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Abstract
BACKGROUND 
Mesenchymal stem cells (MSCs) have been applied to treat degenerative articular 
diseases, and stromal cell-derived factor-1α (SDF-1α) may enhance their 
therapeutic efficacy. However, the regulatory effects of SDF-1α on cartilage differ-
entiation remain largely unknown. Identifying the specific regulatory effects of 
SDF-1α on MSCs will provide a useful target for the treatment of degenerative 
articular diseases.

AIM 
To explore the role and mechanism of SDF-1α in cartilage differentiation of MSCs 
and primary chondrocytes.

METHODS 
The expression level of C-X-C chemokine receptor 4 (CXCR4) in MSCs was 
assessed by immunofluorescence. MSCs treated with SDF-1α were stained for 
alkaline phosphatase (ALP) and with Alcian blue to observe differentiation. 
Western blot analysis was used to examine the expression of SRY-box trans-
cription factor 9, aggrecan, collagen II, runt-related transcription factor 2, collagen 
X, and matrix metalloproteinase (MMP)13 in untreated MSCs, of aggrecan, 
collagen II, collagen X, and MMP13 in SDF-1α-treated primary chondrocytes, of 
glycogen synthase kinase 3β (GSK3β) p-GSK3β and β-catenin expression in SDF-1α
-treated MSCs, and of aggrecan, collagen X, and MMP13 in SDF-1α-treated MSCs 
in the presence or absence of ICG-001 (SDF-1α inhibitor).

RESULTS 
Immunofluorescence showed CXCR4 expression in the membranes of MSCs. ALP 
stain was intensified in MSCs treated with SDF-1α for 14 d. The SDF-1α treatment 
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promoted expression of collagen X and MMP13 during cartilage differentiation, whereas it had no 
effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in 
MSCs. Further, those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes. 
SDF-1α promoted the expression of p-GSK3β and β-catenin in MSCs. And, finally, inhibition of this 
pathway by ICG-001 (5 µmol/L) neutralized the SDF-1α-mediated up-regulation of collagen X and 
MMP13 expression in MSCs.

CONCLUSION 
SDF-1α may promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-
catenin pathway. These findings provide further evidence for the use of MSCs and SDF-1α in the 
treatment of cartilage degeneration and osteoarthritis.

Key Words: Stromal cell-derived factor-1α; Mesenchymal stem cells; Chondrogenic differentiation; Wnt/β-
catenin; C-X-C chemokine receptor 4

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this study, we investigated the effect of stromal cell-derived factor-1α (SDF-1α) on the differ-
entiation of bone marrow mesenchymal stem cells (MSCs) and primary chondrocytes in vitro. We 
demonstrated that SDF-1α promotes the chondrogenic differentiation of MSCs, and similar results were 
observed in primary chondrocytes. In addition, SDF-1α also activates the Wnt/β-catenin pathway to 
regulate chondrocyte hypertrophy and maturation in MSCs.

Citation: Chen X, Liang XM, Zheng J, Dong YH. Stromal cell-derived factor-1α regulates chondrogenic 
differentiation via activation of the Wnt/β-catenin pathway in mesenchymal stem cells. World J Stem Cells 2023; 
15(5): 490-501
URL: https://www.wjgnet.com/1948-0210/full/v15/i5/490.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i5.490

