASC-SVF derived from adipose tissue with placebo in 
decreasing hand disability in 40 SSc patients. This research demonstrated a gradual improvement with 
no evidence that the AD-SVF was superior. Given the limitations of this trial, a study with a larger 
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group of patients is urgently needed to accurately determine the value of ASC-SVF therapy[100]. It was 
revealed through a randomized controlled trial that regional adipose tissue grafting is beneficial in 
repairing ischemia digital ulcers in SSc[101].

This study investigates the safety and efficacy of administering autologous SVF cells to SSc patients. 
Early evaluations at six months suggest a possible efficacy that has to be confirmed in a larger 
population randomized placebo-controlled trial. Quality of life, Raynaud's phenomenon, finger edema, 
and hand impairment and discomfort are significantly improved[83]. A sequential 12-mo follow-up 
showed significant improvement in the vascular suppression score, skin sclerosis, motion and strength 
of the hands, and finger edema. The decrease in hand discomfort was statistically significant. A benefit 
was found in daily tasks, housework, and social activities, according to the questionnaire[82].

An open cohort study found that ASCs dramatically reduced the consequences of orofacial fibrosis in 
SSc. With the inhibition of fibroblast proliferation and important fibrogenesis regulators, including TG-1 
and CTGF, ASCs may alleviate skin fibrosis[95].

SAFETY ASSESSMENT
ASCs overcome the ethical issues associated with embryonic stem cells and are therefore considered 
safe. However, as a stem cell therapy, ASCs still have problems with storage and transport, as well as 
the risk of inducing tumors and malformations[102]. Further studies on their efficiency are yet needed, 
taking into account the host environment and patient-related factors. Importantly, a long-term follow-
up is needed to supervise cancer recurrence rates in the context of previous malignancy[103].

CONCLUSION
While the underlying mechanism of skin fibrosis is still unclear, ASC therapy plays multiple roles in the 
treatment of skin fibrosis, with a combination of aesthetic and therapeutic outcomes. Different ASC 
derivatives show various properties, which might be further explored in clinical trials. In the future, 
ASC therapy is likely to become an indispensable part of combined treatment in skin fibrosis.
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