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Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic 
potential, and have therefore been extensively investigated in preclinical studies 
of regenerative medicine. However, while MSCs have been shown to be safe as a 
cellular treatment, they have usually been therapeutically ineffective in human 
diseases. In fact, in many clinical trials it has been shown that MSCs have 
moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the 
heterogeneity of MSCs. Recently, specific priming strategies have been used to 
improve the therapeutic properties of MSCs. In this review, we explore the 
literature on the principal priming approaches used to enhance the preclinical 
inefficacy of MSCs. We found that different priming strategies have been used to 
direct the therapeutic effects of MSCs toward specific pathological processes. 
Particularly, while hypoxic priming can be used primarily for the treatment of 
acute diseases, inflammatory cytokines can be used mainly to prime MSCs in 
order to treat chronic immune-related disorders. The shift in approach from 
regeneration to inflammation implies, in MSCs, a shift in the production of 
functional factors that stimulate regenerative or anti-inflammatory pathways. The 
opportunity to fine-tune the therapeutic properties of MSCs through different 
priming strategies could conceivably pave the way for optimizing their thera-
peutic potential.

Key Words: Mesenchymal stromal/stem cells; Mesenchymal stromal/stem cell therapeutic 
properties; Mesenchymal stromal/stem cell paracrine effects; Mesenchymal stromal/stem 
cell priming; Pro-inflammatory priming; Hypoxic priming, 3D culture priming
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Core Tip: Mesenchymal stromal/stem cells (MSCs) have demonstrated promising therapeutic results in the 
field of regenerative medicine. However, due to their heterogeneity, the application of MSCs in clinical 
trials has shown moderate or poor efficacy. Here, we review data on the principal priming approaches for 
enhancing the therapeutic potential of MSCs. We found that different priming strategies can modify MSC 
properties and, in this case some therapeutic effects on different disease models can be obtained in relation 
to dose and/or combination of the priming factors used. The production of priming type-specific functional 
factors in MSCs could pave the way toward implementing new MSC-based therapies.

Citation: Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies 
improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their 
clinical use. World J Stem Cells 2023; 15(5): 400-420
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/400.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.400

INTRODUCTION
Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells involved in the homeostasis of 
tissue regeneration and, because of their therapeutic potential, have been extensively investigated in 
various clinical conditions[1-6]. Though MSC treatment was initially thought to promote tissue 
regeneration thanks to MSC multipotency of differentiation[7-9], recent evidence has revealed that the 
efficacy of MSC-based therapies is, at least in part, linked to the production of functional paracrine 
factors. These cells are able to secrete numerous products, e.g., growth factors, cytokines, chemokines, 
and extracellular vesicles (EVs), which can regulate many pathophysiological processes, such as fibrosis, 
immune dysregulation, angiogenesis, and stimulation of tissue resident stem cells, in order to 
coordinate both tissue regeneration and functional recovery[10-12]. In injured tissue, MSC engraftment 
is limited because they undergo cell death, and their beneficial effects are exerted through secretion of 
various functional factors that not only enhance the function of resident cells, but also attract immune 
and progenitor cells, contributing to the coordination of tissue repair[13,14]. Therefore, considering the 
importance of the paracrine component in mediating MSC functions, there is growing interest in the 
molecular basis of MSC secretion involved in the therapeutic function of these cells.

Over the years, a large number of tissues, including placenta, adipose, umbilical cord, dental pulp, 
bone marrow, synovial membrane, liver and others, have been used as a source of MSCs[15-20]. It is 
quite clear that MSCs derived from all these sources possess a wide variety of functional effects, which 
they apply physiologically to their own original tissue, regulating homeostasis and regeneration. 
Interestingly, these effects may be useful for therapeutic applications of MSCs[3,21]. Currently, there are 
1487 clinical trials registered at clinicaltrials.gov aimed at studying MSC therapeutic efficacy in the 
treatment of several clinical disorders, including lung, liver, kidney, orthopedic, cardiovascular, 
neurodegenerative, and immune diseases. In different clinical settings, MSC-therapies have been tested, 
showing tolerable safety, and demonstrating therapeutic benefits, and this has led to regulatory 
approvals of some MSC-based therapeutic products in several countries. In 2012, Cartistem, a MSC 
product based on the use of umbilical cord-derived MSCs for the treatment of traumatic or degenerative 
osteoarthritis, was approved by Korea’s Ministry of Food and Drug Safety[22]. Moreover, Remestemcel-
L, based on the use of bone marrow-derived MSCs (BM-MSCs), has been investigated in a phase 3 
clinical trial in patients with steroid-refractory acute graft-versus-host disease (GVHD)[23]. Recently, 
due to the immunomodulatory properties of Remestemcel-L, which are able to work against cytokine 
storm linked to several inflammatory conditions, this therapy has also been tested for the treatment of 
coronavirus disease 2019-associated multisystem inflammatory syndrome[24]. The increasing interest in 
the clinical applications of MSCs as a cellular therapy has also been evidenced by the burgeoning of 
several companies that sell MSC therapies to United States clinics[25]. However, this has highlighted 
that in some cases the propensity for economic gain has outweighed the clinical advantages, despite the 
lack of solid scientific evidence that supports the broad use of MSCs in treating various human 
disorders. Indeed, in many clinical trials it has been shown that MSCs have moderate or poor efficacy, 
and the results from some studies are controversial[26-31]. In particular, due to both the inconsistent 
criteria used for the MSC identity across studies, and MSC heterogeneity, which depends on the 
different MSC origin[32] and the diverse harvesting and culture strategies[33], the clinical results 
obtained after MSC therapy are frequently variable. This makes it very difficult to obtain reliable 
conclusions regarding MSC therapeutic efficacy. Thus, while MSCs demonstrate a good margin of safety 
as cellular treatment, they have usually been therapeutically ineffective in humans[21].

These issues have underscored the urgent need to optimize the clinical use of MSCs or enhance MSC 
therapeutic effects. After determining the most appropriate cell source to use both in terms of 
invasiveness for cell isolation and cell yield, specific standardized production methods are needed to 
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ensure MSC therapeutic abilities and, therefore, their clinical efficacy. MSCs can be considered a key 
regulatory component in the tissue stem cell niche and, starting with the physiological role that these 
cells play in regulating tissue regeneration following injury[3,4,6,34-39], specific priming strategies can 
be understood and adapted for MSC clinical application. In this regard, much attention has been paid to 
the opportunity of MSC pre-conditioning to prime the cells before their clinical use. In this case, the 
therapeutic properties of MSCs can be modulated by pre-treatment of cells with hypoxia, cytokines, as 
well as growing MSCs under three-dimensional (3D) culture. In those instances, in response to MSC 
priming, the phenotype of MSCs was switched toward an anti-inflammatory, pro-trophic and more 
regenerative potential, which results in an enhanced therapeutic function of the cells[3,40-45].

