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Abstract
Cancer stem cells (CSCs) are a small proportion of the cells that exist in cancer 
tissues. They are considered to be the culprit of tumor genesis, development, drug 
resistance, metastasis and recurrence because of their self-renewal, proliferation, 
and differentiation potential. The elimination of CSCs is thus the key to cure 
cancer, and targeting CSCs provides a new method for tumor treatment. Due to 
the advantages of controlled sustained release, targeting and high biocompat-
ibility, a variety of nanomaterials are used in the diagnosis and treatments 
targeting CSCs and promote the recognition and removal of tumor cells and 
CSCs. This article mainly reviews the research progress of nanotechnology in 
sorting CSCs and nanodrug delivery systems targeting CSCs. Furthermore, we 
identify the problems and future research directions of nanotechnology in CSC 
therapy. We hope that this review will provide guidance for the design of 
nanotechnology as a drug carrier so that it can be used in clinic for cancer therapy 
as soon as possible.

Key Words: Cancer stem cells; Nanotechnology; Nanoparticles; Nanodrug delivery 
systems; Drug resistance; Therapy
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Core Tip: Cancer stem cells (CSCs) have the potential to self-renew, proliferate, and 
differentiate. CSCs play a key role in the occurrence, development, recurrence, and 
metastasis of tumors. Due to the good compatibility and biodegradability of nanoma-
terials, they are applied to target CSCs for drug delivery, photothermal therapy, and 
magnetic hyperthermia to treat cancer.
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INTRODUCTION
Cancer is a major threat to people’s health and life worldwide[1]. One of every eight deaths is caused by 
cancer[2,3]. Current cancer treatments mainly include surgical intervention, radiation therapy, and 
chemotherapy, which often kill healthy cells and are harmful to patients. Therefore, researchers are 
seeking better ways to eliminate cancer cells, with less side effects. Some researchers are working on the 
use of various macrocyclic ligands for cancer therapy, making ruthenium an ideal choice over other 
transition metals due to its special chemical properties[4]. However, what plagues most cancer 
treatments is the presence of a small number of cancer stem cells (CSCs) in tumor tissues[5,6], which 
have the potential for self-renewal, unlimited proliferative capacity, and multidirectional differentiation
[5,7]. These cells are in the G0 phase and hypoxic microenvironment and play a key role in tumori-
genesis, progression, recurrence, and metastasis. The presence of CSCs in solid tumors such as breast 
cancer (BC)[8,9], human leukemia[10,11], colorectal cancer[12,13], glioblastoma multiforme (GBM)[14], 
and ovarian cancer[15] has been reported, and it has been confirmed that CSCs play an important role in 
the development of tumors.

CSCs have inherent properties such as phenotypic plasticity, drug efflux transporters, overexpression 
of antiapoptotic proteins, an efficient DNA repair system and a persistent stemness profile that make 
them resistant to conventional therapies such as chemotherapy and radiation[16-18]. In general, CSC 
resistance mainly occur through stem cell pathways including the hedgehog[19,20], Notch[21,22], Wnt/
β-linked protein[23,24], Nanog[25,26], nuclear factor kappa B (NF-kB)[27], and epidermal growth factor 
receptor pathways[28]. They express ATP-binding cassette (ABC) transporter proteins that can abrogate 
potential drug damage. CSCs also activate DNA repair capacity within tumor cells and are resistant to 
cell death[29], which helps to prevent the recruitment of apoptotic factors[5,30]. Therefore, the 
development of effective anticancer strategies to specifically kill tumor cells and tumor stem cells will be 
central to cancer therapy.

In recent years, the popularity of nanotechnology has promoted the development of nanodrug 
delivery systems (NDDS), and various nanodrug carriers have been applied to the treatment of tumors. 
Due to their small size, biocompatibility, and biodegradability, nanoparticles (NPs) help to fully exploit 
the function of NDDSs as drug delivery systems/drug carriers, including as imaging agents and for 
photothermal therapy (PTT), recognition, and drug and gene delivery[31]. As the carrier of active drugs 
in the drug delivery model, NDDSs can ensure the specific release of active drugs in the patient's body, 
improve drug solubility and bioavailability and prolong maintenance to improve drug efficacy[32]. 
Nanocarriers offer remarkable specificity in targeted delivery through active and passive targeting 
mechanisms (Figure 1)[33,34]. In active targeting, NPs are conjugated to antibodies, peptides, aptamers, 
and other small molecules[34]. Drug delivery using NP targeting reduces toxicity in healthy cells, 
prevents drug degradation, and has the advantages of better specificity, biocompatibility, less 
cytotoxicity, extended half-lives, controlled drug release, and high drug loading capacity for NP-based 
cancer treatments compared to traditional chemo-cancer treatments[35]. In passive targeting, enhanced 
permeability and retention (EPR) effects result in NPs circulating slowly in the tumor microenvironment 
and being more concentrated there than in healthy tissue[36]. Some commonly used nanocarriers 
(Figure 2) include lipid and micelle-based NPs, polymer/non-polymer NPs, nanobinding, carbon 
nanotubes (CNTs), graphene oxide (GO), nanocapsules, dendritic macromolecules, polymer micelles, 
and quantum dots (QDs), which are used to enhance the effectiveness of therapeutic interventions by 
delivering nontoxic large payloads[37-39]. Recent advances in nanotherapeutics have led to the 
development and exploration of various nanomaterial carriers for efficient drug/therapeutic delivery.

CSCs have been identified as playing a central role in the setbacks currently faced in clinical trials and 
research. Therefore, designing a system that can target them at the cellular and system levels is the most 
promising avenue in the evolution of therapeutic design. By reviewing the application of nanotech-
nology in CSCs, we hope to provide guidance for the design and in-depth study of nanotechnology 
drug carriers so that they can be applied in clinic to treat cancer.

