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Abstract
Pulmonary diseases across all ages threaten millions of people and have emerged 
as one of the major public health issues worldwide. For diverse disease con-
ditions, the currently available approaches are focused on alleviating clinical 
symptoms and delaying disease progression but have not shown significant 
therapeutic effects in patients with lung diseases. Human umbilical cord-derived 
mesenchymal stem cells (UC-MSCs) isolated from the human UC have the 
capacity for self-renewal and multilineage differentiation. Moreover, in recent 
years, these cells have been demonstrated to have unique advantages in the 
treatment of lung diseases. We searched the Public Clinical Trial Database and 
found 55 clinical trials involving UC-MSC therapy for pulmonary diseases, 
including coronavirus disease 2019, acute respiratory distress syndrome, bron-
chopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary 
fibrosis. In this review, we summarize the characteristics of these registered 
clinical trials and relevant published results and explore in depth the challenges 
and opportunitiesfaced in clinical application. Moreover, the underlying mole-
cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are 
also analyzed in depth. In brief, this comprehensive review and detailed analysis 
of these clinical trials can be expected to provide a scientific reference for future 
large-scale clinical application.

Key Words: Pulmonary diseases; Mesenchymal stem cells; Human umbilical cord; Cell 
therapy; Clinical trials
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Core Tip: Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health 
issues worldwide. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are superior for standardization and 
large-scale production for disease treatment. Herein, we provide a detailed summary of clinical trials and results related to 
the use of UC-MSCs in the treatment of lung diseases and explore in depth the challenges and opportunities faced in the 
clinical application of these cells.

Citation: Meng M, Zhang WW, Chen SF, Wang DR, Zhou CH. Therapeutic utility of human umbilical cord-derived mesenchymal 
stem cells-based approaches in pulmonary diseases: Recent advancements and prospects. World J Stem Cells 2024; 16(2): 70-88
URL: https://www.wjgnet.com/1948-0210/full/v16/i2/70.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i2.70

INTRODUCTION
Pulmonary diseases across all ages are mainly caused by trauma, air pollution, long-term smoking, population aging, and 
various respiratory virus infections, such as coronavirus disease 2019 (COVID-19), and exert tremendous negative 
impacts on health status, quality of life, and socioeconomic costs[1,2]. In the last decade, the increasingly high rates of 
morbidity and mortality due to acute and chronic lung diseases have led to ongoing burdens on public health and health 
care systems worldwide[3]. According to the systemic analysis for Global Burden of Study 2017, chronic respiratory 
diseases, including asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), 
pulmonary arterial hypertension, and occupational diseases, have affected more than 500 million people globally[4]. 
Acute respiratory distress syndrome (ARDS) is recognized as the most severe form of acute lung injury (ALI) according to 
the 2012 Berlin definition[5]. ARDS is commonly caused by sepsis, smoke inhalation injury, near-drowning, severe 
pneumonia, or pulmonary contusion and is present in approximately 10% of all patients in intensive care units 
worldwide[6,7]. The mortality rate for ARDS patients has remained high, at 30%-40%, in most clinical studies[8,9]. 
Regardless of the pathophysiology of chronic respiratory disease or ALI, these diverse conditions are usually associated 
with inflammatory cell infiltration, inflammation-induced disruption of the alveolar epithelial and endothelial barrier, a 
decrease in alveolar fluid clearance, associated cytokine release, airway inflammation and remodeling, and pulmonary 
fibrosis development[3]. Currently available therapeutic approaches (e.g.,antibiotic/anti-inflammatory drugs, corticost-
eroids, specific cytokine inhibitors, bronchodilators, artificial respiratory support, mechanical ventilation, and restricted 
fluid input) are focused on alleviating clinical symptoms and delaying disease progression[10]. Hence, the development 
of novel therapeutic approaches for pulmonary diseases is of paramount significance for attenuating immune responses 
and fostering tissue regeneration.