In this review, we summarize the principal priming methods aimed at improving MSC efficacy as a 
therapeutic product. We would also like to highlight the fact that specific priming strategies can be 
considered more suitable for some types of diseases, leading to new therapeutic approaches that could 
be used to develop more powerful and predictable MSC therapies.

THE SECRETION OF PARACRINE FACTORS MEDIATE THE THERAPEUTIC FUNCTION 
OF MSCs
The secretion of functional products is central to MSC-based therapy, as demonstrated in numerous 
studies. Indeed, individual components of MSC secretome, such as functional proteins and EVs, are 
involved in the regulation of various biological processes, including angiogenesis, immunoregulation, 
wound healing, and tissue repair/protection[14,46-49]. Among the MSC-derived functional products, 
exosomes (EXOs), belonging to EVs, are anuclear particles ranging from 50 to 200 nm in size that are 
constitutively released from the endosomal compartment of MSCs. They contain a plethora of functional 
protein and other molecules, including microRNAs (miRNAs), which mediate several MSC properties
[15,50,51]. EXOs are key components of intercellular communication, because they are released into the 
intercellular space where they exert local paracrine or distal systemic effects[52]. In fact, EXOs are able 
to regulate numerous biological processes, including angiogenesis[53], cell proliferation[54], and the 
activation/inhibition of immune cells[55]. Interestingly, EXO content can be changed by various 
priming stimuli[3,40,55]. Recently, it has been revealed that EXO-derived miRNAs play a critical role in 
mediating EXO effects[56]. MiRNAs are 19-22-nucleotide-long non-coding RNAs that regulate mRNA 
translation, and are involved in many cellular processes[56,57]. Therefore, even if some therapeutic 
functions of the MSCs are mediated by cell-to-cell contact, the secretion of paracrine factors can be 
considered the main mechanism by which MSCs elicit functional responses in target cells[3,40,58,59]. In 
many in vitro and in vivo disease models, MSC-derived products have been identified as responsible for 
therapeutic effects[60-63]. For example, promising preclinical therapeutic effects have been obtained 
using MSC-derived EVs. In particular, regarding BM-MSC-derived EVs, Haga et al[64] found that these 
functional factors were able to reduce hepatic injury by modulating cytokine expression in a mouse 
model of fulminant hepatic failure. Reis et al[65] demonstrated that the administration of EXOs in a rat 
model of gentamycin-induced kidney injury, was able to improve the kidney injury score. Moreover, it 
has been shown that EXOs derived from umbilical cord-derived MSCs were able to accelerate wound 
healing in a rat skin burn model[66], and EXOs derived from BM-MSCs overexpressing hypoxia-
inducible factor (HIF)-1α accelerated bone regeneration and angiogenesis in a rabbit model of steroid-
induced avascular bone necrosis[67].

MSCs can also secrete a number of cytokines/chemokines that control both the innate and adaptive 
immune responses, resulting in immunoregulation and the induction of tolerance[68]. Indeed, it has 
been shown that MSCs can produce both anti- and pro-inflammatory factors which, depending on their 
ratio, regulate the pro- or anti-inflammatory activity of MSCs[69]. In this case, final immunoregulatory 
properties may be affected by cell culture conditions that can prime/enhance MSC properties[3,70,71]. 
MSCs also have the ability to roll and adhere to post-capillary venules, and migrate to injured tissues, 
contributing to tissue repair/regeneration[72]. In this case, once MSCs reach the site of the injury, these 
cells put in place an active regulation by producing paracrine factors that impact tissue survival/repair, 
and activate tissue resident stem cells[3,73,74]. The secretion of various soluble factors has also been 
found to be responsible for the pro-angiogenic and anti-apoptotic effects of MSCs[75]. Though not well 
understood, the beneficial effects of conditioned media (CM) derived from MSCs have been clearly 
demonstrated by various experimental findings, supporting the concept of paracrine effects[76]. Several 
preclinical studies have tested the efficacy of CM in different diseases models. MSC-derived CM has 
been shown capable of improving cell viability and reducing inflammation in both in vitro and in vivo 
models of lung ischemia/reperfusion injury (IRI)[59,77]. Moreover, it has been demonstrated that BM-
MSC-derived CM was able to reduce lung inflammation and edema in a mouse model of lipopolysac-
charide-induced lung injury[78], and to improve renal tissue pathology in a mouse model of cisplatin-
induced kidney injury[79]. Youdim et al[80], in a rat model of fulminant hepatic failure, found that the 
CM derived from BM-MSCs reduced leukocytic infiltrates and hepatocellular death. The CM derived 
from the same cells, in a mouse model of antigen-induced arthritis, was also able to reduce joint 
swelling, cartilage loss, and tumor necrosis factor (TNF)-α secretion[81]. In a rat model of lung fibrosis 
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and hypertension, using CM derived from adipose MSCs (AdMSCs), demonstrated the ability of 
secretome to reduce collagen deposition and improve lung blood flow[82]. In a rabbit model of surgical 
bone lesion, Linero and Chaparro[83] found that the CM produced from AdMSC cultures induced bone 
regeneration.

THE SECRETION OF MSC PARACRINE FACTORS CAN BE MODULATED BY VARIOUS 
PRIMING STRATEGIES
Given the heterogeneity of results supporting the efficacy of MSCs in the treatment of different human 
disorders, there is a need to improve the therapeutic properties of MSCs, and the best way might be that 
of preconditioning/priming. Though this approach has been widely used in the field of immunology, 
has also been effectively applied to MSCs[3,84,85]. Among commonly used priming strategies, leading 
approaches can be attributed to three main categories: (1) MSC priming with inflammatory molecules; 
(2) MSC priming with hypoxia; and (3) MSC priming with 3D cultures. These priming signals activate 
potential MSC mediators, including surface receptors and ligands, signalling molecules that induce 
survival/growth, regulatory molecules such as miRNAs, and transcription factors, which can modify 
the MSC phenotype[86-89], with a consequent boosting of MSC therapeutic functions (Figure 1).

Priming with inflammatory molecules
Numerous studies have revealed that the immunosuppressive properties of MSCs are not intrinsically 
possessed, but require priming of MSCs by inflammatory factors[90-92]. Depending on the inflam-
matory conditions, it has been demonstrated that MSC phenotypes can be polarized into MSC type 1 
(with pro-inflammatory properties) and MSC type 2 (with immunosuppressive properties)[93,94]. 
Several strategies have been implemented to modulate/enhance the secretion of functional molecules in 
MSCs. As shown in Figure 2, the treatment of MSCs with inflammatory cytokines, including interferon-
gamma (IFN-γ), interleukin (IL)-1α/β, IL-25, IL-6, TNF-α, and IL-17 enhanced the immunomodulatory 
properties of MSCs[40,95-112]. These treatments increase the production/secretion of functional factors, 
including hepatocyte growth factor (HGF), transforming growth factor-β, IL-6, prostaglandin E2 (PGE2), 
leukemia inhibitory factor, granulocyte colony-stimulating factor, IL-10, macrophage inflammatory 
protein-1α, indoleamine 2,3-dioxygenase (IDO), intercellular adhesion molecule, programmed death 
ligand 1-2, monocyte chemoattractant protein (MCP)-1, monokine induced by IFN-γ, induced protein 
10, and macrophage inflammatory protein-1β, which in turn confer more paracrine immunomodulatory 
properties to MSCs (Figure 2). It has been demonstrated that CM enriched with the above-described 
factors was able to inhibit T cell proliferation/activation, reduce the secretion of inflammatory 
mediators, and induce monocyte polarization towards anti-inflammatory the M2 phenotype[40,102,105-
112]. It has been shown that the treatment with inflammatory cytokines was also able to improve the 
immunomodulatory capabilities of EXOs, and these effects appear to be mediated by specific miRNAs, 
such as miR-21, miR-23a, miR-26b, miR-125b, miR-130b, miR-140, miR-146a, miR-203a, miR-223, miR-
224, and miR-320a[40,109,111,113].