NANOTECHNOLOGY FOR CSC SORTING
To better understand the molecular basis of the contribution of CSCs to tumor progression, metastasis, 
and treatment resistance, many studies have identified biomarkers on the surface of CSC populations to 
distinguish them from the majority of tumor cells. Magnetic-activated cell sorting (MACS) is a CSC 
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Figure 1 Different mechanisms of nanocarriers. A: Targeting through surface biomarkers; B: Targeting through the ligand-interacting domain on the nuclear 
receptor (created with BioRender).

Figure 2 Different types of nanoparticles (created with BioRender). NPs: Nanoparticles.

sorting technique. Magnetic NPs have unique magnetic activity and are one of the most actively studied 
NPs, usually ranging in diameter from 1 to 100 nanometers. Basically, magnetic NPs are classified as 
magnetically manipulated substances, consisting mainly of iron oxides or other metals (iron, nickel, or 
cobalt). MACS microbeads are superparamagnetic particles coupled to highly specific monoclonal 
antibodies. The cell surface-specific antigens are combined with stem cell markers such as CD44, CD133, 
and epithelial cell adhesion molecule (EpCAM), connected to the magnetic bead, and the cells labeled 
with the conjugated magnetic bead is separated by providing a uniform magnetic field to sort out the 
corresponding CSC population (Figure 3).

KINDS OF NANODRUG DELIVERY SYSTEMS
To date, nanomedicine has been focused on identifying alternatives to tumor therapy, with researchers 
focusing on the design of various nanocarriers, which have been used to load various anticancer drugs 
and herbal medicines to target tumor cells. In fact, according to the National Institutes of Health, there 
have been clinical trials involving the use of nanotechnology in CSC therapy (Table 1). Because the 
mechanisms of multidrug resistance are very complex and varied, targeting one mechanism alone does 
not address clinical needs. Nanocarriers have good stability, a high encapsulation rate and a high drug 
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Table 1 Clinical trials of advances in nanotechnology applied in cancer stem cells

Identifier Trial name Enrollment

NCT04907422 Cluster of differentiation 24-gold nanocomposite expression using quantitative polymerase chain reaction         60

NCT04907422 Nonconjugated cluster of differentiation 24 expression using quantitative polymerase chain reaction         60

Figure 3 Magnetic-activated cell sorting (created with BioRender). CSCs: Cancer stem cells; MACS: Magnetic-activated cell sorting.

loading rate and have been proven to be effective carriers for genes and drugs delivered to tumor cells. 
This delivery induces apoptotic pathways and inactivates resistance genes for targeting tumor tissue to 
eliminate CSCs. According to the classification of nanotechnology used to target CSCs, they can be 
divided into Polymeric NPs(PNPs), liposomes, gold (Au) nanorods (GNRs), QDs, CNTs, GO, PTT, and 
magnetic fluid hyperthermia (Table 2).

PNPs
PNPs can enhance the therapeutic effects of drugs, reduce the drug resistance of CSCs, and improve the 
therapeutic effects of chemotherapy drugs. The following is a summary of the classification of PNPs 
through different antibody-ligand recognition (Figure 4), mesoporous silica (mSiO2) NPs (MSNs), and 
other nanodrug delivery systems.

CD44
CD44[40,41] is a non-kinase transmembrane glycoprotein that is overexpressed in several cell types, 
including CSCs. Hyaluronic acid (HA) has become a research hotspot in drug release due to its simple 
chemical structure and inherent properties of targeting CD44. Kesharwani et al[42] designed a novel HA 
copolymerized styrene maleic acid and the effective anticancer agent 3,4-difluoromethylcurcumin to 
form nanomicelles. CD44+/CD133+/EpCAM+ pancreatic CSCs showed better uptake of HA-
engineered nanomicelles and a better anticancer effect on CD44+ pancreatic CSCs. Furthermore, these 
nanomicelles significantly inhibited the expression of NF-κB, thereby reducing its proliferation and 
invasion. Debele et al[43] conjugated HA with hydrophobic 6-mercaptopurine (MP) and introduced 
doxorubicin (DOX) into colon cancer cells and colon CSCs through ligands. The inhibitory effect of the 
synthesized bisensitive polymer drug conjugate (HA-SS-MP) micelles on tumor growth was 
significantly higher than that of free drugs. In vitro cytotoxicity of HA-SS-MP and DOX-loaded HA-SS-
MP micelles was great for CSCs (HCT116-CSCs). Gu et al[44] prepared mineralized HA-SS-tetracylecyl 
nanocarriers (M-HA-SS-TA) from oily, hydrophobic, and unstable sulforaphane (SFN), which showed a 
good response to highly reduced and weakly acidic tumor niches. The SFN nanomaterials (SFN/M-HA-
SS-TA) can release SFN rapidly. Compared to free SFN, SFN/M-HA-SS-TA rapidly releases SFN in 
response to tumor niches, showing stronger inhibition of breast CSC (BCSC)-like properties (invasions, 
self-renewal, and tumor growth) in vitro and in vivo. However, magnetic fluid hyperthermia (MFH) 
mediated by anti-CD44 antibody-modified superparamagnetic iron oxide NPs (SPIONPs) can kill CSCs, 
and significantly inhibit the growth of transplanted Cal-27 tumors in mice[45].
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Table 2 Nanocarrier systems for cancer stem cells

Nanocarrier Therapeutic agent Cancer type Delivery model Cell line CSC marker Ref.