INTRODUCTION
Osteoarthritis (OA) is a chronic, multifactorial disease characterized by progressive degradation of 
articular cartilage[1]. The underlying molecular mechanism responsible for the pathogenesis of OA is 
not yet fully elucidated; as such, a disease-modifying therapy remains elusive[2], although a potential 
therapeutic strategy of cell-based cartilage regeneration using mesenchymal stem cells (MSCs) has been 
proposed[3,4]. It is known that following cartilage injury, MSCs undergo proliferation to form new 
cartilage and repair damage. During this process, chemokines play a role in targeted cell recruitment[5]. 
The chemokine stromal cell-derived factor-1α [SDF-1α, also known as C-X-C chemokine ligand (CXCL) 
12 α][6] binds to the CXC receptor 4 (CXCR4) present in synovial fluid and cartilage tissues[7]. SDF-1α 
plays an important role in the targeted recruitment and chemotaxis of MSCs[8], and increased SDF-1α 
levels promote the entry of CXCR4-positive MSCs into damaged cartilage[9]. In addition, MSC 
recruitment mediated by the SDF-1α/CXCR4 axis has been shown to play an important role in other 
tissue repair processes[10]. Indeed, a previous study showed that intra-articular injection of meniscus 
progenitor cells promoted cartilage regeneration and improved OA via the SDF-1α/CXCR4 axis and by 
inducing progenitor cell homing[11]. Earlier, Hitchon et al[12] had reported the finding of upregulated 
expression levels of CXCR4 mRNA and protein in chondrocytes of rats with post-traumatic OA, while 
Kanbe et al[13] reported high SDF-1α expression in human chondrocytes of rheumatoid arthritis and OA 
joint fluid. This latter study also indicated that synovectomy significantly reduced SDF-1α and matrix 
metalloproteinase (MMP) concentrations in serum. Finally, Xiang et al[14] reported their study of 
human OA cartilage and in vitro SDF-1-induced OA chondrocytes, which demonstrated that inhibition 
of SDF-1α signaling was able to attenuate OA.

MSCs can differentiate into chondrocytes, which are characterized by SRY-box transcription factor 9 
(Sox9), aggrecan, and collagen II expression[15]. In vivo, human MSCs used for cartilage repair undergo 
hypertrophic differentiation, which is characterized by an increase in cell volume and in the expression 
levels of several markers of hypertrophy, including runt-related transcription factor 2 (RUNX2), 
collagen X, MMP13, Indian hedgehog homolog, and alkaline phosphatase (ALP)[16]. Under 
physiological conditions in vivo, hypertrophic chondrocytes exhibit endochondral ossification. 
Furthermore, SDF-1α mediates several changes in the bone and cartilage[17], with roles in both 
physiologic and pathogenic processes. For example, SDF-1α/CXCR4 signaling regulates the bone 
morphogenetic protein-2-induced chondrogenic differentiation of MSCs and enhances chondrocyte 

https://www.wjgnet.com/1948-0210/full/v15/i5/490.htm
https://dx.doi.org/10.4252/wjsc.v15.i5.490


Chen X et al. SDF-1α regulates chondrogenic differentiation in MSCs

WJSC https://www.wjgnet.com 492 May 26, 2023 Volume 15 Issue 5

proliferation and maturation[18]. However, it also increases the expression of MMP3 in chondrocytes, 
leading to mechanical destruction of the bound matrix[19]. Therefore, despite its role in MSC 
recruitment, the direct effect of SDF-1α on cartilage differentiation by MSCs requires further clari-
fication.

The present study focused on the direct role of SDF-1α in chondrocyte differentiation and 
demonstrated that SDF-1α participated in chondrocyte differentiation in MSCs. In addition, the Wnt/β-
catenin pathway mediated the effects of SDF-1α on cartilage differentiation.

MATERIALS AND METHODS
MSC isolation and culture
MSCs were obtained from Sprague-Dawley (SD) rats. Ten male 4-8-wk-old SD rats weighing 150-200 g 
were housed in standard housing conditions with a 12-h light/dark cycle. The rats were euthanized 
using 20 mg/kg of ketamine intraperitoneally. Bone marrow was flushed from femurs of the SD rats 
using a 10-mL injector filled with Dulbecco's modified eagle medium (DMEM) and Ham’s F12 medium 
containing 10% fetal bovine serum (all from Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, United 
States), 100 IU/mL penicillin, and 100 IU/mL streptomycin (Boster Biological Technology, Pleasanton, 
CA, United States). The cultures were maintained at 37 °C in an atmosphere of 5% CO2. The cells were 
grown for 48 h, and the medium was replaced. The cells were allowed to reach 70%-80% confluence and 
passaged by trypsinization using 0.05% trypsin/ ethylene diamine tetraacetic acid (Boster Biological 
Technology). The culture medium was replaced every 2 d. Rat MSCs cultured to passage 3 were used 
for the experiments.