Priming with hypoxia
Differently from inflammatory cytokines, hypoxic treatment of MSCs seems to stimulate primarily the 
secretion of functional factors involved in the processes of angiogenesis and tissue proliferation/
regeneration (Figure 2). Hypoxic preconditioning was able to promote angiogenic potential of MSCs via 
the activation of the HIF-1α-GRP78-Akt axis, and the overproduction of vascular endothelial-derived 
growth factor (VEGF) and HGF[114]. Lee and Joe[115] demonstrated that hypoxia priming induces an 
increase in HIF-1α expression and consequent VEGF production, improving the ability of MSCs to 
stimulate migration and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, 
Bader et al[116] found that hypoxic preconditioning induces the anti-apoptotic and pro-angiogenic 
effects of MSCs compared with untreated cells. In particular, Bcl-xL, BAG1, and VEGF were overex-
pressed after hypoxic priming, enhancing HUVEC proliferation and migration. Hypoxic MSCs are also 
able to produce numerous factors related to tissue remodelling, including matrix metallopeptidase 1 
(MMP1), MMP2, and MMP9[117-119], as well as crucial factors such as IL-8 and MCP-1, involved in the 
chemotaxis and activation of innate immune responses[120,121]. Also with regard to EVs, hypoxic 
priming has been shown to have important effects. Xue et al[122] discovered that EXOs derived from 
hypoxia-treated MSCs were able to increase migration and tube formation of HUVECs through the PKA 
signalling pathway. Moreover, Ge et al[123] demonstrated the efficacy of hypoxic MSC-derived EXOs in 
enhancing angiogenesis. In particular, they showed that hypoxic EXOs containing miR612 promoted, 
through HIF-1α activation, the production of VEGF in human brain microvascular endothelial cells, 
inducing proliferation, migration, and angiogenic activities of these cells.

Priming with 3D culture of MSCs
Various in vitro strategies have been applied for the production of MSCs, with improved therapeutic 
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Figure 1 Potential mechanisms mediating mesenchymal stromal/stem cell-primed therapeutic properties. Mesenchymal stromal/stem cells 
(MSCs) can be primed through different signals, including hypoxia, three-dimensional cultures, and inflammatory cytokines to obtain a therapeutic phenotype. The 
potential mediators of this new phenotype comprise a plethora of regulatory molecules within MSCs, including surface receptors and ligands, signalling molecules 
inducing survival/growth, regulatory molecules such as microRNAs, and transcription factors regulating several pathways. Thus, primed MSCs can modulate 
inflammation, stimulate angiogenesis, and promote tissue repair/regeneration. MSCs: Mesenchymal stromal/stem cells; miRNAs: MicroRNAs.

properties, and priming with inflammatory factors may impact the expression of HLA-DR, thus altering 
allogeneic therapeutic possibilities[124-126]. MSC priming through 3D culture techniques, which allows 
for the generation of MSC spheroids, strictly recapitulates the in vivo MSC niche and enhances the 
phenotypic profile of MSCs, increasing both trophic and immunomodulatory functionalities. MSC 
spheroid action is exerted by the paracrine secretion of functional factors that possess anti-inflam-
matory, angiogenic, anti-fibrotic, anti-apoptotic, and mitogenic properties (Figure 2)[127]. Recently, 
through omics approaches, such as RNA sequencing and analysis of DNA methylation, it has been 
demonstrated that, compared with conventional 2D culture, MSC spheroids were able to modify their 
transcriptome profile by overexpressing genes that can regulate proliferation/differentiation, as well as 
immunomodulatory and angiogenic processes[128]. Concerning immunomodulatory and regenerative 
effects, 3D culture of MSCs seems to have more intermediary functions than the above-mentioned 
priming strategies (priming with inflammatory molecules or hypoxia) (Figure 2). 3D MSC spheroids 
have been shown to be capable of secreting multiple functional factors. For example, it has been found 
that various regenerative and immunomodulatory factors, such as stromal cell-derived factor-1α, 
growth-related oncogene α, MCP-1/3; IL-4, IL-10; epidermal growth factor (EGF), leukemia inhibitory 
factor, placental growth factor-1, VEGF-A/D, HGF, insulin like growth factor 1, TNFAIP6, STC1, 
platelet-derived growth factor B, transforming growth factor-β, PGE2, and IDO were up-regulated in 3D 
MSC spheroids compared with those of the MSCs cultivated under conventional 2D conditions[43,44,59,
73,128-131] (Figure 2). The paracrine effects of 3D MSC appear to be also mediated by EVs. In particular, 
EXOs derived from MSC 3D cultures have been shown to have higher yields and enhanced activity. 
Indeed, compared with 2D cultures, EXOs isolated from CM of MSC spheroids were able to inhibit T 
cell proliferation and stimulate angiogenesis in vitro[44], as well as attenuate inflammation and period-
ontitis in vivo[132], and stimulate tissue regeneration in both in vitro and in vivo models[133].

THERAPEUTIC PROPERTIES OF PRIMED MSCs IN PRECLINICAL MODELS
Principal priming strategies to treat chronic immune-related disorders
By virtue of their immunomodulatory properties, MSCs are being studied to treat numerous chronic 
conditions, including GVHD and inflammatory bowel disorders, in order to attenuate inflammation and 
induce tissue recovery (Table 1). As already mentioned, treating MSCs with inflammatory factors 
enhances their immunomodulatory properties, and renders these cells able to inhibit T cell prolif-
eration/activation and induce monocytes toward an anti-inflammatory phenotype. This quality makes 
these cells more clinically effective when applied to chronic inflammatory-related diseases (Figure 2). 
Indeed, several experimental studies have demonstrated that the treatment of MSCs with inflammatory 
factors, such as IFN-γ, IL-1β, and IL-25, enhanced MSC therapeutic effects in in vivo models of chronic 
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Table 1 Representative priming strategies of mesenchymal stromal/stem cells and their application in preclinical studies

MSCs Dose Priming treatments Study model Observed therapeutic effects Ref.

