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Abstract
Mesenchymal stem cells (MSCs) can differentiate into various tissue cell types 
including bone, adipose, cartilage, and muscle. Among those, osteogenic differen-
tiation of MSCs has been widely explored in many bone tissue engineering 
studies. Moreover, the conditions and methods of inducing osteogenic differen-
tiation of MSCs are continuously advancing. Recently, with the gra-dual 
recognition of adipokines, the research on their involvement in different 
pathophysiological processes of the body is also deepening including lipid 
metabolism, inflammation, immune regulation, energy disorders, and bone 
homeostasis. At the same time, the role of adipokines in the osteogenic differen-
tiation of MSCs has been gradually described more completely. Therefore, this 
paper reviewed the evidence of the role of adipokines in the osteogenic differen-
tiation of MSCs, emphasizing bone formation and bone regeneration.

Key Words: Mesenchymal stem cells; Adipokines; Adipose tissue; Osteogenic 
differentiation; Osteogenesis; Bone regeneration
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Core Tip: Bone tissue supports and protects the organs of the human body. There is a close relationship between the immune 
system and bone homeostasis. Adipose tissue is an essential accessory tissue around bone tissue, which regulates bone 
homeostasis through the secretion of adipocytokines. There are many types of adipokines, but only some have been studied 
in detail. Different adipokines affect the behavior and differentiation of mesenchymal stem cells under different local 
microenvironments and surrounding inflammation, thus coordinating and participating in the regulation of bone homeostasis.

Citation: Xu ZH, Xiong CW, Miao KS, Yu ZT, Zhang JJ, Yu CL, Huang Y, Zhou XD. Adipokines regulate mesenchymal stem cell 
osteogenic differentiation. World J Stem Cells 2023; 15(6): 502-513
URL: https://www.wjgnet.com/1948-0210/full/v15/i6/502.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i6.502

INTRODUCTION
Adipose tissue is currently considered an endocrine organ[1] and comprises adipose cells, endothelial cells, fibroblasts, 
and immune cells[2]. Adipokines are factors secreted by adipose tissue and have multiple functions[3] involving various 
biological processes including immune responses, inflammation, glucose metabolism, insulin secretion, sensitivity 
regulation, regulation of blood pressure and myocardial contractility, blood vessel growth, and lipid metabolism[3,4]. 
Therefore, adipokines regulate different biological processes in different organs including the brain, liver, muscles, blood 
vessels, heart, and pancreas[5]. The function, characterization, molecular targets, and potential clinical disease correlation 
of adipokines are still unclear and the main focus of future adipokine research.

Mesenchymal stem cells (MSCs), pluripotent stem cells derived from the mesoderm, were identified by surface 
markers such as CD29, CD37, CD44, CD90, CD105, and CD166[6]. MSCs can be readily extracted from many tissues 
including bone marrow, umbilical cord, placenta, fat, liver, and skin[7]. However, the most well-studied source is bone 
marrow. MSCs have been shown to differentiate into mature cells of various tissues including cartilage, bone, tendon, 
ligament, and adipose tissue[8]. Due to its multipotential nature, MSCs have been used to treat many diseases including 
tumors, central nervous system disease, liver disease, graft-versus-host disease, inflammation, immune system disease, 
and bone regeneration[9-12]. In this review, we focus on the osteogenic differentiation of MSCs.