PNPs CDF Pancreas HA-SMA could be 
engineered to form 
nanomicelles with a 
potent anticancer agent, 
CDF 

MiaPaCa-2, AsPC-1 CD44 [42]

DOX Colon HA-SS-MP HCT116 CD44 [43]

SFN Breast SFN/M-HA-SS-TA MDA-MB-231, 
Hs578t, MCF7, 
MCF10A

CD44 [44]

SN-38 Colon CD133Ab-NP-SN-38 HCT116 CD133 [47]

ITGA5 Breast ITGA5-targeting NPs MDA-MB-231 - [48]

DOX, tariquidar Breast mSiO2-dPG MCF-7 - [55]

DOX, tariquidar Cancer cell TTNV Hela, A547 CD44 [56]

DS GMB PLGA U87MG, U251MG, 
U373MG

ALDH [57,58]

miR-148a, miR-296-
5p

GMB nano-miRs GBM1A Oct4/Sox2 [60]

TPZ Breast MSN MCF-7 CD133 [54]

Cyclopamine Prostate HPMA RC-92a/hTERT CD133 [57]

HPI-1 Liver, pancreas HPI-1 was loaded with 
PLGA-PEG NPs

Huh7, Pa03C CD133 [58]

RNA drugs Liver ET-tMNV hep3B EpCAM [52]

DOX, Cyc Breast HA-SS-PLGA MCF-7 MDA-MB-
231

CD44 [64]

LDN193189 Liver Fe3O4-OA-DHCA-PEI- 
HA

- CD44 [61]

DOX Breast Gold NPs coupled to 
adriamycin by nitrogen 
condensation bond

sk-3 - [62]

ZnS Breast ZnS MCF-7 CD44 [63]

DOX, all-trans 
retinoic acid

Liver PLGA-b-PEG Hepa1-6 EpCAM [51]

Epiampicin, arsenic 
trioxide

Liver Nanomicelles hepG2 CD44 [97]

Resveratrol Oral NP H-357 - [69]

Cisplatin Liver PEI-modified MSN Huh7 CD133 [53]

Liposomes SAL, DOX Liver Nanoliposomes HepG2 CD133 [73]

TRAIL, SAL Cancer cell Liposomes CSCs - [72]

DOX Liver HLs HepG2 EpCAM, CD133 [74]

DOX, SAL Liver Redox-triggered dual-
targeted liposomes

Huh7 CD133EpCAM [48]

DTXPL, TEL Lung DOX loaded with 
polyethylene glycolized 
liposomes

NCI-H460 CD133 [76]

Gold nanorods - Head, neck SPIONPs Cal-27 CD44 [45]

PKF, SAHA Breast PKF and SAHA loaded on 
the corona of GNPs

MCF-7 - [81]

CD133-targeting aptamers 
modified on the surface of 
quantum dots and gold 
NPs with partially 
complementary paired 

- Liver Huh7 CD133 [82]
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RNA (ssRNA)

DOX Liver EpCAM antibody 
conjugated onto lipophilic 
Au-NR

Hepa 1-6 EpCAM [51]

siRNA Breast Glu-NP MDA-MB-231 GLUT1 [84]

SAL Breast SAL-conjugated gold NPs, 
SAL-AuNPs

MCF-7 CD44 [86]

HA Breast HA-capped AuNPs MDA-MB-231 CD44 [86]

Teleglenastat Brain Au-PEG-CD133-CB-839 GBM-1, NCH-644 CD133 [83]

GO SAL Ovarian rGO-Ag A2780 ALDH, CD133 [93]

CNTs Paclitaxel Breast Multiwalled carbon 
nanotubes

HMLER CD44 [45]

- brain CD133 monoclonal 
antibody onto chitosan-
modified CNTs

GBM tissues CD133 [89]

Paclitaxel, SAL Breast CD44 antibody 
hydrazone-linked onto 
SWCNT with pH-
activated release system

MDA-MB-231 CD44+ [91]

SAL Glioblastoma SAL-SWCNT-CHI-HA AGS CD44+ [90]

CD: Cluster of differentiation; CDF: 3,4-Difluorobenzylidene curcumin; anti-CD133 antibody-conjugated SN-38-loaded nanoparticles  CNTs: Carbon 
nanotubes; CSCs: Cancer stem cells; Cyc: Cyclophosphamide;CB-839:telaglenastat; dPG: Dendritic polyglycerol; DOX: Doxorubicin; DTXPL: Docetaxel 
liposome; EpCAM: Epithelial cell adhesion molecule; ET: EpCAM-targeted; Fe3O4-OA-DHCA-PEI- HA: Mgnetic nanocubes were synthesized and 
modified with PEI and HA; GBM: Glioblastoma multiforme; GO: Graphene oxide; GLS1: Glutaminase 1; Glu-NP: Glucose-installed sub-50-nm unimer 
polyion complex-assembled gold nanoparticle; HA: Hyaluronic acid; HA-SMA: Hyaluronic acid conjugate of copoly (styrene maleic acid); HA-SS-MP: 
Hyaluronic acid-SS-mercaptopurine; HPMA: N-(2-hydroxypropyl) methylacrylamide; HLs: Hybrid lipo plastids;ITGA5: Integrin subunit alpha 5; MNVs: 
Milk-derived nanovesicles: M-HA-SS-TA: Mineralized HA-SS-tetracylecyl nanocarrier; miR: MicroRNA; miSO2: Mesoporous silica; MSNs: Mesoporous 
silica nanoparticles; MWCNTs: Multiwalled carbon nanotubes; NPs: Nanoparticles; PEG: Polyethylene glycol; PKF: PKF118-310; PLGA: Poly(L-lactide-co-
glycolide); PNPs: Polymeric nanoparticles; PDT: Photodynamic therapy; ROS: Reactive oxygen species; rGO-Ag: Reduced graphene oxide–silver 
nanocomposite; SAHA: Vorinostat; SAL: Salomycin; SFN: Sulforaphane; siRNA: Small interfering RNA; SWCNT: Single-walled carbon nanotubes; 
SPIONPs: Superparamagnetic iron oxide NPs; SAL-SWCNT-CHI-HA:CHI-coated SWCNTs loaded with SAL and functionalized with HA;TEL: 
Telmisartan; TPZ: Tirapazamine; TRAIL: Tumor necrosis factor-associated apoptosis-inducing ligand; TTNV: Targeted theranostic nano vehicle; ZnS: Zinc 
sulfide.