AMSCs 1 × 105 MSCs/5 × 105 
PBMCs

IFN-γ In vitro model of T cell 
activation and monocyte 
M1/M2 polarization

Regulation of T cell 
activation/anergy and induction of 
M2-like polarized phenotype in 
monocytes

[40]

BM-MSCs 0.5 × 106 MSCs/mouse IFN-γ In vivo model of chronic 
colitis

Attenuation of inflammation and 
colitis

[96]

BM-MSCs NA IFN-γ; TNF-α In vitro model of MLR Inhibition of allogeneic MLR [97]

CB-MSC-derived 
EVs

NA IFN-γ In vivo model of acute 
kidney injury and in vitro 
model of T cell activation

Regulation of T cell activation and 
amelioration of kidney injury with 
unprimed MSCs only

[100]

BM-MSCs and 
CB-MSCs

1 × 106 MSCs/mouse IFN-γ In vivo model of GVHD Reduction of the symptoms of 
GVHD

[101]

BM-MSCs 1 × 104 MSCs/2 × 103 
macrophages

IFN-γ; LPS; TNF-α In vitro model of monocyte 
M1/M2 polarization

Induction of monocyte polarization 
toward an anti-inflammatory M2 
phenotype

[102]

UC-MSCs 1 × 106 MSCs/mouse IFN-γ; TNF-α In vivo model of GVHD Reduction of the symptoms of 
GVHD

[103]

BM-MSCs 2.5 × 105 MSCs/5 × 105 
macrophages

IFN-γ; IL-1β In vitro model of monocyte 
M1/M2 polarization

Induction of monocyte polarization 
toward an anti-inflammatory M2 
phenotype

[105]

BM-MSC-
derived CM

NA IFN-γ; IL-1α/β; TNF-α In vitro model of LPS-
injured microglial cells

Reduction in the secretion of inflam-
matory factors 

[106]

AdMSCs; BM-
MSCs; CB-MSCs.

NA IFN-γ In vitro model of T cell 
activation

Suppression of T cell proliferation [110]

BM-MSCs NA IFN-γ; spheroids In vitro model of T cell 
activation

Suppression of T cell activation and 
proliferation

[112]

BM-MSCs 2 × 106 MSCs/mouse IFN-γ Autoimmune encephalomy-
elitis

Attenuation of pathologic manifest-
ations

[134]

BM-MSCs 1 × 106 MSCs/mL IFN-γ In vitro model of T cell 
activation and in vivo model 
of colonic wounds

Regulation of T cell activation and 
acceleration of healing of colonic 
mucosal wounds

[135]

UC-MSCs 2 × 106 MSCs/mouse IL-1β In vivo model of chronic 
colitis

Attenuation of inflammation and 
colitis

[98]

UC-MSCs 1 × 106 MSCs/mouse IL-1β In vivo model of sepsis Increase in survival rate [109]

MSC-derived 
EVs

40 μg/mouse IL-1β In vitro model of monocyte 
M1/M2 polarization and in 
vivo model of sepsis

Induction of monocyte M2 
polarization and amelioration of 
sepsis

[111]

AdMSC-derived 
CM

20 μL/rat TNF-α In vivo model of wound 
healing

Acceleration of wound closure and 
angiogenesis

[99]

BM-MSCs 1.6 × 106 MSCs/mouse TNF-α In vivo model of peritonitis Attenuation of inflammatory 
responses

[136]

BM-MSCs 5 × 106 MSCs/rat IL-25 In vivo model of chronic 
colitis

Attenuation of inflammation and 
colitis

[95]

BM-MSCs 1 × 106 MSCs/mL IL-6 In vivo model of liver 
fibrosis

Reduction of liver injury and fibrosis [104]

BM-MSCs 3.91 × 104 MSCs/3.91 × 
106 T cells

IL-17 In vitro model of T cell 
activation

Suppression of T cell 
proliferation/activation and Th1 
cytokines

[108]

AdMSCs 5 × 105 MSCs/mouse Hypoxia In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [114]

BM-MSC-
derived CM

100 μL/mouse Hypoxia In vivo model of wound 
healing

Acceleration of skin wound healing [120]

BM-MSCs 2.5 × 105 MSCs/mouse Hypoxia In vivo model of pancreatic 
islet transplantation

Reversion of impaired glucose 
tolerance

[121]

In vivo model of hindlimb BM-MSCs 5 × 105 MSCs/mouse Hypoxia Improvement of angiogenesis [139]
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ischemia

AdMSCs 5 × 105 MSCs/mouse Hypoxia In vivo model of hindlimb 
ischemia

Improvement of functional recovery 
and neovascularization

[140]

AdMSC-derived 
CM

NA Hypoxia In vivo model of partial 
hepatectomy

Enhanced liver regeneration [142]

AdMSCs 2 × 106 MSCs/rat Hypoxia In vivo model of acute 
kidney injury

Improvement of angiogenesis and 
inhibition of ROS generation

[145]

AdMSC-derived 
CM

100 μL/mouse Hypoxia In vivo model of acute 
kidney injury

Improvement of renal function and 
reduction of inflammation

[146]

BM-MSCs 1 × 106 MSCs/rat Hypoxia In vivo model of lung IRI Attenuation of pathologic lung 
injury score by inhibiting inflam-
mation and generation of ROS and 
anti-apoptotic effects

[147]

BM-MSCs NA Hypoxia In vivo model of radiation-
induced lung injury

Improvement of antioxidant ability [148]

BM-MSCs 1 × 106 MSCs/rat Hypoxia In vivo model of myocardial 
infarction

Improvement of angiogenesis and 
function

[150]

BM-MSCs 1 × 106 MSCs/mouse Hypoxia In vivo model of myocardial 
infarction

Prevention of apoptosis in 
cardiomyocytes

[151]

BM-MSC-
derived EVs

1 μg of EVs/mouse Hypoxia In vivo model of myocardial 
infarction

Reduction of cardiac fibrosis [152]

BM-MSC-
derived EVs

50 μg of EVs/rat Hypoxia In vivo model of cardiac IRI Reduction of IRI and improvement 
of cardiomyocyte survival

[153] 

BM-MSC-
derived EVs

200 μg of EVs/20 g Hypoxia In vivo model of myocardial 
infarction

Improved cardiac repair by 
amelioration of cardiomyocyte 
apoptosis

[154]

BM-MSCs 1 × 106 MSCs/rat Hypoxia In vivo model of cerebral 
ischemia

Enhanced angiogenesis and 
neurogenesis

[157]

BM-MSC-
derived CM

100 μg of CM/kg Hypoxia In vivo model of traumatic 
brain injury

Improved neurogenesis, motor and 
cognitive function

[158]

UC-MSCs 1 × 105 MSCs/rat Hypoxia In vivo model of spinal cord 
injury

Increase in axonal preservation and 
decrease of apoptosis

[159]

PMSC-derived 
CM

100 μL/mouse Hypoxia In vivo model of scar 
formation

Reduction of scar formation [162]

BM-MSCs 5 × 106 MSCs/rat Hypoxia In vivo model of partial 
hepatectomy

Enhanced liver regeneration [164]