Bone is a rigid organ that supports and protects the other vital organs in the body. In adults, bones are renewed 
approximately every 7 years[13], and bone formation by osteoblasts and bone resorption by osteoclasts play a significant 
role. Osteoclasts originate from hematopoietic stem cell precursors, and osteoblasts originate from MSCs[14]. The 
dynamic balance of the two processes maintains the stability of bone metabolism, whereas the destruction of balance 
leads to various diseases including osteoporosis[15], osteopenia[16], and bone nonunion[17]. Osteoblasts promote the 
deposition of calcium salts in the bone matrix and stimulate bone remodeling and osteoblast differentiation of MSCs. It 
can be verified by the detection of runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and 
osteopontin (OPN). Therefore, the biological characteristics of MSC osteogenic differentiation have been widely used in 
bone tissue engineering to treat bone defects caused by trauma, infection, and tumor surgery[18-20]. As a common 
progenitor of both adipocytes and osteoblasts, MSCs are in a delicate equilibrium state during differentiation, whereas 
adipose-inducing factors inhibit the osteogenic differentiation of MSCs. In contrast, bone-inducing factors inhibit the 
adipogenic differentiation of MSCs[6]. As an important active secretion of fat, the position and role of adipokine in the 
osteogenic differentiation of MSCs are worth further consideration. Therefore, we reviewed the role of adipokines in the 
osteogenic differentiation of MSCs.

CYTOKINE AND CYTOKINE-LIKE PROTEINS
Interleukin (IL) is an essential inflammatory adipokine that plays a vital role in the differentiation of MSCs in the early 
stage of bone reconstruction[21]. Lacey et al[22] found that low-dose IL-1β (0.001-1 ng/mL) inhibited ALP activity, 
reduced RUNX2 and procollagen expression, and inhibited the degree of mineralization of MSCs in mice. IL-6 is a 
multifunctional lymphoid factor with pro-inflammatory and anti-inflammatory effects[23]. At the same time, it can be 
secreted by osteoblasts to stimulate the secretion of osteoclasts and participate in bone homeostasis. IL-6 induces 
osteogenic differentiation in human bone marrow-derived MSCs (BMSCs) via mitogen-activated protein kinase signaling
[24]. IL-10 can reduce the synthesis of pro-inflammatory cytokines and chemokines and inhibit the expression of IL-1 and 
tumor necrosis factor alpha (TNF-α)[25]. In mice, IL-10 inhibits the osteogenic differentiation of MSCs prior to ALP 
expression[26]. IL-17 cytokines act by binding to the IL-17 receptor family[27]. In the early stage of bone injury, IL-17 
secretion increases, promoting the transformation of MSCs into bone progenitor cells or osteoblasts. In some cases, IL-17 
can also act as an anti-osteoblast factor, leading to bone loss[28,29].

TNF-α is a pro-inflammatory cytokine that can bind to the TNF receptor superfamily and participate in the regulation 
of a variety of biological processes. Different doses of TNF-α showed different osteogenic differentiation activity of MSCs. 
Wang et al[30] showed that a high dose of TNF (50 ng/mL) could stimulate the upregulation of some osteogenic factors in 
MSCs, including vascular endothelial growth factor and insulin growth factor. Lacey et al[22] cultured BMSCs with 
different doses of TNF-α and found that low-dose TNF-α (0.1-10 ng/mL) inhibited the mineralization and activation of 
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ALP and OPN in cultured MSCs.
Monocyte chemotactic protein 1 (MCP-1), also known as C-C motif chemotactic factor ligand 2, can influence monocyte 

migration and subsequent macrophage polarization[31]. Xie et al[32] showed that in the process of osteogenic differen-
tiation, MSCs from patients with ankylosing spondylitis secreted more MCP-1 than MSCs from healthy people. Enhanced 
MCP-1 secretion promoted monocyte migration, increased classical macrophage polarization, and enhanced TNF-α 
secretion[32]. Other adipokine-related cytokines, such as progranulin and resistin, have not been reported to correlate 
with MSC osteogenic differentiation.