Mesenchymal stem cells (MSCs) have unique immunomodulatory, regenerative and differentiation properties, and 
MSC-based therapies have received increasing attention for the treatment of pulmonary diseases, including COVID-19, 
ALI/ARDS, bronchopulmonary dysplasia (BPD), COPD, IPF and silicosis[11]. MSCs are nonhematopoietic stem cells 
with multilineage differentiation capacities and can be isolated from bone marrow (BM), umbilical cord (UC), adipose 
tissue (AT), placenta, peripheral blood (PB), lung, and other tissues[12,13]. Although MSCs have numerous potential 
therapeutic applications, they can also have detrimental effects depending on the microenvironment, and the tumori-
genicity of transplanted MSCs is a current concern that has been well documented through the use of single-cell 
transcriptomes[14]. In addition, the heterogeneity of MSCs is determined by multiple factors, such as donors, tissue 
sources, cell populations, culture conditions, cell isolation techniques, and cryoprotective and thawing protocols, and can 
also lead to inconsistent clinical application efficacy[15]. All these factors, to some extent, constrain the clinical efficacy 
and application of MSCs. BM-derived MSCs (BM-MSCs) were first discovered and are considered the main source for 
clinical application; however, they eventually degrade, exhibiting a loss of proliferation and senescence[16]. Among these 
sources, UC-MSCs have emerged as a promising candidate due to their easy collection, noninvasive isolation methods, 
rapid proliferation ability, low immunogenicity, few ethical concerns, superior immunological regulation potential and 
anti-inflammatory effects[17-21]. More importantly, UC-MSCs are superior for standardization and large-scale 
production for disease treatment. MSCs from these neonatal tissues possess increased proliferative capacity in vitro[22]. 
Moreover, the number of MSCs obtained from UC specimens is far greater than that obtained from BM or AT and is not 
limited by donor age, which partially eliminates the impact of cell heterogeneity on clinical treatment and outcome 
analysis[23,24]. In terms of the therapeutic benefit of UC-MSCs in patients with pulmonary diseases, an increasing 
number of clinical studies have demonstrated the safety and efficacy of UC-MSCs in regulating the function of immune 
cells, alleviating the inflammatory response, improving pulmonary function, enhancing lung tissue regeneration and 
repair, and attenuating lung fibrosis[3]. Therefore, considering these advantages, UC-MSCs are recommended to be 
considered as appropriate sources of MSCs for the management of pulmonary diseases in both pediatric and adult 
populations. In this review, we provide a detailed summary of clinical trials and results related to the use of UC-MSCs in 
the treatment of lung diseases and explore in depth the challenges and opportunities faced in the clinical application of 
these cells.

https://www.wjgnet.com/1948-0210/full/v16/i2/70.htm
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UNDERLYING MOLECULAR MECHANISMS OF UC-MSCS IN PULMONARY DISEASES
UC-MSCs are located mainly in the umbilical vein subendothelial, subamnion and perivascular regions and in Wharton’s 
jelly (WJ); these cells are composed mainly of sponge-like structures woven with collagen fibers, proteoglycans and 
embedded stromal cells[25,26]. In recent years, there has been enormous progress in understanding the similarities and 
differences between MSCs derived from various human tissues[27]. Compared to AT-MSCs and BM-MSCs, UC-MSCs are 
easier to obtain and culture due to the noninvasive collection method used after birth, the ease of in vitro expansion and 
ethical access[28]. In addition, UC-MSCs exhibit lower immunogenicity, greater proliferation and differentiation 
potential, a slower senescence rate, and greater anti-inflammatory and immunomodulatory effects than AT-MSCs and 
BM-MSCs, suggesting that UC-MSCs might be a better alternative for the treatment of pulmonary diseases, especially 
during the COVID-19 pandemic[13,19-21]. UC-MSCs have shown safety and efficacy in clinical trials for a variety of 
pulmonary diseases. Furthermore, UC-MSCs have been demonstrated to inhibit inflammation and fibrosis and accelerate 
the regeneration of functional lung tissue, representing a relatively effective therapy with promising results[29]. The 
potential mechanisms of action of UC-MSCs in patients with lung-related diseases include immunomodulatory and anti-
inflammatory effects, regenerative and differentiation properties, and antimicrobial effects (Figure 1).