DP-MSCs N.A. Hypoxia In vivo model of dental pulp 
injury

Regeneration of dental pulp with a 
rich vasculature

[167]

AF-MSC-derived 
CM

N.A. Hypoxia In vivo model of wound 
healing

Acceleration of skin wound healing [168]

AMSC-derived 
CM and EVs

200 μL CM and 5 μg 
EVs/1 × 105 PBMCs, and 
100 μL CM and 5 μg 
EVs/1 × 104 HUVECs

3D cultures/spheroids In vitro model of T cell 
activation and HUVEC cells

Induction of angiogenesis and 
inhibition of T cell proliferation

[44]

AMSCs 250 μL CM/ 1.5 × 105 
alveolar epithelial cells

3D cultures/spheroids In vitro model of lung IRI Attenuation of IRI side effects by 
improving the efficacy of in vitro 
EVLP

[59]

AMSC-derived 
CM

50 μL CM/ 1 × 104 liver 
cells

3D cultures/spheroids In vitro model of liver IRI Attenuation of IRI side effects by 
inhibiting inflammation and 
apoptosis

[131]

BM-MSCs 3 × 106 MSCs/mouse 3D cultures/spheroids In vivo model of peritonitis Production of anti-inflammatory 
cytokines

[137]

BM-MSCs 1.5 × 106 MSCs/mouse 3D cultures/spheroids In vivo model of peritonitis Attenuation of inflammatory 
responses

[138]

CB-MSCs 1 × 107 MSCs/mouse 3D cultures/spheroids In vivo model of hindlimb 
ischemia

Improvement of survival and 
angiogenesis 

[141]

Reduction of apoptosis and tissue 
damage, promotion of vascular-
ization, and amelioration of renal 

AdMSCs 2 × 106 MSCs/rat 3D cultures/spheroids In vivo model of acute 
kidney injury

[143]
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function

UC-MSC-
derived EVs

200 μg of EVs/mouse 3D cultures/spheroids In vivo model of acute 
kidney injury

Attenuationof pathological changes 
and improvement of renal function

[144]

BM-MSCs 2 × 106 MSCs/rat 3D cultures/spheroids In vivo model of myocardial 
infarction

Promotion of cardiac repair [155]

BM-MSCs 5 × 105 MSCs/rat 3D cultures/spheroids In vivo model of myocardial 
infarction

Stimulation of a vascular density 
and improvement of cardiac 
function

[156]

AdMSCs 1 × 107 MSCs/mouse 3D cultures/spheroids In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [163]

AdMSCs 2 × 106 MSCs/rabbit 3D cultures/spheroids In vivo model of disc 
degeneration

Induction of disc repair [169]

BM-MSCs NA 3D cultures/spheroid In vivo model of bilateral 
calvarial defects

Induction of bone regeneration [170]

SMSCs NA 3D cultures/spheroid In vivo model of 
osteochondral defects

Induction of cartilage regeneration [171]

MSCs: Mesenchymal stem cells; BM-MSCs: Bone marrow-derived mesenchymal stem cells; AMSCs: Amnion-derived mesenchymal stem cells; UC-MSCs: 
Umbilical cord-derived mesenchymal stem cells; AdMSCs: Adipose-derived mesenchymal stem cells; CB-MSCs: Cord blood-derived mesenchymal stem 
cells; WJ-MSCs: Wharton’s Jelly-derived mesenchymal stem cells; PMSCs: Placenta-derived mesenchymal stem cells; AF-MSCs: Amniotic fluid derived 
mesenchymal stem cells; SMSCs: Synovial derived mesenchymal stem cells; EVs: Extracellular vesicles; CM: Conditioned medium; NA: Not available; 
GVHD: Graft-versus-host disease; IRI: Ischemia-reperfusion injury; 3D: Three-dimensional; IFN: Interferon; TNF: Tumor necrosis factor; IL: Interleukin; 
MLR: Mixed lymphocyte reactions; LPS: Lipopolysaccharide; HUVEC: Human umbilical vein endothelial cell.

colitis[95,96,98]. Rafei et al[134], in a mouse in vivo model of autoimmune encephalomyelitis, found that 
treatment with allogeneic MSCs primed with IFN-γ reduced clinical signs in a dose-dependent manner. 
In this study the authors showed that, though the priming treatment induced the increase of CCL2 and 
MHCI/II expression in IFN-γ-primed MSCs, it inhibited manifestations of autoimmune encephalomy-
elitis while keeping their immunogenicity low. The use of IFN-γ- or TNF-α-primed MSCs has also been 
shown to attenuate symptoms of GVHD[101,103]. In these cases, in the first study it was shown that 
therapeutic effects of MSCs were mediated by overproduction of IDO induced through the IFN-γ-JAK-
STAT1 pathway[101]. In the second study, the therapeutic function of MSCs was activated by TNF-α, 
which induced overexpression of Chi3 L1 and consequent suppression of T-helper 17 cells[103]. 
Recently, it has been revealed that the priming of MSCs with IL-1β relieved the side effects of sepsis[109,
111]. In particular, Song et al[109] demonstrated that IL-1β makes MSCs more effective in inducing 
macrophage polarization toward an anti-inflammatory M2 phenotype, and this effect was mediated, at 
least in part, through overproduction of EXOs containing miR146a. Similar results on M2 macrophage 
polarization were also obtained by Yao et al[111], who revealed the ability of IL-1β to stimulate the 
production of MSC-derived EXO containing miR21. The therapeutic efficacy of MSCs primed with IFN-
γ was also found in an in vivo model of colonic wounds. Particularly, García et al[135] showed that these 
cells were able to enhance healing of colonic mucosal wounds in both immunocompromised and 
immunocompetent mice. Similar results were also obtained using MSCs primed with TNF-α, which 
were able to accelerate wound closure and angiogenesis in an in vivo model of wound healing[99]. The 
priming with inflammatory cytokines seems to also be effective for the treatment of chronic liver 
diseases. Indeed, treatment with IL-6 improved the ability of MSCs to reduce liver injury[104]. The 
study reported that in a mouse in vivo model of liver fibrosis, treatment with IL-6-primed MSCs reduced 
both fibrosis and apoptosis, and improved liver functions[104]. Moreover, TNF-α-primed MSCs were 
also able to attenuate inflammation in an in vivo model of peritonitis[136]. In this study, the authors 
demonstrated that TNF-α induced the overproduction of the anti-inflammatory factor TSG-6, generating 
a mechanism that reduces inflammation in an in vivo model of zymosan-induced peritonitis[136]. 
Interestingly, in a similar experimental model, Bazhanov et al[137] found that after intraperitoneal 
injection MSCs formed 3D aggregates, and stimulated the production of anti-inflammatory cytokines, 
such as IL-10 and PGE2. In this regard, Bartosh et al[138] showed that the priming of MSCs with 3D 
culture decreased inflammation in an in vivo model of peritonitis[138]. In particular, the authors suggest 
that MSC spheroids overexpressed TSG-6, and these cells were more effective than conventional MSCs 
as therapy for diseases characterized by unresolved inflammation.