Transforming growth factor β (TGF-β) has a unique correlation with the differentiation of adult MSCs[33]. Through the 
precise matching of ligands, receptors, and cell signaling molecules, TGF-β is involved in the lineage transformation 
process of the differentiation of various stem cells such as lipids, osteoblasts, chondrogenic and myogenic cells[34]. Tang 
et al[35] confirmed that TGF-β1 induced the migration of MSCs to the bone resorption site of mice by activating the activin 
receptor-like kinase 5-Smad2/3-Smad4 pathway and restricted the further recruitment of osteoclasts but did not induce 
osteogenic differentiation. However, other studies have reported that TGF-β inhibits osteogenic differentiation through 
Wnt signaling interactions and inhibits RUNX2 through the activation of Smad3[36,37]. However, TGF-β has also been 
reported to promote the osteogenic differentiation of MSCs[38,39]. However, further research needs to be carried out in 
the future.

Chemerin is a secreted protein derived from adipocytes and liver cells involved in physiological processes including 
inflammation, angiogenesis, and calcium mobilization[40,41]. Epidemiological studies have reported that patients with 
osteoporosis have higher circulating chemerin[42], and the knockout of chemerin or its receptor CMKLR1 inhibits 
lipogenesis and promotes the osteogenic differentiation of MSCs[43]. Li et al[41] showed that chemerin promoted the 
osteogenic differentiation of C3H10T1/2 cells and MSCs through Akt/Gsk3β/β-catenin signaling. However, Akt 
inhibitors (MK2206) inhibited chemerin’s promotion of osteogenic differentiation and active β-catenin.

PROTEINS OF THE FIBRINOLYTIC SYSTEM
Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor of the fibrinolytic system[44]. Adipose-derived 
PAI-1 is associated with various pathologic conditions including inflammation, diabetes, cancer, and obesity[44]. Takafuji 
et al[45] studied the role of PAI-1 in the osteogenic differentiation of MSCs using wild-type and PAI-1-deficient mice and 
found that the loss of PAI-1 significantly weakened the expression of BMSC osteogenic genes, such as bone morpho-
genetic protein 2 (BMP-2) and ALP.

Tissue factor, another adipokine that plays a crucial role in the clotting process[46], whose overexpression in the body 
can lead to multiple forms of thrombosis[47]. In a study aimed at improving coagulation activity, Rangasami et al[48] 
found that pluronic micelle-mediated tissue factor silencing could effectively induce the higher differentiation of MSCs in 
osteogenic and lipid-forming media.

COMPLEMENT AND COMPLEMENT-RELATED PROTEINS
Adipsin was the first adipocyte-secreted protein to be identified[49] and is currently named complement factor D[50]. Fat 
cells produce it through the activation of peroxisome proliferator-activated receptor gamma[51]. More recently, adipsin 
was shown to promote insulin secretion by pancreatic β cells and prevent β-cell death[52]. By activating Wnt signaling, 
adipsin initiates adipogenesis from BMSCs[53]. Experiments on BMSCs of adipsin knockout mice showed the increased 
expression of mineralized nodules and osteoblast markers including RUNX2, COL1A1, and osteocalcin compared with 
MSCs of normal origin[53].

Complement and complement-related proteins from adipose tissue include complement component 1q and TNF-
related protein family, complement factor B, and acylating simulation protein[3,54]. However, it has not been reported 
whether they induce or inhibit the osteogenic differentiation of MSCs.

ADIPOKINES
Leptin, a hormone derived from adipose tissue, is involved in pathophysiological processes such as food absorption, 
energy metabolism, inflammation, immunity, and bone homeostasis[55-58]. Leptin binds to its leptin receptor, a marker 
specific to BMSCs[59]. Leptin has been shown to cross-regulate BMP-9 signaling through the JAK/STAT signaling 
pathway in MSCs, thereby enhancing BMP-9-induced osteogenesis[60].

Adiponectin plays a vital role in anti-inflammation, glucolipid metabolism, and insulin resistance regulation[61,62]. 
Wang et al[63] reported that adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β-
catenin pathway. Similar results have also been reported in other studies[64-66].