CD133
The CD133 antigen is a five-fold transmembrane single-chain glycoprotein that exists on the surface of 
tumor stem cells. It is a key molecule that regulates the fate of stem cells and a functional marker of stem 
cells. It can be used to detect and isolate CSCs in various solid tumors[46]. NPs with SN-38 (anti-CD133 
antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38)), a topoisomerase inhibitor 
conjured by anti-CD133 antibody, targets CD133+HCT116 cells and inhibits colony formation. The 
CD133-targeted NP delivery system can eliminate CD133-positive cells[47]. The Wnt/β-catenin pathway 
plays critical roles in CSC generation and maintenance as well as in normal stem cells. Integrin subunit 
alpha 5-targeting NPs attenuate β-catenin and significantly reduce triple-negative BC (TNBC) metastasis 
and may provide a facile and unique strategy of specially attenuating β-catenin in vivo for treating 
metastatic TNBC[48]. Codelivery of DOX and salomycin (SAL) REDOX-triggered double-targeted 
liposomes CEP-LP@S/D can be used for the synergistic treatment of liver cancer. The system is based on 
the binding of CD133- and EpCAM-targeting peptides to form Y-shaped CEP ligands that anchor to the 
liposome surface and allow selective targeting of CD133EpCAMlCSC[49].

EpCAM
EpCAM, considered to be a homogenous cell-cell adhesion glycoprotein, is expressed in epithelial and 
circulating tumor cells (CTCs), as well as CSCs[50], and is involved in the regulation of cell adhesion, 
proliferation, migration, dryness, and the epithelial-to-mesenchymal transition (EMT) of cancer cells. 
Locatelli et al[51] coloaded GNRs and adriamycin (Adr) to label EpCAM by targeting the surface of 
CSCs and killed CSCs under laser ablation. Ishiguro et al[52] used RNA nanotechnology to pair milk 
source nanocapsules (MNVs) with synthetic oligonucleotide aptamers that could bind to EPCAM with 
high affinity and specificity and loaded small interfering RNA (siRNA) onto β-catenin. The EpCAM-
targeted (ET) therapeutic MNV has been prepared. These ET-TMNVs can target EPCAM-positive stem 
cell populations and effectively release siRNAs within cells that inhibit β-catenin expression and tumor 
growth. For polymer nanomicelles (GNRS-1/curc@Pms) made from biocompatible poly(L-lactide-co-
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Figure 4 Nanoparticle-mediated targeted drug delivery to cancer stem cells (created with BioRender). CSCs: Cancer stem cells.

glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer as drug carriers for Adr and GNRs, 
when Adr/GNRs@Pms-antiEpCAM with EpCAM antibodies are modified, they are delivered to 
specific tumor stem cells and increase the drug concentration at the tumor site, thereby killing the entire 
tumor stem cell population[51].

MSN
MSN drug loading[53] can significantly enhance the cytotoxicity of anticancer drugs with low potency. 
Therefore, the positive polymer polyethylenimine (PEI) is usually coated and chemically modified to 
introduce a positive charge on the surface of MSNs, which can effectively bind the DNA structure, 
siRNAs, and other nucleic acids, thus enhancing their uptake by cells. The PEI-modified MSN was used 
for double delivery of the chemotherapy drug cisplatin, and the DNA encoding the hepatocyte nuclear 
factor 4 alpha transcription factor was used for gene therapy of liver cancer. This therapy inhibited the 
proliferation of CD133+ HUH7 cells, reduced the proportion of CSCs, and reduced the expression of 
dry-related genes. The nuclear targeting system of MSNs by Li et al[54] can directly target CSCs and 
enter the nucleus through anti-CD133 surface modification and heat-triggered exposure of the TAT 
polypeptide under an alternating magnetic field (AMF). Combined with hyperthermia and hypoxia-
activated chemotherapy, the release of nuclear-targeted drugs eventually leads to complete apoptosis of 
CSCs. CSC-specific targeting of mSiO2-dendritic polyglycerol (dPG) nanocarriers delivered the 
chemotherapy drug DOX and the P-glycoprotein (P-gp) inhibitor tariquidar (Tar) to reverse multidrug 
resistance (MDR) and enhance chemotherapy efficacy in bCSCs[55]. A targeted theranostic nano vehicle 
(TTNV) was designed using manganese-doped MSNs with an ideal surface area and pore volume for 
loading optimized ratios of antitumor DOX and the drug efflux inhibitor Tar. This strategically framed 
TTNV, which is chemically coupled with folic acid and HA, as a dual-targeted entity to promote folate 
receptor (FR)-mediated cancer cells and CD44-mediated CSC uptake, respectively[56].

Other nanodrug delivery systems
The N-(2-hydroxypropyl) methylacrylamide (HPMA) cyclopamine delivery system, as a selective 
macromolecular therapy for CSCs, has improved drug solubility and reduced systemic toxicity, 
allowing it to effectively remove CD133+ tumor stem cells in prostate tumors. HPI-1 was loaded with 
PLGA-PEG NPs to solve the problem of poor water solubility and effectively eliminate CD133+ CSCs in 
pancreatic and liver cancer[57,58].