Isolation and culture of primary chondrocytes
Ten male 3-d-old SD rats were euthanized by intraperitoneal ketamine, and their cartilage samples were 
soaked in a beaker containing 75% alcohol for 15 min. The cartilage surface of the proximal tibia was 
removed to a depth of 1.0-1.5 mm3 using the micro-shear method and digested with 0.25% trypsin at 37 
°C for 30 min. Following 10 min of centrifugation at 500 × g, the tissue pieces were collected and 
incubated with 0.25% collagenase II (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) at 
37 °C for 24 h. After a second centrifugation, the chondrocytes were cultured under the same conditions 
as described for the MSCs.

Multilineage differentiation of MSCs
To confirm that the isolated cells were MSCs, their differentiation into bone, cartilage, and adipose cell 
lineages was induced. For bone differentiation, passage 3 cells were cultured with osteogenic medium 
(RASMX-90021; Cyagen Biosciences, Inc., Santa Clara, CA, United States). After 21 d, the cells were 
stained with 0.5% alizarin red S at room temperature. In brief, the cells were washed twice with 
phosphate-buffered saline (PBS), fixed with 4% paraformaldehyde for 15 min at room temperature, and 
then stained with alizarin red S solution for 30 min at room temperature. Morphology was evaluated 
using an inverted microscope (Leica DM IRM; Leica Microsystems, Wetzlar, Germany). Chondrogenic 
differentiation was achieved by pelleting 2.5 × 105 passage 3 cells in a 15-mL centrifuge tube at 500 × g 
for 5 min then resuspending the cells in 0.5 mL of chondrogenic induction medium [DMEM high-
glucose, 100 nmol/L dexamethasone, 10 ng/mL transforming growth factor (TGF)-β 3, 50 mg/mL 
ascorbic acid 2-phosphate, 100 mg/mL sodium pyruvate, 40 mg/mL proline and insulin transferrin 
selenous acid-supplement][20]. The medium was replaced every 3 d. After 21 d, the pellets were fixed 
with 4% paraformaldehyde for 1 h at room temperature, then embedded in paraffin, cut into 5-µm 
sections, and stained with Alcian blue. Adipogenesis of MSCs was induced by culturing the cells in 6-
well culture plates containing adipogenic medium (Cyagen Biosciences, Inc.). After 21 d, the cultures 
were fixed with 4% paraformaldehyde, stained with oil red O working solution (60% of 0.5% oil red O/
isopropanol in distilled water) for 1 h at room temperature, and observed using light microscopy (Leica 
DM IRM; Leica Microsystems).

Fluorescence staining
MSCs cultured in 12-well plates were prepared for immunofluorescence analysis (performed at room 
temperature). First, MSCs were fixed with 4% paraformaldehyde for 15 min at room temperature. The 
fixed cells were then permeabilized by incubating in 0.1% Triton (Boster Biological Technology, Inc.) in 
PBS for 10 min. After the cells were blocked with 3% bovine serum albumin (BSA; Boster Biological 
Technology, Inc.) in 0.1% Triton/PBS for 1 h at room temperature. The cells were initially incubated 
with anti-CXCR4 antibody (1:200; Abcam, Cambridge, United Kingdom) overnight at 4 °C and 
subsequently with an fluorescein isothiocyanate-labeled goat anti-rabbit IgG antibody (H + L) (1:200; 
Beyotime Institute of Biotechnology, Jiangsu, China) for 30 min at room temperature. The labeled cells 
were mounted with 4',6-diamidino-2-phenylindole (DAPI) at room temperature and observed by 
fluorescence microscopy.
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MSC micromass culture
MSCs were first resuspended in F12-DMEM medium containing 10% fetal bovine serum, 0.25% 
penicillin-streptomycin, and 0.25% L-glutamine, and plated at a density of 2.5 × 105 cells/10 µL. After 
incubation for 4 h, a micromass culture medium supplemented with 1 mmol/L β-glycerophosphate and 
0.25 mmol/L ascorbic acid with or without SDF-1α (PeproTech, Inc., Rocky Hill, NJ, United States) was 
added. The cells were cultured in chondrogenic induction medium that was replaced every other day. 
On day 7, the cells were stained with Alcian blue, and the absorbance of the supernatant was measured 
at 600 nm.