Overall, the above-mentioned studies suggest that treatment with pro-inflammatory cytokines or the 
3D culture of MSCs represents promising priming strategies for enhancing the MSC immunoregulatory 
phenotype, making these cells more suitable for clinical disorders related to exacerbated immune 
responses (Figure 2).
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Figure 2 Schematic representation of the molecular effects after priming of mesenchymal stromal/stem cells. Mesenchymal stromal/stem cells 
(MSCs) can be primed through various stimuli, including hypoxia, three-dimensional cultures, and pro-inflammatory cytokines to enhance their therapeutic potential. 
Each priming method induces the production of specific factors (e.g., trophic factors, angiogenetic factors, chemokines, cytokines, and exosomes containing both 
proteins and microRNAs), which induce the activation of biological processes such as angiogenesis, tissue repair/regeneration, chemoattraction, and modulation of 
inflammation. Each priming strategy seems to stimulate the production of functional factors in a different way, thus eliciting different responses. miRNA: MicroRNA; 
VEGF: Vascular endothelial-derived growth factor; CXCR: Chemokine receptor; HGF: Hepatocyte growth factor; MMP: Matrix metallopeptidase; BDNF: Brain-derived 
neurotrophic factor; SDF: Stromal cell-derived factor; HIF: Hypoxia-inducible factor; ICAM: Intercellular adhesion molecules; MCP: Monocyte chemoattractant protein; 
IL: Interleukin; LIF: Leukemia inhibitory factor; PIGF: Placental growth factor; EGF: Epidermal growth factor; FGF: Basic fibroblast growth factor; PDGF: Platelet-
derived growth factor; GRO: Growth-related oncogene; TGF: Transforming growth factor; PGE2: Prostaglandin E2; IDO: Indoleamine 2,3-dioxygenase; PDL1-2: 
Programmed death ligand 1-2; MIG: Monokine induced by interferon-gamma; G-CSF: Granulocyte colony-stimulating factor; IP-10: Induced protein 10; MIP: 
Macrophage inflammatory protein; IRI: Ischemia/reperfusion injury; MSCs: Mesenchymal stromal/stem cells; 3D: Three-dimensional.

Main priming strategies for treating acute injury
Priming strategies for MSCs have been considered a crucial tool for enhancing their therapeutic effects, 
making these cells more suitable for application in the field of regenerative medicine[3,85]. However, 
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while the priming of MSCs with pro-inflammatory cytokines potentially represents the principal 
strategy modulating inflammation in chronic immune-related disorders (or, in any case, conditions in 
which the inflammation is exacerbated), the priming of MSCs with hypoxia is thought to represent the 
more appropriate priming strategy for boosting MSC effects for the stimulation of tissue function 
recovery after acute injury (Figure 2). This has been demonstrated in numerous study models, and on 
different organs (Table 1). For example, hypoxia pre-conditioning significantly improved blood flow 
recovery in mouse models of hindlimb ischemia. Rosová et al[139] demonstrated that hypoxic MSCs 
better migrate to the injured site compared with non-hypoxic MSCs, thus speeding up the restoration of 
blood flow. The authors demonstrated that the observed effects were likely mediated by the HGF-cMET 
axis. It has been shown that hypoxia helps MSCs to better integrate in the damaged tissue. Han et al[140] 
revealed that hypoxic priming enhanced survival and proliferation of transplanted MSCs, thus 
improving the regeneration of hindlimb ischemic tissues. After MSC treatment, the authors observed 
inhibition of apoptosis and promotion of neovascularization and, as they showed the increased 
expression of the normal cellular prion protein upon hypoxia pre-conditioning, they identified this 
prion as a potential target for MSC therapy. In a similar manner, Lee et al[115] recently identified GRP78 
as new potential target for the development of functional MSCs. GRP78 has been shown to be induced 
by hypoxia, thus increasing transplanted-MSC survival and proliferation in a mouse model of hindlimb 
ischemia. Moreover, the authors found that the HIF-1α-GRP78-Akt axis regulates the suppression of cell 
death signals, and increases angiogenic cytokine secretion, thus strongly improving tissue recovery 
from the damage[114]. Recently, it has been found that mild hypoxia can be induced in MSCs when they 
are cultured as spheroids. Various studies have clearly demonstrated that 3D culture conditions induce 
hypoxia in the core of the spheroid, thus stimulating the production of both growth and pro-angiogenic 
factors, which in turn stimulate the fast recovery of damaged tissues in mouse models of hindlimb 
ischemia[141,142]. Interestingly, it has also been shown that the CM derived from MSCs primed by 3D 
culture attenuated injury and inflammation in two IRI in vitro models of both lung and liver[59,131]. 3D 
pre-conditioning has been shown to also be effective for other type of diseases, such as acute kidney 
injury (AKI). Xu et al[143] found that 3D pre-conditioned MSCs, when transplanted in mice with AKI, 
are more viable than the 2D cultured cells, and exhibit higher paracrine secretions, as evidenced by the 
increased levels of VEGF and TSG-6. Furthermore, the authors show that the paracrine secretion, which 
also includes basic fibroblast growth factor, insulin like growth factor, and EGF, significantly improved 
renal function and reduced tissue apoptosis, thus speeding up the regeneration of renal tissues upon 
injury[143]. Recently, the secretome of 3D MSCs transplanted for the treatment of AKI was furtherly 
investigated. For example, Cao et al[144] found that the paracrine effect on AKI was mediated not only 
by soluble factors, such as anti-inflammatory cytokines, but also by EXOs, whose production is 
increased after 3D pre-conditioning. Furthermore, by using a cisplatin-inducing AKI model in mice, the 
authors showed that the increased number of EXOs upon 3D culture enhanced the renoprotective and 
anti-inflammatory efficacy of MSCs[144]. Treatment of AKI with MSC therapy has been implemented in 
recent years by defining new protocols of MSC pre-conditioning. Along with 3D culturing, hypoxia 
priming has been used for the treatment of IRI-inducing AKI in animal models, and Zhang et al[145] 
demonstrated that hypoxia priming enhanced angiogenic and antioxidative MSCs properties in a rat 
model of renal IRI. In addition, in the same model, the authors found that transplanted MSCs attenuated 
renal apoptosis by reducing cleaved caspase3 activation. Notably, hypoxia also enhanced MSC 
therapeutic potential in a cisplatin-induced mouse model of AKI. Overath et al[146] found that hypoxic 
conditions increased the efficacy of transplanted MSCs in attenuating renal damage upon injury both by 
reducing creatinine and N-GAL serum levels, and decreasing pro-inflammatory cytokine release. MSC 
hypoxia pre-conditioning has also been found to be strongly effective for the treatment of IRI in the 
lung. For example, MSC infusion in lung perfusates demonstrated that hypoxic MSCs quickly migrate 
from the pulmonary artery to the lung tissue, where they attenuate parenchymal damage by reducing 
oxidative stress, inflammation, and apoptosis, and by stimulating cell proliferation and survival[147]. In 
a similar manner, MSC hypoxia has been found to have important effects also for radiation-induced 
lung injury (RILI). A mouse model of RILI was recently established by exposing the lungs of mice to 
irradiation, thus generating tissue damage. Upon irradiation, the authors demonstrated that hypoxic 
MSCs reside for longer in the injured tissue compared with normoxic MSCs. In addition, Li et al[148] 
showed that hypoxia-primed MSCs enhanced cell viability and proliferation, as well as anti-oxidative 
and anti-apoptotic capabilities in lung parenchymal cells. Finally, the authors highlighted the role of 
HIF-1 in modulating resistance to lung hypoxic stress induced by RILI, thus promoting tissue repair and 
regeneration upon injury.