GBM stem cells (GSCs) are the leading cause of chemotherapy failure in GBM. PLGA NP-
encapsulated disulfiram effectively inhibited in situ and subcutaneous GSC xenografting in mouse 
models[59]. Although we are increasingly understanding GBM at the molecular level, treatment options 
are still limited. We have developed bioreducible poly(β-aminoester) NPs that exhibit high intracellular 
delivery efficacy and low cytotoxicity that have the ability to escape from endosomes and facilitate the 
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release of cytoplasmic environment-triggered cargo for the delivery of microRNAs to tumor-
reproducing human CSCs[60]. In the study by Wang et al[61], a high temperature thermal breakdown 
approach was used to create composite magnetic nanocubes modified by PEI and HA. The ferric oxide 
nanocubes recognized hepatocellular carcinoma (HCC) stem cells via receptor-ligand binding of HA and 
CD44 (HA receptor), while loading small molecule LDN193189 inhibited the expression of stemness-
related genes octamer-binding transcription factor 4 and Nanog. Double pH-sensitive polymeric drug-
conjugated NPs showed enhanced inhibition of the progression of drug-resistant SK-3 CSCs, whereas 
AuNPs conjugated to Adr via nitrogen reduction bonds overcame resistance by avoiding P-gp efflux, 
thereby delivering more DOX to tumor stem cells. This mechanism resulted in the elimination of all 
tumor cell subpopulations and prevented the potential reaggregation of CSCs[62]. Tran et al[63] 
inhibited the transfer of MCF-7-SCs by inhibiting the EMT process, revealing the potential role of 
nanozinc sulfide in inhibiting the migration and invasion of bCSCs, which opened up a new way of 
thinking and provided a potential approach for the treatment of BC.

It has also been shown that the constructed amphiphilic polymer, HA-cystine-PLGA, can be used to 
deliver DOX and cyclopamine to CD44-high-expressing bCSC subpopulations and a large number of BC 
cells, and allow on-demand release. The dual delivery particles effectively reduce the number and size 
of tumor spheroids, and HA shows targeting effects on bCSCs[64].

Gao et al[65] proposed a novel intravenous photodynamic therapy (PDT) platform based on stem cell 
simulation of SUCNPs@mSiO2 for tumor targeting and enhanced PDT efficacy. Due to the coating of 
the stem cell membrane, the prepared nano SUCNPs@mSiO2 has good stability and biocompatibility. 
Moreover, it has the ability to be intravenously injected and escape immunity, extend the blood 
circulation time, and improve the tumor targeting function of stem cells, paving the way for the 
development of photosensitizers with bioactive cell components, such as SUCNPs@mSiO2, as a 
platform for targeting PDT. Sorafenib and glucose oxidase were integrated into the N-acety-
lgalactosamine-modified zeolite imidazolate framework (ZIF-8), designated SG@GR-ZIF-8, and this 
nano preparation exhibited significant antimetastatic HCC activity against C5 WN1 cells, a liver CSC-
like cell line with tumorigenic and lung metastatic activity[66]. PT chemotherapy synergy was achieved 
by loading crocodile-based PT agents with natural cytotoxic heat shock protein (HSP) inhibitors that 
had high potency biradical characteristics into a redox-sensitive chitosan (CHI) matrix. Within solid 
tumors, PEG shells that prevent nano-assembled mono nuclei from phagocytosing were cleared quickly 
to expose the positively charged CHI, and the isolated peptide iRGD was further activated. This step 
drives tumor penetration of CHI NPs and allows CSC targeting by selective identification of CD44 
proteins. Due to the inhibition and chemosensitization of HSPs, the designed nano assembly can 
completely eliminate CSCs and non-CSCs, thereby inhibiting tumor growth and metastasis[67]. Chen et 
al[68] used PLGA/d-alpha-tocopherol PEG 1000 succinate (TPGS) NPs for the first time with the 
combination of chemotherapy drugs and ATP-binding cassette (ABC) transporter inhibitors (ATIs) and 
used TPGS and PLGA to prepare NPs. Due to the overexpression of ABC transporters in CSCs, the 
combination of ATIs and chemotherapy drugs can overcome the multidrug resistance of CSCs. PLGA/
TPGS NPs were prepared for the codelivery of DOX and extracellular lipopeptide composite to reach 
the tumor site with an optimized synergistic ratio, and resveratrol NP reduces cancer activity and 
decreases inflammation in CSC-rich oral cancer[69]. In addition to active targeting strategies, relying on 
intelligent changes in nanodrug size to penetrate deep into tumor tissues and improve the clearance rate 
of CSCs is also an important strategy for efficient reversal of MDR. On this basis, a special morpholo-
gically tunable nanodrug was developed, which integrated chemotherapy and immune checkpoint 
blocking therapy for large tumor cells and CSCs into drug delivery systems. As NPs are transferred 
from circulation to tumor tissue, particle size shrinks, favoring pharmacokinetics and cellular uptake 
while enabling sequential drug release when needed. The nanomedicine reduced the proportion of 
CSCs and enhanced the therapeutic effect on tumors, thereby prolonging the survival time of mice[70].

Liposomes
Liposomes are spherical vesicles consisting of one or more concentric phospholipid bilayer layers that 
enclose a water core. Liposomes are both nontoxic and biodegradable, making them powerful drug 
delivery systems. They improve the therapeutic effect of drugs by stabilizing compounds, overcoming 
barriers to cell and tissue uptake, and increasing the biological distribution of drugs at target sites in the 
body while minimizing systemic toxicity[71].