The immunomodulatory and anti-inflammatory properties of UC-MSCs have been extensively studied. The 
modulation of host innate and adaptive immune responses by UC-MSCs is mediated by direct cell-to-cell contact and 
paracrine effects. Briefly, the majority of exogenous UC-MSCs can migrate to the injured lung after intratracheal adminis-
tration and directly interact with immune cells, such as monocytes, macrophages, natural killer (NK) cells, T cells, B cells, 
and dendritic cells. A previous study demonstrated a short survival period of infused MSCs and a lack of distribution of 
viable MSCs beyond the lungs[30]. The rapid clearance of infused UC-MSCs from the lungs is largely mediated by 
phagocytosis by monocytes, which induces phenotypic and functional changes in monocytes and triggers an 
immunomodulatory response[31]. UC-MSC administration in lipopolysaccharide (LPS)-induced ALI mice inhibits the 
expression of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemoattractant 
protein (MCP)-1, IL-2, and interferon (IFN)-γ], enhances the expression of the anti-inflammatory cytokine IL-10, and 
reduces macrophage infiltration into injured lung tissue through prostaglandin E2 (PGE2)-dependent reprogramming of 
host macrophages to promote their expression of programmed cell death protein ligand 1[8]. IL-10 overexpression in UC-
MSCs has been demonstrated to attenuate Escherichia coli (E. coli)-induced lung injury and increase macrophage function 
via the enhancement of macrophage phagocytosis and elimination of E. coli[32]. An in vitro model of PB mononuclear cell 
(PBMC) coculture with UC-MSCs demonstrated an immunomodulatory effect on PBMCs, namely, an increase in 
neutrophil activation, phagocytosis and leukocyte migration; activation of early T-cell markers; and a decrease in effector 
T cells and the senescent effector CD4. UC-MSCs exert their potent immunomodulatory effects through a PGE2-mediated 
mechanism, and a large amount of PGE2 produced by inflammatory cytokine-activated UC-MSCs is the principal 
mediator of immunosuppressive activities[33]. UC-MSC infusions significantly reduce the secretion of inflammatory 
biomarkers such as C-reactive protein (CRP), IL-6, IL-8, and TNF-α in COVID-19-induced ARDS patients[20]. MSCs 
interact with dendritic cells, regulating the balance between proinflammatory T-helper 1 (Th1) cells and anti-inflam-
matory Th2 cells via a shift toward the Th2 phenotype[34,35]. UC-MSC therapy has an inhibitory effect on overactive T-
lymphocyte populations (CD8-CXCR3 and CD56-CXCR3) associated with cytokine storms, but the increase in CD4-
CXCR3 in the UC-MSC group indicates the proliferation of these Th1 populations[36]. Recent studies have shown that 
UC-MSC transplantation leads to a decrease in inflammatory markers, such as the erythrocyte sedimentation rate and 
CRP level; more rapid recovery of blood lymphocytes; and reduced surfactant D, one of the main markers of lung injury. 
On the other hand, the production of proinflammatory cytokines, such as induced protein 10 kDa, macrophage inflam-
matory protein-1α, and granulocyte colony-stimulating factor, could suggest a greater immunomodulatory effect of MSCs 
than immunosuppression in COVID-19 patients[37]. Additionally, UC-MSC-derived extracellular vesicles (EVs) could 
mitigate the inflammatory response, restore the viability of cells and reduce the production of proinflammatory cytokines 
such as IL-8 and IL-1β in both LPS- and E. coli-induced lung injury models[38]. MSC-derived EVs can interact with 
immune cells and enhance macrophage phagocytosis through EV-mediated mitochondrial transfer[39].