Chondrogenic differentiation assays
MSCs and primary chondrocytes were seeded in 6-well plates containing the chondrogenic induction 
medium. The following three conditions were assessed: Control (cytokine-free); 50 ng SDF-1α; and 100 
ng SDF-1α[21]. The expression levels of collagen II, collagen X, aggrecan, MMP13, Sox9, and RUNX2 
were determined. The expression levels of Wnt/β-catenin were measured in cells incubated for 24 h 
with 100 ng SDF-1α and ICG-001, an inhibitor of the Wnt/β-catenin pathway in MSCs.

Protein isolation and western blotting
Collagen II (1:2000), collagen X (1:2000), aggrecan (1:2000), MMP13 (1:1000), Sox9 (1:5000), and RUNX2 
(1:2000) antibodies were purchased from Abcam, whereas the p- glycogen synthase kinase 3β (GSK3β) 
(1:2000), GSK3β (1:2000) and β-catenin (1:2000) antibodies were purchased from Cell Signaling 
Technology, Inc. (Danvers, MA, United States). Secondary mouse IgG (1:10000) or rabbit IgG (1:10000) 
antibodies were purchased from Abcam, and the anti- glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (1:1000) antibody was from Boster Biological Technology. Protein was extracted from the cells 
using 100 mL radio immunoprecipitation assay buffer (Boster Biological Technology, Inc.) supple-
mented with protease and phosphatase inhibitors. After microcentrifugation for 20 min at 10000 × g, the 
lysates were prepared as described above. The cell protein concentration was detected with a 
bicinchoninic acid kit (Boster Biological Technology, Inc.). Briefly, a total of 20 µg of cellular protein per 
sample was loaded onto a 10% Bis-Tris gel according to the protocol provided by the manufacturer. The 
separated proteins were then transferred to polyvinylidene fluoride membranes (Thermo Fisher 
Scientific), which were blocked for 1 h at room temperature with 5% BSA (Boster Biological Technology, 
Inc.) in Tris-buffered saline containing 0.1% Tween-20 (TBST). The blots were probed overnight at 4 °C 
with rabbit antibodies against GAPDH, collagen II, collagen X, aggrecan, MMP13, Sox9, RUNX2, p-
GSK3β, GSK3β and β-catenin. Following three washes with TBST, the blots were incubated for 1 h at 
room temperature with anti-mouse or anti-rabbit IgG-horseradish-peroxidase-labeled secondary 
antibodies and washed three times with TBST. Finally, immunoreactivity was detected with enhanced 
chemiluminescence, and densitometry was performed using Quantity One software (Bio-Rad 
Laboratories, Inc., Hercules, CA, United States).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 6.0 software (GraphPad Software, Inc., La 
Jolla, CA, United States). The results were summarized as mean ± standard deviation. Every experiment 
contained ≥ 3 replicate and was performed three independent times, unless otherwise stated. One-way 
analysis of variance and Fisher’s least significant difference post hoc test were performed to compare 
differences between multiple groups. P < 0.05 indicated a statistically significant difference. we use 1 to 
express P < 0.05 and 2 to express P < 0.01.

RESULTS
MSC culture and multilineage differentiation potential
The cells were initially quiescent but began to proliferate rapidly after day 3. Growth yielded a 
monolayer structure, composed of fibroblasts (Figure 1A). At passage 3, the isolated cells were 
successfully differentiated into the three skeletal cell lineages: Bone, cartilage, and adipose tissue. After 
culture in the osteogenic medium, nodules formed that were positive for alizarin red S staining, 
indicating calcium-bearing mineral deposits (Figure 1B). After culture with cartilage induction medium, 
cartilage microspheres were positive for Alcian blue staining. Blue granules were also noted in MSCs 
(Figure 1C). After culture in the adipogenic induction medium, lipid accumulation in the form of lipid 
droplets was noted in some of the cells, which were stained red by oil red O (Figure 1D).