The use of MSCs as cellular therapy has also been shown to be effective for the treatment of acute 
myocardial injury in several preclinical models (Table 1). Also in this case, to ameliorate the therapeutic 
effects of MSCs various priming strategies have been evaluated. In particular in myocardial infarction 
(MI), it has been widely believed that tissue injury is related to ischemia and the hypoxic environment. 
Therefore, the in vitro hypoxic condition was tested to improve MSC therapeutic effects in MI animal 
models[149]. In a mouse model of MI, it was found that intramyocardial injection of hypoxia-precondi-
tioned MSCs reduces infarct size, influences heart remodelling by modulating vasculogenesis, and 
improves heart functions, promoting cell survival[150,151]. Of note, expression analysis in hypoxic 
MSCs has revealed an increase in expression of pro-survival and pro-angiogenic factors, including HIF-
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1α, ANGPT1, VEGF, Flk-1, Bcl-2, Bcl-xL, and these proteins can act in a paracrine manner on MI, 
inducing functional recovery[150]. It has also been observed that hypoxic MSCs influence the expression 
of specific miRNAs that can be secreted through EVs. In particular, Feng et al[152] demonstrated that 
after hypoxic treatment of MSCs an increase of miR22 was observed in EXOs, and this miRNA was 
considered responsible for targeting Mecp2, with beneficial effects on survival of cardiomyocytes 
exposed to ischemia. Similarly, EVs derived from hypoxic MSCs overexpressing miR26 were able to 
reduce the damage from ischemia/reperfusion in a rat model[153]. In the same way, in an MI mouse 
model the intracardial injection of hypoxic-preconditioned MSC-derived EXOs was able to positively 
regulate cardiomyocyte proliferation and survival, and this effect was ascribable to the overexpression 
of miR125b[154]. In addition to the use of hypoxia priming, the use of 3D culture has also been shown to 
be effective in the improvement of MSC therapeutic effects on the treatment of acute myocardial injury. 
You et al[155], in an acute MI rat model, found that treatment with 3D-primed MSCs resulted in a 
retention of MSCs at the epicardium, where MSCs exerted cardiac protection/repair, and functional 
recovery. Moreover, in the same animal model, Wang et al[156] revealed that 3D MSCs were able to 
stimulate vascular density and improve cardiac function after MI.

Over the last decade, MSCs have also been intensively studied for their potential use in the treatment 
of neurological acute injury, including cerebral ischemia, traumatic brain injury, and spinal cord 
damage. For example, in an in vivo model of cerebral ischemia, it has been shown that hypoxic-precon-
ditioned MSCs enhanced angiogenesis and neurogenesis after ischemia[157]. In an in vivo model of 
traumatic brain injury, Chang et al[158] demonstrated that the priming of MSCs with hypoxia improved 
their therapeutic function, and resulted in an amelioration of neurogenesis, and motor and cognitive 
functions. Moreover, in a rat model of spinal cord injury, hypoxic MSCs were also able to increase 
axonal preservation and decrease apoptosis[159].

Principal priming strategies for stimulating tissue regeneration
MSCs are involved in tissue homeostasis, which is necessary for physiologically coordinating 
regeneration/repair of tissue, also after injury[3,6,36]. Thus, the use of MSCs in regenerative therapies is 
garnering great interest due to their potentially numerous clinical applications.

In the complex process of cutaneous wound healing, a central role is played by fibroblasts, which 
contribute, through the interaction with surrounding cells, to the production of ECM, glycoproteins, 
adhesive molecules, and various growth factors[160]. Recent evidence suggests that CM produced by 
primed MSCs from different sources, such as bone marrow[120], adipose tissue[160], amnion fluid[161], 
and placenta[162] enhanced the migration and proliferation of fibroblasts in vitro, and accelerated 
wound healing in in vivo models (Table 1). In all these cases, hypoxia treatment represented the chosen 
priming strategy for driving MSCs in increasing secretion of various angiogenic factors, cytokines, and 
chemokines. Therefore, the priming of MSCs with hypoxia might well represent the main approach to 
improving the therapeutic effects of MSCs to be applied in the stimulation of tissue regeneration 
(Figure 2). This idea has also been supported by other studies (Table 1). Indeed, in both hepatectomized 
mouse and rat models, it has been demonstrated that hypoxic MSCs produce crucial functional 
molecules, including HGF and VEGF, which were considered responsible for the induction of liver 
regeneration[163,164]. Kuo et al[165] showed that systemic infusion of MSCs restored liver function and 
promoted liver regeneration in rodents. In this regard, in a rat massive hepatectomy model, Yu et al[164] 
found that hypoxia-conditioned MSCs secreted significantly more VEGF than normoxia-conditioned 
cells, and the infusion of primed MSCs promoted proliferation of hepatocytes and liver regeneration. 
Several studies have focused on the signalling pathways up-regulated by MSC during liver 
regeneration. Lee et al[163] using a partially hepatectomized mouse model, found that treatment with 
hypoxic MSC-derived CM increased the viability of hepatotoxic hepatocytes, and enhanced liver 
regeneration through JAK/STAT3 signalling. These data were also confirmed by Lee et al[166], who 
confirmed the activation of JAK/STAT3 signalling induced by MSC CM during mouse liver generation. 
Hypoxic MSCs that secrete high level of VEGF were also able to regenerate pulp-like tissues and 
vasculature similar to the native pulp in a rat model of pulp repair[167]. HGF and VEGF produced by 
hypoxic MSCs were considered by Chang et al[158] to be responsible for improvement of neuronal 
proliferation. Moreover, Zhilai et al[159] demonstrated that both HGF and VEGF produced by hypoxia-
primed MSCs facilitated axonal survival in a rat model of spinal cord injury. Han et al[140], in a murine 
hindlimb ischemia model, found that the expression levels of EGF, VEGF, fibroblast growth factor, and 
HGF were significantly higher in ischemic tissue treated with hypoxic MSCs, where an improvement of 
neovascularization was observed. The efficacy of hypoxic MSCs was also tested in reducing scar 
formation and inducing wound healing in various in vivo models[120,162,168].