MSCs, including UC-MSCs, possess regenerative and differentiation properties that contribute to tissue repair and 
regeneration. MSCs have been shown to stimulate local tissue regeneration by secreting paracrine factors associated with 
angiogenesis, antifibrosis effects and remodeling responses[40]. UC-MSCs secrete many molecules with paracrine effects 
that promote pulmonary alveolar regeneration and endothelial cell migration and proliferation, including angiopoietin-1, 
hepatocyte growth factor (HGF), epidermal growth factor, keratinocyte growth factor (KGF), vascular endothelial growth 
factor, MCP-1, C-X-C motif chemokine ligand (CXCL) 5 and matrix metalloprotease (MMP)[41]. UC-MSCs are more 
effective at restoring alveolar fluid clearance and protein permeability in influenza A (H5N1)-associated ALI and possess 
functional and practical advantages over conventional BM-MSCs[42]. In terms of their differentiation functions, UC-
MSCs can be induced to differentiate into type II alveolar epithelial cells (AEC II), which are regarded as the progenitor 
cells of pulmonary epithelium and the target cells of pulmonary fibrosis[43]. In in vitro experiments, UC-MSC-derived 
AEC II were reported to be able to alleviate pulmonary fibrosis through regulating apoptosis mediated by β-catenin[44]. 
A recent study demonstrated that UC-MSCs ameliorate lung injury in ARDS and regulate Yes-associated protein to 
facilitate AEC II differentiation[45]. Furthermore, microvesicles derived from UC-MSCs were able to enhance alveolar 
development by promoting AEC II proliferation and ameliorating lung inflammation in an antenatal rat model of BPD
[46]. In addition, UC-MSCs have antifibrotic properties and can secrete a variety of cytokines that effectively reverse 
pulmonary fibrosis[47]. UC-MSCs can alleviate bleomycin-induced pulmonary fibrosis in mice, and the overexpression of 
HGF has been proven to augment the antifibrotic effect of UC-MSCs by interacting with IL-17-producing cells in fibrotic 
lungs[48]. By demonstrating the reduction in inflammation and fibrosis induced by bleomycin-induced lung injury 
induced by UC-MSCs, a study showed that UC-MSCs increased MMP-2 levels and downregulated lung cytokine and 
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Figure 1 Potential mechanisms of umbilical cord-derived mesenchymal stem cells therapy in pulmonary diseases.The therapeutic effects of 
umbilical cord-derived mesenchymal stem cells in treating pulmonary diseases involve multiple mechanisms, such as the immunomodulatory and anti-inflammatory 
functions, the regenerative and differentiation properties, and the antimicrobial effects. IL: Interleukin; PGE2: Prostaglandin E2; PD-L1: Programmed cell death protein 
ligand 1; EVs: Extracellular vesicles; CRP: C-reactive protein; MCP: Monocyte chemoattractant protein; IFN: Interferon; TNF: Tumor necrosis factor; HGF: 
Hepatocyte growth factor; KGF: Keratinocyte growth factor; MMP: Matrix metalloprotease; TLR: Toll-like receptor; CXCL: C-X-C motif chemokine ligand; TIMP: 
Tissue inhibitor of matrix metalloproteinase; NK: Natural killer; AEC: Alveolar epithelial cell.

tissue inhibitor of matrix metalloproteinase expression[49]. In coculture system studies, UC-MSCs elevated MMP-9 levels 
in pulmonary macrophages, released hyaluronan into the medium and promoted the expression of toll-like receptor-4 
(TLR-4) in the lung for alveolar regeneration[50]. In the context of the molecular and cellular behavior of UC-MSCs, a 
subcluster of IFN-sensitive macrophages, which were identified by using cell sequencing after infusion, increased their 
expression of CXCL 9 and CXCL 10, which recruited more regulatory T cells into the injured lung; this indicated that UC-
MSCs can attenuate pulmonary fibrosis via macrophages[51]. Moreover, a human UC mesenchymal cell-conditioned 
medium was shown to decrease the level of oxidative stress, proinflammatory cytokines, and malondialdehyde, which 
caused restorative and prophylactic effects against pulmonary fibrosis in a model of IPF[52].

In addition to their immunomodulatory and differentiation abilities, UC-MSCs also exhibit antimicrobial effects in 
patients with bacterial or viral pneumonia and the ensuing ALI. In an in vitro study, paracrine mediators such as KGF, 
antimicrobial polypeptides, defensins, and lipocalin 2 secreted by MSCs were found to enhance bacterial clearance[53,
54]. Alternatively, the soluble paracrine factors released by MSCs, such as IL-10, PGE2, TNF-α-stimulated gene 6 and IL-6, 
also had preventive effects against microorganisms[54,55]. Antimicrobial peptides, such as the human cathelicidin hCAP-
18/LL-37, exhibit direct antimicrobial activity against a series of related pathogens, including fungi, viruses, and both 
gram-positive and gram-negative bacteria[56]. Furthermore, β-defensin-2 (BD-2), which is secreted by UC-MSCs through 
the TLR-4 signaling pathway, is a critical paracrine factor that mediates the antibacterial and anti-inflammatory effects of 
these cells against E. coli-induced ALI in mice[57]. An in vitro study demonstrated that UC-MSCs possessed direct antimi-
crobial effects against bacteria and could alleviate antibiotic resistance, which was mediated partly by secretion of 
cathelicidin LL-37 and BD-2 and upregulation of outer membrane protein expression during bacterial infection[58]. In 
terms of the therapeutic effects of UC-MSCs on E. coli pneumonia, UC-MSCs were effective at reducing ALI, decreasing 
the bacterial load, improving oxygenation, reducing histological injury, and ameliorating the level of inflammatory 
markers[59]. On the other hand, the enhancement of macrophage phagocytosis and macrophage killing of E. coli was 
proposed as another main mechanism of the antimicrobial effects of IFN-γ-primed UC-MSCs[60].