Expression of CXCR4 in rat MSCs
CXCR4 expression was detected in the membrane of the rat MSCs, while DAPI staining was confined to 
the nuclei of the MSCs (Figure 2).
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Figure 1 Characterization of mesenchymal stem cells. A: At passage 3, the cells resembled fibroblasts. Scale bar = 100 μm; B: Differentiation into bone 
cells was demonstrated by alizarin red S staining. Scale bar = 100 μm; C: Alcian blue staining indicated that the cells had successfully transformed into chondrocytes. 
Scale bar = 500 μm; D: Oil red O staining confirmed differentiation of the cells into adipose cells. Scale bar = 100 μm.

Figure 2 Expression of C-X-C chemokine receptor type 4 on rat mesenchymal stem cells. Representative image of the expression of C-X-C 
chemokine receptor type 4 (green fluorescence) on mesenchymal stem cell membranes. CXCR4: C-X-C chemokine receptor type 4; DAPI: 4',6-diamidino-2-
phenylindole.

SDF-1a exerted no effect on early cartilage formation of MSCs but enhanced hypertrophic 
differentiation
No significant differences were noted between control (untreated) cells and cells treated with 50 ng SDF-
1α or 100 ng SDF-1α in regards to the size of the cartilage micelles or the absorbance of Alcian blue 
(Figure 3A and B). ALP expression and activity levels were increased after 14-d SDF-1α treatment 
compared to control cells (Figure 3C and D).

Effect of SDF-1a on MSCs during cartilage differentiation
Western blotting indicated no significant differences in the expression levels of early chondrocyte differ-
entiation markers (Sox9, aggrecan, and collagen II) between MSCs treated with SDF-1α and untreated 
MSCs on day 7 (Figure 4A). On day 14, however, the expression levels of chondrocyte hypertrophy 
markers (RUNX2, collagen X, and MMP13) were increased in a dose-dependent manner in the SDF-1α-
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Figure 3 Alkaline phosphatase activity levels in mesenchymal stem cells treated with stromal cell-derived factor-1α were noted in the 
absence of an effect on cartilage formation. A: Mesenchymal stem cells (MSCs) were cultured in vitro and stained with Alcian blue following 7 d of culture 
with or without stromal cell-derived factor-1α treatment; B: Alcian blue staining was measured after chemical extraction by measuring the absorbance of the 
supernatant at 600 nm; C: MSCs were positive for alkaline phosphatase (ALP; light purple staining); D: ALP expression was quantitatively analyzed. The values were 
representative of the mean ± standard deviation (n = 3). aP < 0.05 vs control. ALP: Alkaline phosphatase; sdf-1α: Stromal cell-derived factor-1α.

Figure 4 Effects of stromal cell-derived factor-1α on cartilage differentiation of mesenchymal stem cells. Representative images of western blot 
analysis of rat mesenchymal stem cells treated with stromal cell-derived factor-1α. A: No changes in the expression levels of SRY-box transcription factor 9 (Sox9), 
aggrecan, and collagen II were observed; B: Increased expression levels of Runt-related transcription factor 2 (RUNX2), collagen X, and matrix metalloproteinase 13 
(MMP13) were observed; C: Relative Sox9, aggrecan, and collagen II protein expression; D: Relative RUNX2, collagen X, and MMP13 protein expression. aP < 0.05 
vs control (Student’s t-test). bP < 0.01 vs control (Student’s t-test). sdf-1α: Stromal cell-derived factor-1α; Sox9: SRY-box transcription factor 9; RUNX2: Runx family 
transcription factor 2; MMP13: Matrix metalloproteinase 13.
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Figure 5 Effects of stromal cell-derived factor-1α on the cartilage phenotype of primary rat chondrocytes. A: Expression levels of collagen II, 
aggrecan, collagen X, and matrix metalloproteinase 13 (MMP13) were determined by western blotting in primary chondrocytes treated with stromal cell-derived factor-
1α (100 ng/mL); B: Relative collagen II, aggrecan, collagen X, and MMP13 protein expression. aP < 0.05 vs control (Student’s t-test), bP < 0.01 vs control (Student’s t-
test). MMP13: Matrix metalloproteinase 13; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; sdf-1α: Stromal cell-derived factor-1α.

treated group (Figure 4B).