Tumor necrosis factor-associated apoptosis-inducing ligands (TRAILs) have received much attention 
for their favorable ability to activate apoptosis in cancer cells by interacting with death receptors (DRs). 
However, CSC-like cells lack or express low levels of the death receptor DR and are highly resistant to 
apoptosis mediated by TRAIL, limiting therapeutic efficacy. The liposomal component of the plasmid 
DNA encoding TRAIL and SAL enables cancer cells to express TRAIL as protein generators, and more 
importantly, to upregulate DR expression through SAL-induced CSCs, making drug-resistant CSCs 
sensitive to TRAIL-triggered apoptosis. This liposome-based programmable drug codelivery system 
shows the potential to effectively eliminate CSCs and inhibit CSC-rich tumor growth in mouse models 
of colon tumors in situ[72].
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Gong et al[73] prepared and characterized SAL-loaded nanoliposomes (SLNs), DOX-LNs (DLNs) and 
SAL and DOX simultaneously delivered nanoliposomes (SAL/DOX). Novel SDLNs and SLN-DLNs are 
used to deliver SAL and DOX to HCC cells and CSCs. Hybrid lipo plastids (HLs) are nanosized 
liposome particles that can be prepared by the ultrasonic mixing of capsule and micelle molecules in 
buffer solution. The inhibitory effect of HLs on the growth of the CSC subpopulation of HCC cells 
(HepG2) has proven that HLs are a new type of nanomaterial that can be used to target CSCs in the 
treatment of HCC[74]. Dual-targeted liposomes CEP-LP@S/D selectively target CD133EpCAMlCSCs. 
Upon arrival at CSCs, CEP-LP@S/D liposomes undergo cytoplasmic endocytosis, in which high concen-
trations of glutathione break the disulfide bonds, thereby degrading the liposomes[75]. The combination 
of docetaxel liposome (DTXPL) and telmisartan (TEL) increased the cytotoxicity of H460 WT 3D cells 
two-fold. In H460 WT and DTX-resistant CD133+ xenograft tumor models, tumors treated with the 
combination of DTXPL and TEL showed reduced tumor volume, increased apoptosis, and downreg-
ulated CSC marker expression[76].

Lipid nanocapsule (LNC) encapsulated with paclitaxel and SAL can induce apoptosis in bCSCs, 
which is enhanced by the codelivery of paclitaxel and SAL. Synergistic cytotoxic effects on cells, non-
bCSCs, and bCSCs, as well as effective reduction in tumor mammary globular growth by encapsulating 
both paclitaxel and SAL, suggest that LNCs have potential for the treatment of BC[77].These studies 
demonstrate the great potential of nanoliposome-targeted drug delivery to tumor stem cells.

GNRs and QDs
GNRs are pseudo-one-dimensional rod-like NPs, which have become one of the emerging materials of 
interest in recent years due to their anisotropic shape and adjustable plasma properties[78]. QDs, also 
known as nanocrystals, are NPs composed of II-VI or III-V elements that are rich in energy electrons and 
quantum-confined holes[79]. QDs are widely studied as biomedical imaging probes due to their unique 
optical and electronic properties. They are usually nanoscale semiconductor microcrystals and are 
widely used to improve the efficacy of fluorescent markers in bioimaging[80].

PKF118-310 (PKF) and vorinostat (SAHA) loaded on GNP corona Protein corona (PC), a AuNP 
system with protein corona coating for simultaneous delivery of PKF and SAHA resulted in a reduction 
of stem cell populations and Snail marker in MCF7 bCSCs[81]. Coloaded with GNRs and Adr, EpCAM 
was labeled by targeting the surface of CSCs to kill CSCs under laser ablation[54]. A novel fluorescent 
on nano aptamer sensor for the quantitative detection of CD133 has also been designed. By hybrid-
ization of CD133-targeting aptamers modified on the surface of QDs and AuNPs with partially comple-
mentary paired RNA (single-stranded RNA), the distance between the QDs and AuNPs is shortened, 
resulting in fluorescence resonance energy transfer between them so that the fluorescence of the QDs is 
quenched by AuNPs. The QD fluorescence recovery aptamer sensor is a sensitive and reliable sensor for 
the detection of CD133, providing a simple and promising detection tool for CSC markers[82]. Inhibition 
of glutamine decomposition may be an effective anti-CSC strategy. The glutaminase 1 (GLS1) inhibitor 
telaglenastat (CB-839) was loaded into Au pegylated NPs (Au-PEG-CD133-CB-839) equipped with 
covalently coupled CD133 aptamer. In an in vitro exposure to a CD133-positive brain tumor model, Au-
PEG-CD133-CB-839 reduced the activity of CD133-positive cancer cells in a dose-dependent manner
[83]. Glucose-installed-targeted NPs (Glu-NPs) demonstrated higher cellular uptake of siRNA payload 
in globular BC (MBA-MB-231) cell cultures compared to glucose-uncoupled control NPs (MeO-NPs). 
Glu-NPs, a promising nanocarrier design for CSC-targeted cancer therapy, caused significantly 
enhanced gene silencing in CSC-rich MDA-MB-231 tumor tissue in situ after systemic administration to 
tumor-bearing mice[84]. Liu et al[85] reported that SAL was conjugated with biocompatible AuNPs 
coated with PEG showed specific targeting ability and high antitumor efficacy against CD24 Low/
CD44high subsets in BC cells. The biodegradable naturally negatively charged polysaccharide HA is 
used to synthesize AuNPs, while HA can act as a capping agent based on its hydroxyl group, thereby 
stabilizing newly produced AuNPs. HA-functionalized AuNPs exhibit excellent physical properties and 
high cell uptake and have a strong inhibitory effect on MDA-MB-231 cells and CSCs. In particular, 
synergistic chemothermal therapy with HA-capped AuNPs combined with NIR irradiation has shown 
more effective therapeutic results in terms of cytotoxicity, apoptosis, and necrosis compared with 
chemotherapy alone[86].