Visfatin is commonly produced by visceral adipose tissue and is also known as nicotinamide phosphoribosyltrans-
ferase (Nampt) or pre-B cell cluster enhancer. It is strongly expressed in osteogenic differentiation[67] and promotes the 
proliferation and mineralization activity of osteoblasts[68]. Visfatin induces the secretion of IL-6, IL-8, and MCP-1 during 
the osteogenic differentiation of MSCs and significantly increases matrix mineralization during osteogenic differentiation, 
while the expression of type I collagen is decreased[69].
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Nicotinamide adenine dinucleotide (NAD) is involved in energy metabolism and protein modification[70]. Nampt has 
recently been identified as a novel adipokine[71]. Nampt is a rate-limiting enzyme and participates in all-around MC3T3 
E1-osteogenesis prior to the cell differentiation process of NAD salvage pathways. Knocking out Nampt, or adding its 
specific inhibitor, Fk866, resulted in decreased intracellular NAD concentration and decreased osteogenic ability[67]. 
Thus, Nampt can be used as a specific marker for the osteogenic differentiation of MSCs[72].

Visceral adipose tissue-derived serine protease inhibitor (vaspin), an adipose-derived hormone, attenuates osteogenic 
differentiation of the preosteoblast cell line MC3T3-E1[73] and antagonizes the osteogenic differentiation of rat 
osteoblasts. However, the role of vaspin in the osteogenic differentiation of MSCs has not been reported[74].

BMPs, the largest component of the TGF-β ligand family, regulate multiple organogenetic pathways, fat formation, and 
energy metabolism[75,76]. BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, and BMP-7 all strongly promote osteogenesis. Short-
term addition of BMP-2 increases osteocalcin expression[77], and BMP-7 induces the increased expression of ALP, a 
marker of osteoblast differentiation, and accelerates calcification[78]. The absence of BMP-2 and BMP-4 results in severely 
impaired osteogenic function, but the limb skeleton still develops normally without BMP-4[79]. BMP-3 regulates adult 
bone mass by limiting the differentiation of bone progenitor cells into mature osteoblasts[80]. It is important to note that 
BMP-7 has been marketed and used in surgery to aid fracture healing, with no reported local or systemic adverse events
[81]. The effects of BMP-5[82,83] and BMP-6[84,85] on the osteogenic differentiation of MSCs have also been reported.

Nesfatin-1 is a novel anorexia polypeptide that has a wide range of biological effects including energy metabolism, 
gastrointestinal function, anxiety and depression, and the regulation of cardiovascular and reproductive function[86-88]. 
The role of nesfatin-1 in the osteogenic differentiation of MSCs has not been reported, but it can promote the expression 
of osteogenic genes such as ALP and RUNX2 in newly derived rat stem cells[89]. Therefore, we speculate that Nesfatin-1 
has a similar role in the osteogenic differentiation of MSCs, but this conclusion still needs to be confirmed by further 
studies.

Cathepsins are an important category of enzymes located within the lysosomes[90]. Cathepsins are produced by 
various tissues, which also include adipose tissue[91]. Cathepsin K is a crucial enzyme in the degradation of the organic 
bone matrix, and its expression in bone formation-related cells, including fibroblasts, osteoblasts, and MSCs, has also 
been confirmed[92,93]. Zhang et al[94] showed that knockout or inhibition of cathepsin K can promote the regeneration of 
BMSCs of jaw bone through glycolysis, thus promoting alveolar bone regeneration. Similarly, cathepsin S deficiency 
alters the balance between adipocyte and osteoblast differentiation, increases bone turnover, and alters bone 
microstructure[95].

Apelin is an endogenous ligand of the G protein-coupled apelin receptor[96]. Besides being an adipokine, apelin is also 
expressed in skeletal muscle, the central nervous system, the heart, and other tissues, and is involved in lipolysis, glucose 
metabolism, cell proliferation, and angiogenesis[97]. Exogenous addition of apelin protein or overexpression of apelin 
promotes postpositional MSC osteoblast differentiation by activating the Wnt/β-catenin signaling pathway[98].