Effects of SDF-1a on the cartilage phenotype of primary chondrocytes.
Western blotting showed that SDF-1α treatment did not affect the expression levels of collagen II and 
aggrecan in primary chondrocytes, whereas it significantly increased the expression levels of collagen X 
and MMP13 in the MSCs (Figure 5).

Wnt/β-catenin pathway was involved in the effect of SDF-1a on cartilage differentiation.
SDF-1α promoted the expression of p-GSK3β, decreased degradation of β-catenin, and a gradual 
increase in β-catenin expression were demonstrated (Figure 6A). Upon blockade of the Wnt/β-catenin 
pathway via ICG-001, the SDF-1α-mediated increase in the expression levels of collagen X and MMP13 
was neutralized (Figure 6B).

DISCUSSION
In the present study, rat MSCs, which were successfully differentiated into the three skeletal cell 
lineages and were positive for the expression of the CXCR4 receptors on the cell membrane, were used 
to assess the effects of SDF-1α on cartilage formation. The results indicated that the size of the cartilage 
micromass, the absorbance of Alcian blue, and the expression levels of Sox9, aggrecan, and collagen II 
did not significantly change in response to SDF-1α. However, the expression and activity levels of ALP 
and the expression levels of RUNX2, collagen X, and MMP13 were significantly increased. These results 
demonstrated that SDF-1α promoted hypertrophic cartilage differentiation in MSCs, while not affecting 
the early differentiation of cartilage. Similar results were obtained in primary chondrocytes. The data 
further indicated that SDF-1α caused a gradual increase in the expression levels of p-GSK-3β in vitro and 
activated the Wnt/β-catenin pathway, leading to increased collagen X and MMP13 expression levels. 
These findings demonstrated that the SDF-1α/CXCR4 axis was required in the cartilage differentiation 
process. Previous studies have implicated other chemokine types, including CXCL8 and CXCL1, as 
capable of promoting chondrocyte hypertrophy and calcification[22,23].

The Wnt/β-catenin pathway is a classical Wnt signaling pathway involved in tissue development and 
cell proliferation, differentiation, and apoptosis[24,25]. The signal transduction of the Wnt/β-catenin 
pathway is well defined and proceeds as follows. Initially, the extracellular Wnt proteins (Wnt-3a, Wnt-
4, Wnt-8c, and Wnt-9a) combine with the frizzled and LRP proteins on the cell membrane to form an 
activation complex. Subsequently, the phosphorylation of GSK-3β blocks the phosphorylation and 
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Figure 6 Wnt/β-catenin pathway involvement in the effects of stromal cell-derived factor-1α on cartilage differentiation. A: Expression levels 
of β-catenin, p-glycogen synthase kinase 3β (p-GSK-3β), and GSK-3β by western blotting; B: Blockage of the Wnt/β-catenin pathway with ICG-001 inhibited the 
expression levels of collagen X and matrix metalloproteinase 13; C: Relative β-catenin protein expression; D: Ratio of relative protein expression of p-GSK-3β to 
relative protein expression of GSK-3β (p-GSK-3β/GSK-3β); E: Relative aggrecan, collagen X, and MMP13 protein expression. 1P < 0.05, bP < 0.01, Student’s t-test. p-
GSK-3β: p-glycogen synthase kinase 3β; GSK-3β: Glycogen synthase kinase 3β; MMP13: Matrix metalloproteinase 13; GAPDH: Glyceraldehyde-3-phosphate 
dehydrogenase; sdf-1α: Stromal cell-derived factor-1α.

degradation of β-catenin. Finally, β-catenin enters the cell nucleus and modulates T cell factor/
Lymphoid enhancer factor binding, which initiates the transcription of downstream genes, thus causing 
biological changes[26-30]. Several Wnt signaling components regulate the hypertrophic maturation of 
chondrocytes. Specifically, Wnt can induce the accumulation of β-catenin, which then enters the nucleus 
and binds to cell factor/lymphoid enhancer-binding factor to promote the transcription of the collagen 
X and MMP13 genes. Ultimately, P-GSK3β can add phosphate groups to the serine/threonine residues 
at the β-catenin N terminus to promote its degradation[4.31].