Despite the fact that the principal MSC priming strategy used for both in vitro and in vivo 
regeneration experiments was hypoxia treatment, 3D culture of MSCs as priming strategy has also been 
investigated in tissue regeneration (Figure 2). In fact, MSC spheroids have also shown therapeutic 
abilities with regard to both bone and cartilage regeneration. In particular, it has been found that 
treatment with MSC spheroids was effective in inducing disc repair in an in vivo model of disc 
degeneration, bone regeneration in an in vivo model of bilateral calvarial defects, and cartilage 
regeneration in an in vivo model of osteochondral defects[169-171].
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CONCLUSION
The therapeutic effects of MSCs have been demonstrated in both in vitro and in vivo studies. 
Nevertheless, due to their heterogeneity related mainly to tissue source, which can impact MSC 
functional properties[85,172], the application of MSCs in clinical trials has shown moderate or poor 
efficacy. MSCs are considered key regulators of tissue repair and, in this case, different stimuli are 
crucial in modulating the functional properties of these cells. In fact, it is believed that inflammation and 
low oxygen levels are essential signals for triggering MSC activity in a suitable manner. Moreover, it has 
recently been shown that different priming approaches can eliminate the functional heterogeneity of 
MSCs[173]. Therefore, specific priming strategies have been implemented to improve the regenerative 
and immunomodulatory properties of MSCs. In this review, we have explored data regarding the 
principal priming approaches used to enhance the therapeutic potential of MSCs. The above-mentioned 
data underscore that several factors play a role in the ability to modify MSC properties. Moreover, some 
therapeutic effects, on different disease models, can be obtained in relation to dose and/or combination 
of the priming factors used.

Several diseases have in common tissue injury and repair processes, in which inflammation plays a 
central role in coordinating different pathways that regulate tissue regeneration and functional 
recovery. Indeed, after acute injury, a low level inflammation (acute inflammation) occurring after 
specific triggers, is crucial in stimulating wound healing and tissue repair, facilitating the resolution of 
inflammation and restoring tissue structure/function (inflammation drives regeneration). On the other 
hand, in the case of abnormal damage repair, chronic unregulated inflammation can lead to pathological 
processes, including hormonal metabolic changes, which culminate in the onset of specific diseases, 
including cancer and fibrosis[174,175]. Therefore, the regulation of both acute and chronic inflammation 
is essential for a proper restorative response and, in this scenario, MSCs can have a crucial physiopatho-
logical role. In fact, it has been shown that when MSCs coordinate damaged tissue for repair, they 
undergo local stimuli such as inflammatory cytokines, and hypoxia, which in turn boost and direct the 
reaction of MSCs to orchestrate tissue regeneration[85,176]. In Figure 3, we depict a hypothetical model 
that occurs during physiopathologic tissue injury and repair. In this model, MSCs are activated 
differently by various microenvironment stimuli to manage tissue functional recovery. One of the first 
factors that arises after tissue injury is the establishment of a hypoxic and weakly inflammatory 
microenvironment, which in turn activates local cells to protect/regenerate tissues[3,177]. Hypoxia 
rapidly up-regulates the level of intercellular adhesion molecule-1 in local-inflamed endothelium, 
promoting MSC migration to injured tissues[178,179]. Moreover, a mild inflammation may stimulate 
MSCs to release chemokines for attracting immune cells and amplifying immune responses[180]. Once 
MSCs reach the site of injury, the paracrine properties of MSCs to release chemotactic and angiogenic 
factors is significantly amplified under hypoxic conditions[181]. In this case, naïve MSC are activated to 
recruit neutrophils and stimulate the formation of new blood vessels. Neutrophil action is followed by 
monocyte/macrophage activity that ensures sustained release of pro-inflammatory cytokines and 
potentiation of the fibroproliferative response[182,183]. If these processes are not adequately regulated, 
a state of chronic inflammation occurs. Thus, cytokines such as IFN-γ, TNF-α, and IL-1 accumulate in 
the injured tissues, and the inflammatory environment becomes central in affecting the regulatory role 
of MSCs that exhibit immunosuppressive capacities[184]. The MSC phenotype is switched into a lower 
regenerative potential and a higher anti-inflammatory phenotype (Figure 3). Thus, high amounts of pro-
inflammatory cytokine confer a dramatic immunomodulatory ability to MSCs[40,91,124,125,185,186] 
which, in turn, act as a homeostatic regulator to control the inflammatory response. Overall, this 
scenario describes what occurs when MSCs are exposed to low levels of both oxygen and inflammation, 
and their phenotype is potentially inclined to low immunomodulation and high stimulation of tissue 
regeneration. Otherwise, high levels of inflammation can imprint a MSC phenotype inclined toward 
high immunomodulation and weak stimulation of tissue regeneration (Figure 3). In this regard, Vigo et 
al[87] found that IFN-γ can orchestrate MSCs functions in a dose-manner, and this is reflected in the 
opportunity to modulate MSC properties before their use in clinical practice. In addition, considering 
the heterogeneous immune regulatory functions of MSCs due to intrinsic characteristics of individual 
clones, the priming of MSCs with pro-inflammatory factors can equally amplify immune therapeutic 
properties of MSCs, and eliminate the variances among different MSC clones[173].

Priming with inflammatory signals polarizes MSCs toward an anti-inflammatory and pro-trophic 
phenotype allowing, on the one hand, the regulation of inflammatory responses, and on the other the 
final remodelling and recovery of damaged tissue. Likewise, different priming strategies can be used to 
direct the therapeutic effects of naïve MSCs toward specific pathological processes. As also highlighted 
by the studies we have noted in this review, while hypoxic priming of MSCs could be used mainly to 
treat acute disease, to principally stimulate angiogenesis and tissue regeneration, inflammatory 
cytokines could be used mainly to prime MSCs for treating chronic immune-related disorders. The 
change of perspective from regeneration to inflammation implies in the MSCs the shift in the production 
of functional factors that stimulate regenerative or anti-inflammatory pathways (Figure 2). Interestingly, 
the 3D culture of MSCs as priming strategy appears to be an intermediate functional priming between 
the two mentioned above. The production of priming type-specific functional factors in MSCs could 
well pave the way for optimizing their therapeutic potential, aimed at a greater effectiveness as an 
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Figure 3 Schematic illustration of the physiological role and biological action of mesenchymal stromal/stem cells primed in vivo in a 
model of tissue injury and repair. During tissue injury and repair, mesenchymal stromal/stem cells (MSCs) are differently activated by various 
microenvironment stimuli to orchestrate tissue repair and functional recovery. First, naïve MSC activation (hypoxic activation) leads to the release of both angiogenic 
factors and chemokines, which stimulate the formation of new blood vessels, the recruitment of neutrophils, and the expression of adhesion molecules. Neutrophil 
action is followed by macrophage activity, which ensures sustained release of pro-inflammatory cytokines, and potentiation of the fibroproliferative response. If this 
process is not adequately regulated, a state of chronic inflammation occurs; the MSC phenotype is switched into an anti-inflammatory phenotype. MSCs: 
Mesenchymal stromal/stem cells; 3D: Three-dimensional.

advanced therapy medicinal product.
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