Omentin-1 is the adipokine most commonly expressed in omental adipose tissue and is also abundant in plasma[99]. 
Omentin-1 is involved in the physiological processes of inflammation, insulin, and cardiovascular functions[99,100]. For 
bone effects, a study of postmenopausal women found a negative correlation between omentin-1 levels and lumbar bone 
density[101]. Tang et al[102] found that omentin-1 has a dose-dependent effect on the viability of MC3T3-E1 cells, which 
can significantly increase the expression of members of the TGF-β/Smad signaling pathway, and also significantly 
increase the expression levels of BMP-2, RUNX2, OPN, osteocalcin, and other proteins, thus promoting osteogenesis.

Lipocalin 2 (LCN2) is a protein involved in host defense, autoimmunity, insulin resistance, skin healing, tumor, and 
infection[103,104]. LCN2 disrupts osteoclast formation in bone tissue by negatively regulating the proliferation and differ-
entiation of osteoclast precursors[105]. As a secretory bone factor, LCN2 positively affects the osteogenic differentiation 
and in vivo osteogenesis of MC3T3-E1[106].

Melatonin is an indoleamine that is synthesized and secreted primarily by the pineal gland in mammals but is also 
secreted by adipose tissue[107]. Melatonin mainly affects the circadian rhythm and sleep-wake cycle and is also involved 
in immune regulation and inhibition of tumor growth[108,109]. Melatonin is also involved in MSC differentiation, which 
is involved in developing and regenerating bone, muscle, and fat tissues. In BMSCs, melatonin enhances osteogenesis and 
inhibits lipogenesis. Melatonin also differentiates bone marrow progenitors from adipocytes to osteoblasts[110,111].

Gremlin-1 is a highly conserved glycoprotein, mainly distributed in the extracellular matrix, with a small amount in the 
endoplasmic reticulum[112]. As an adipokine, gremlin-1 plays an important role in adipose tissue homeostasis[113]. At 
the same time, studies have shown that gremlin-1 is a BMP protein inhibitor, which can inhibit their binding to BMP 
receptors on the cell membrane by binding to BMP-2, BMP-4, and BMP-7[112]. Specific overexpression of gremlin-1 in 
mouse bone tissue results in severe osteoporosis; however, conditional knockout of gremlin-1 increases trabecular 
volume and bone formation[114]. Gremlin-1 has also been shown to inhibit the viability and osteogenic differentiation of 
human BMSCs[115].

LIPID TRANSPORT
Apolipoprotein E (ApoE), one of the main components of plasma very low-density lipoprotein[116], regulates lipid 
homeostasis by regulating lipid transport between tissues and cells. ApoE4 is associated with hyperlipidemia and 
hypercholesterolemia, leading to coronary heart disease, stroke, and atherosclerosis[117-119]. BMP-2 can upregulate the 
ApoE level of the mouse mesenchymal progenitor cell line (C3H10T1/2), leading to enhanced osteogenic differentiation. 
At the same time, ApoE is also expressed in vitro in mouse cranial primary osteoblasts with advanced osteoblast 
sequences[120].
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ENZYMES
Dipeptidyl peptidase 4 (DPP-4) is a protein secreted in the salivary glands, prostate, seminal vesicles, endometrium, small 
intestine, and decidual membrane, and has recently been identified in adipose tissue as well[121]. DPP-4 is an important 
drug target in type 2 diabetes and directly induces insulin resistance in adipocytes and skeletal muscle[121]. DPP-4 not 
only reflects but also promotes adipose tissue dysfunction. Choi et al[122] found that DPP-4, when overexpressed, could 
restrict the induction of osteogenic differentiation of heart artery flap-derived mesenchymal cells by the autocrine insulin-
like growth factor-1 signaling pathway, but this result has not been verified on MSCs.