The disadvantage of metallic nanomaterials lies in their toxicity. Reactive oxygen species(ROS) 
generation, influence on cell structures and other characteristics of metallic NPs toxicity are similar to 
other NPs, and the toxicity is related to size, shape, dimensionality, surface charge. Therefore, metallic 
NPs should be carefully examined before used in clinic.

CNTs
The high surface-to-volume ratio, enhanced electrical conductivity, strength, biocompatibility, ease of 
functionalization, and optical properties of CNTs have led to their consideration as novel drug and gene 
delivery vehicles. CNTs are cylindrical tubes formed from sp2 hybrid carbon atoms, which can range in 
size from 1 nanometer to several microns. CNTs can be divided into single-walled CNTs (SWCNTs) and 
multiwalled CNTs (MWCNTs) according to the number of layers formed in them[87].
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BCSCs have strong resistance to traditional hyperthermia, while PTT mediated by amino-modified 
multiwalled CNTs on the surface can effectively kill bCSCs[88]. CD133 is a currently recognized CSC 
marker for GBM. CNTs can be targeted to CD133-positive cells of GBM (GBM-CD133+) through a 
CD133 antibody. Wang et al[89] grafted a CD133 monoclonal antibody onto CHI-modified CNTs. Then, 
CSCs were effectively killed by PTT. The gastric CSC-specific targeted drug delivery system (SAL-
SWNT-CHI-HA complex) is also based on CHI-coated SWCNTs loaded with SAL and functionalized 
with HA to selectively eliminate gastric CSCs[90]. SWCNTs facilitate active targeting due to their needle 
shape, significant transmembrane penetration, EPR effects, high drug loading capacity, and ease of 
functionalization of biological agents (i.e. antibodies). Surface functionalization with polymers such as 
PEG helps overcome the limitations of the original NTs, providing good water solubility, prolonging 
blood circulation, and reducing the toxic effects of SWCNT-based nanocarriers. The potential 
therapeutic effect of the combination of paclitaxel and SAL in BC and CSCs is mediated by a pH-
responsive release mechanism near the acidic tumor microenvironment via a hydrazone junction[91].

GO
Driven by the achievements of CNTs, graphene, and GO are new types of drug nano carriers used to 
support a variety of therapeutic drugs, anticancer drugs, insoluble drugs, antibiotics, antibodies, etc.

GO is alleged to specifically target CSCs rather than normal cells and to induce CSC differentiation 
and inhibit tumor sphere formation in multiple cell lines, including breast, ovarian, prostate, lung, 
pancreas, and GBM cell lines, by inhibiting several key signaling pathways, including the Wnt, Notch, 
and signal tranducer and activator of transcription signaling pathways[92].

Choi et al[93] synthesized reduced graphene-silver nanocomposites (rGO-Ag) using the R-
phycoglobin biomolecular mediated method. These composites have a toxic effect on ovarian CSCs 
(OvCSCs) and can reduce the survival rate of OvCSCs by decreasing the mitochondrial membrane 
potential and expression of apoptotic genes, leading to mitochondrial dysfunction and possibly 
apoptosis. RGO-Ag may be a novel nanotherapeutic molecule for specifically targeting highly 
tumorigenic ALDH+CD133+ cells and clearing CSCs.

PTT
PTT uses metal NPs to eradicate CSCs and stimulate a hyperthermal physiological response by 
converting light into heat[94]. MSNs under an alternating magnetic field eliminate CSCs by blocking the 
hypoxia signaling pathway and heating, thus effectively inhibiting tumor growth[56,95]. Burke et al[86] 
found that bCSCs have strong resistance to traditional hyperthermia, and PTT mediated by amino-
modified multiwalled CNTs on the surface can effectively kill bCSCs. Wang et al[87] grafted CD133 
monoclonal antibody onto CHI-modified CNTs. CD133 is currently recognized as a CSC marker for 
GBM, and CNTs can be targeted to GBM-CD133+ through the CD133 antibody. Then the CSCs were 
effectively killed by PTT. NPs loaded with bimodal metal cages and photodynamic therapys (PDT) 
PDTs target CSCs by reducing cell mobility under laser irradiation[96]. Researchers developed a CSC-
specific-targeted, retinoic acid (RA)-loaded Au nanostar-dPG nanoplatform for the efficient eradication 
of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSC-specific 
multivalent-targeted capability due to HA decorated on the multiple attachment sites of the bioinert 
dPG. With the help of CSC differentiation induced by RA, the self-renewal of bCSCs and tumor growth 
were suppressed by the high therapeutic efficacy of PTT in a synergistic inhibitory manner[97]. Based 
on PTT properties of CNTs and metallic materials, nanoplatform functions with chemotherapy and PTT 
can be designed to produce synergistic effects.

Researchers have utilized MnO2@Ce6 NPs and a PDT-based approach that improved tumor microen-
vironment-related therapeutic resistance by modulating the tumor microenvironment with excess 
hydrogen protons and water, resulting in subsequent radiation of CSCs[98]. Haldavnekar R et al. 
introduced nickel-based functionalized nanoprobe-facilitated surface-enhanced Raman scattering for 
the prediction of cancer dissemination by CSC-based surveillance[99]. MoS2 nanosheets and a moderate 
PTT treatment were applied to target a CSC surface receptor (i.e. CD44) and modulate its downstream 
signaling pathway. The treatment showed attenuated self-renewal capacity, more response to anticancer 
drugs, and less invasiveness[100].