Overexpression of the Wnt receptor frzb-1 was shown to hinder chondrocyte maturation and 
mineralization[32]. In a subsequent study, knock-out of the secreted frizzled-related protein 1, a Wnt 
signaling antagonist, led to a reduced height of the growth plate and increased calcification of 
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hypertrophic areas, indicating that activation of the Wnt signaling pathway accelerated endochondral 
ossification[33]. The findings of the present study are consistent with the collective previous results 
indicating that the SDF-1α/CXCR4 axis activates the Wnt/β-catenin signaling pathway in MSCs, which 
in turn increases the production of collagen X and MMP13. Conversely, when we treated the MSCs with 
the Wnt/β-catenin inhibitor ICG-001, the effects of SDF-1α were no longer observable, which confirmed 
the regulatory role of Wnt/β-catenin. Thus, the present study indicates that SDF-1α does not promote 
the early stages of cartilage differentiation nor increase the expression of Sox9, which is similar to the 
results of Kim et al[34].

Hypertrophic differentiation of chondrocytes is the primary barrier preventing the use of MSCs in 
therapeutic cartilage repair[35,36]. Hypertrophy is sometimes noted in OA[37,38]. However, SDF-1α 
also mediates MSC recruitment and can exert a positive role in OA[31]. The identification of cytokines 
that block cartilage hypertrophy caused by SDF-1α, promote physiological endochondral ossification, 
prevent mineralization of the extracellular matrix, and mediate chondrocyte apoptosis will contribute to 
an improved understanding of the pathogenesis of OA and provide targets for development of future 
treatment strategies for this disease[39].

There were some limitations in this study, which must be considered when seeking to generalize our 
findings. First, measuring the stimulation with SDF-1α in MSCs is challenging because the only 
verification technique is overexpression or knockdown of the CXCR4 receptor. Second, this study 
primarily used cell experiments and lacked an in vivo perspective to the experimental research. 
Regardless, through this study, we were able to adequately demonstrate effects of SDF-1α on cartilage 
differentiation in MSCs and primary chondrocytes.

CONCLUSION
The present study demonstrated a role of SDF-1α in promoting hypertrophic cartilage differentiation in 
MSCs and primary chondrocytes in vitro. SDF-1α activated the Wnt/β-catenin pathway in MSCs. Identi-
fication of the novel molecular mechanism by which SDF-1α promotes cartilage differentiation in MSCs 
suggests a therapeutic approach to OA and cartilage repair.

ARTICLE HIGHLIGHTS
Research background
Stromal cell-derived factor-1α (SDF-1α) has a chemotactic effect on mesenchymal stem cells (MSCs), and 
SDF-1α and MSCs are used together to treat cartilage degeneration and cartilage defects. The specific 
effects of SDF-1α on cartilage differentiation in MSCs need to be clarified.

Research motivation
Understanding the effects of SDF-1α on MSCs will provide a new theoretical basis for the use of MSCs 
in the repair of cartilage degeneration.

Research objectives
To explore the role and mechanism of SDF-1α on cartilage differentiation in MSCs and primary 
chondrocytes.

Research methods
MSCs were treated with SDF-1α and subsequently stained for alkaline phosphatase and with Alcian 
blue to demonstrate chondrogenic differentiation. Western blot analysis was used to examine the 
expression of cartilage differentiation-related and Wnt/β-catenin pathway proteins in MSCs and 
primary chondrocytes.

Research results
After extraction and incubation with the appropriate differentiation media, MSCs differentiated into the 
three skeletal lineages. SDF-1α exerted no effect on early cartilage formation but enhanced hypertrophic 
differentiation in MSCs. SDF-1α had no effect on the expression of SRY-box transcription factor 9, 
aggrecan, and collagen II but increased the expression of runx family transcription factor 2, collagen X, 
and matrix metalloproteinase 13 in MSCs and primary chondrocytes. SDF-1α increased the expression of 
p- glycogen synthase kinase 3β and β-catenin.

Research conclusions
SDF-1α enhanced hypertrophic differentiation in MSCs and primary chondrocytes. This effect was 
achieved by activating the Wnt/β-catenin pathway.
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Research perspectives
These findings provide a new theoretical basis for the treatment of cartilage degeneration with MSCs.
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