Tissue inhibitors of metalloproteinases (TIMPs) have four main members, TIMP-1, TIMP-2, TIMP-3, and TIMP-4, and 
are primarily responsible for degrading most proteins in the extracellular matrix[123,124]. TIMPs are generally 
considered to be inhibitors of matrix metalloproteinases (MMPs) through the action of their terminal N-domain[125]. 
Meanwhile, TIMPs exist in the extracellular matrix in a soluble form and preemptively bind to the extracellular matrix, 
thus inhibiting the effect of MMPs[126]. TIMPs can selectively inhibit different MMPs, metalloproteinase and a 
disintegrin and metalloproteinase with thrombospondin motifs[125,126]. Inhibition of endogenous TIMP-1 can inhibit the 
proliferation, metabolic activity, and osteogenic differentiation ability of MSCs by activating Wnt/β-catenin signaling
[127]. However, Liang et al[128] found in the process of MSC osteogenic differentiation that TIMP-1 knockdown increased 
the deposition of calcium nodules, ALP activity, and the expression of osteocalcin protein by activating Wnt/β-catenin 
signaling. The conclusions here are contradictory and need further confirmation by other studies. Studies targeting TIMP-
3 have shown that increased expression of TIMP-3 can significantly promote osteogenic differentiation of MSCs in the 
fracture model of diabetic rats[129].

CONCLUSION
The formation and regeneration of bone tissue usually require regulation of the local microenvironment. The balance 
between bone resorption and bone regeneration is essential for bone tissue regeneration. Adipokines are exogenous 
immune regulatory substances secreted by adipose tissue, and are widely involved in pathophysiological processes of 
surrounding tissues, including bone homeostasis and bone regeneration. Not all human adipokines have been identified, 
but the current literature has revealed that the surface adipose tissue secretes more than 600 factors or proteins involving 
many processes of human pathophysiology[130]. There are many types of adipokines, including cytokines[22], 
fibrinolysin[44], complement and related proteins[49], enzymes[121], lipid transport systems[116], endocannabinoids
[131], and angiotensinogen[132] (Table 1).

In summary, this paper reviewed the current research on the regulation and influence of adipokine in the osteoblast 
differentiation of MSCs. However, this review did not include all currently discovered adipokines but only included 
published studies involving osteogenic differentiation of MSCs. Most of the included studies were conducted in BMSCs, 
with a small number involving osteoblast precursor cells, progenitor cells, and a small number of other tissue-derived 
stem cells. Our review suggests that different adipokines have different effects on the outcome of osteogenic differen-
tiation, bone regeneration, and bone remodeling of MSCs. The progress of related research provides a good reference for 
subsequent preclinical and clinical studies and a new reference for treating osteogenic disorders and diseases of 
osteoblastic homeostasis.
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Table 1 Key activities of factors released by adipose tissue

Classification Appellation Mechanism Ref.

Interleukin IL-6 induces osteogenic differentiation in human bone marrow-derived 
MSCs via MAPK signaling. IL-10 inhibits osteogenic differentiation of MSCs 
prior to ALP expression. IL-17 promoting the transformation of MSC into 
bone progenitor cells or osteoblasts

[24,26,28]

TNF-α High dose of TNF could stimulate the upregulation of some osteogenic 
factors in MSCs, including VEGF and insulin-like growth factor. Low-dose 
TNF-α inhibited the mineralization and activation of ALP and OPN in 
cultured MSCs

[22,30]

MCP-1 Influencing monocyte migration and subsequent macrophage polarization [31]

TGF-β Through the precise matching of ligands, receptors, and cell signaling 
molecules, TGF-β is involved in the lineage transformation process of the 
differentiation of various stem cells, such as lipid, osteoblast, chondrogenic, 
and myogenic

[34]

Cytokine and cytokine-like 
proteins

Chemerin Chemerin promotes lipogenesis and inhibits osteogenic differentiation of 
MSCs