Although PTT can inhibit tumor growth by eliminating tumor stem cells, it is usually difficult to 
completely eradicate tumors due to the limited penetration depth of near-infrared (NIR) light. 
Therefore, combining PTT with other therapies is expected to overcome these challenges.

Magnetic fluid hyperthermia
MFH uses the good magnetic thermal conversion ability of magnetic NPs under the influence of an 
external alternating magnetic field to rapidly heat the internal tumor, forming a high-temperature zone, 
to kill tumor cells or induce their apoptosis[101].

When anti-CD44 antibody-modified SPIONPs are prepared, SPIONP-mediated hyperthermia can kill 
CSCs, and MFH significantly inhibits the growth of transplanted Cal-27 tumors in mice[59]. Nuclear 
targeting systems coated with MSNs of superparamagnetic iron oxide-based NPs can directly target 
CSCs and can be used to combine thermotherapy and hypoxia-activated chemotherapy with nuclear-
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targeted drug release under an alternating magnetic field, ultimately leading to complete apoptosis of 
CSCs[73]. Biomimetic magnetic NPs induce apoptosis of stress-escape CSCs and inhibit their prolif-
eration and metastasis in vitro and in vivo by the combined therapeutic effects of DOX chemotherapy 
and magnetic MSNs MFH under the action of an alternating magnetic field[102]. Antibody-modified 
NPs targeting lung CSCs enhance cellular uptake in vitro and prolong tumor accumulation in vivo. Due 
to the combined effects of hyperthermia and chemotherapy treatment, up to 98% of lung CSCs are killed 
by AMF within 30 min of application outside the body. In in vivo models, this combination therapy 
significantly inhibited tumor growth and metastasis in mice carrying lung CSC xenografts with minimal 
side effects and adverse reactions[103]. In summary, MFH shows great potential in targeting tumor stem 
cells.

FUTURE PERSPECTIVES AND CHALLENGES
The discovery of CSCs has made us gradually realize the complexity of tumors. CSCs are the roots of 
tumor occurrence, drug resistance, and postoperative recurrence. Therefore, the eradication of CSCs is 
of great significance for the treatment of cancer. At present, theoretical research on tumor stem cells is 
still in the initial stage, and many problems have not been solved. For example, CSCs and normal stem 
cells have very similar self-renewal, multidirectional differentiation, signaling pathways, and cell 
surface markers. How to effectively kill CSCs without damaging normal stem cells needs further 
research. Some regulatory mechanisms and biological behaviors of tumor stem cells have not been fully 
clarified. It is believed that with the continuous deepening of CSC research, more targets and a 
theoretical basis will be provided for clinical treatment.

In addition to effective drugs targeting CSCs, it is also necessary to consider the heterogeneity of 
CSCs to eliminate tumor cells and CSCs more effectively, inhibit recurrence and improve the survival 
rate of patients. Although great progress has been made in research on the molecular mechanism of 
cancer, cancer detection and treatment, and the treatment methods have been continuously improved, 
there is still a lack of effective treatments for cancer. The targeting, slow release, good biocompatibility, 
and stability of nanomaterials will play a huge role. In addition, nanotargeting technology is used to 
track the biological characteristics of CTCs[104]. The physical and chemical properties of each 
component of the tumor microenvironment are different from those of normal tissues, and the tumor 
microenvironment plays a huge role in the process of tumor occurrence and development, which makes 
the tumor microenvironment an important target for nanomaterial-targeted therapy[105]. Although 
there are still several difficulties in the wide application of nanomaterials in clinical practice, the most 
important of which is biosafety, there is still no convincing evidence that nanomaterials can be 
effectively metabolized in the body without accumulation and causing toxic side effects. In addition, 
how to improve the linking efficiency of targeted molecules and nanomaterials, the activity of targeted 
molecules after linking, the stability of the binding of targeted substances and drug carriers, and the 
metabolic pathways and toxicity of nanomaterials in vivo have not yet been solved. However, the strong 
ability shown in the early stages makes us hypothesize that nanomaterials for CSC-targeted therapy 
have broad prospects as a new generation of tumor treatment. With the continuous deepening of CSC 
research and the rapid development of nanotechnology, these fields will potentially overlap and 
provide a strong guarantee for cancer treatment.

CONCLUSION
Cancer is a huge barrier for researchers due to its high mortality rate and resistance to treatments. For 
example, multidrug resistance, recurrence, and the spreading nature of cancer cells make cancer 
extremely difficult to treat. CSCs are the main reason for inducing the characteristics of drug resistance 
and the regenerative ability of tumor cells. Therefore, the targeted system of cancer treatment began to 
turn to stem cell research. As an emerging field, nanotechnology is mainly applied to materials and 
carrier structures with diameters between 1 and 100 nanometers. Because nanomaterials have similar 
dimensions, they differ in composition, structure, hydrophobicity, magnetism, immunogenicity, and 
other properties. CSC therapies based on these unique properties have been extensively studied, but 
only a few have entered clinical trials. To better improve clinical translation, further research on 
targeted drug delivery of nanocarriers is needed to reduce toxicity, enhance permeability and retention, 
and minimize the shielding effect of the protein corona. By rationally designing and constructing new 
NDDS to accurately target CSCs that have developed drug resistance, the efficiency of reversing 
multidrug resistance and inhibiting tumor growth can be effectively improved, providing a tremendous 
opportunity to improve cancer treatment or prognosis, which will ultimately improve the survival rate 
of cancer patients.
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