[42]

PAI-1 Loss of PAI-1 significantly weakened the expression of bone marrow-
derived MSC osteogenic genes, such as BMP-2 and ALP

[45]Proteins of the fibrinolytic 
system

Tissue factor Tissue factor silencing could effectively induce higher differentiation of 
MSCs in osteogenic and lipid-forming media

[48]

Complement and 
complement-related proteins

Adipsin Adipsin initiates adipogenesis from bone marrow MSCs by activating Wnt 
signaling

[53]

Leptin Leptin has been shown to cross-regulate BMP-9 signaling through the 
JAK/STAT signaling pathway in MSCs, thereby enhancing BMP-9-induced 
osteogenesis

[60]

Adiponectin adiponectin regulates BMSC osteogenic differentiation and osteogenesis 
through the Wnt/β-catenin pathway

[63]

Visfatin Promoting the proliferation and mineralization activity of osteoblasts [68]

Nicotinamide Nampt is a speed-limit enzyme and participates in the all-around MC3T3-
E1. Osteogenesis prior to the cell differentiation process of NAD salvage 
pathways

[67]

Visceral Attenuating the osteogenic differentiation of preosteoblast cell line MC3T3-
E1

[73]

Bone morphogenetic proteins BMP-7 induced increased expression of ALP, a marker of osteoblast differ-
entiation, and accelerated calcification. The absence of BMP-2 and BMP-4 
resulted in severely impaired osteogenic function. BMP-3 regulates adult 
bone mass by limiting the differentiation of bone progenitor cells into 
mature osteoblasts

[78-80]

Nesfatin-1 Promoting the expression of osteogenic genes such as ALP and RUNX2 in 
rats’ newly derived stem cells

[89]

Cathepsins Knockout or inhibition of cathepsin K could promote the regeneration of 
bone marrow MSCs of jaw bone through glycolysis. Cathepsin S deficiency 
alters the balance between adipocyte and osteoblast differentiation, 
increases bone turnover, and alters bone microstructure

[94,95]

Apelin Promoting postpositional MSC osteoblast differentiation by activating the 
Wnt/β-catenin signaling pathway

[98]

Omentin-1 Increasing the expression of BMP2, RUNX2, OPN, and osteocalcin [102]

Lipocalin 2 Disrupting osteoclast formation in bone tissue by negatively regulating the 
proliferation and differentiation of osteoclast precursors

[105]

Melatonin Differentiating bone marrow progenitors from adipocytes to osteoblasts [111]

Adipokines

Gremlin-1 BMP protein inhibitor [112]

Lipid transport ApoE Enhancing osteogenic differentiation of the mouse mesenchymal progenitor 
cell line

[120]

DPP-4 Restricting the induction of osteogenic differentiation of heart artery flap-
derived mesenchymal cells by the autocrine insulin-like growth factor-1 
signaling pathway

[122]

Tissue inhibitors of metallo- Inhibition of endogenous TIMP-1 can inhibit the proliferation, metabolic 

Enzymes

[127]
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proteinases activity, and osteogenic differentiation ability of MSCs by activating the 
Wnt/β-catenin signal

ALP: Alkaline phosphatase; ApoE: Apolipoprotein E; BMP-2: Bone morphogenetic protein 2; DPP-4: Dipeptidyl peptidase 4; IL: Interleukin; JAK: Janus 
kinase; MAPK: Mitogen-activated protein kinase; MCP-1: Monocyte chemotactic protein 1; MSC: Mesenchymal stem cell; Nampt: Nicotinamide 
phosphoribosyltransferase; OPN: Osteopontin; PAI-1: Plasminogen activator inhibitor-1; RUNX2: Runt-related transcription factor 2; TIMP-1: Tissue 
inhibitors of metalloproteinase; TGF-β: Transforming growth factor beta; TNF: Tumor necrosis factor; VEGF: Vascular endothelial growth factor.
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