OVERVIEW OF CLINICAL TRIAL REGISTRATIONS OF UC-MSCS FOR PULMONARY DISEASES
As of November 2023, when we searched for the keywords “human umbilical cord-derived mesenchymal stem cells” or 
“umbilical cord mesenchymal stem cells” or “UC-MSCs” and “pulmonary disease” or “coronavirus disease 2019” or 
“COVID-19” or “acute respiratory distress syndrome” or “ARDS” or “bronchopulmonary dysplasia” or “BPD” or 
“chronic obstructive pulmonary disease” or “COPD” or “pulmonary fibrosis” or “PF” in the Public Clinical Trial 
Database (https://ClinicalTrials.gov/), 55 clinical trials of pulmonary diseases worldwide were systematically reviewed; 
these diseases included COVID-19 (n = 17), ARDS (n = 14), BPD (n = 18), COPD (n = 3), and PF (n = 3). The geographical 
location and distribution of these clinical trials are shown in Figure 2. The clinical trials were conducted in 13 countries. 
Twenty-four clinical trials were conducted in China, followed by the United States, which hosted 9 trials. Korea was in 
third place with 7 trials. Clinical trials of pulmonary diseases have been increasingly conducted in developed and 
developing countries.

https://ClinicalTrials.gov/
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Figure 2 The geographical location and distribution of the clinical trials in pulmonary diseases.

The characteristics of the clinical trials, including study design, status and phase, were analyzed and counted 
(Figure 3). Thirty-two clinical trials were open-label; 1 was single-blinded for the participants; 3 were double-blinded for 
the participants and care providers; 11 were triple-blinded for the participants, care providers, and investigators; 7 were 
quadruple-blinded for the participants, care providers, investigators, and outcome assessors; and 1 was not described. 
Twenty-nine clinical trials were randomized, 7 were nonrandomized, and 19 did not provide relevant information. The 
intervention models included single-group assignment (n = 17), parallel assignment (n = 33), and sequential assignment 
(n = 2), while 3 were not described. The recruitment statuses of the clinical trials were as follows: Recruiting (n = 16), 
completed (n = 11), active but not recruiting (n = 5), not yet recruiting (n = 4), withdrawn (n = 4), or unknown (n = 15). 
The majority of clinical trials were mainly in the early phases, such as phase I studies evaluating safety (n = 24), phase II 
studies evaluating efficacy (n = 11), or combined phase I/II studies (n = 12). Additionally, only a very small number of 
clinical trials were phase III studies to determine pragmatic effectiveness (n = 2); 1 study was a combined phase II/III 
trial, and there were no phase IV trials to monitor long-term effects. Five trials did not specify the phase. The specific 
content and results are described as follows.

CURRENT RESEARCH ADVANCEMENTS IN THE USE OF UC-MSCS FOR PULMONARY DISEASES
UC-MSCs for COVID-19
COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a 
global pandemic and become the greatest public health threat in the 21st century[61]. People infected with SARS-CoV-2 
have a wide range of clinical manifestations, ranging from asymptomatic or mild to severe respiratory symptoms, such as 
ARDS or multiple system organ failure, and death[62]. The host’s innate and adaptive immune responses associated with 
SARS-CoV-2 infection play a critical role in controlling virus replication[63]. Cytokine storms and excessive inflammation 
are considered the major causes of ARDS and multiple-organ damage, and they play important roles in the process of 
disease aggravation, especially in patients with severe COVID-19[64]. As of November 11, 2022, more than 630 million 
people were infected with COVID-19, and the number of deaths exceeded 6.6 million[65]. The serious sequelae of 
COVID-19 have a significant impact on health and quality of life[48]. At present, different potential treatment options for 
COVID-19, such as Paxlovid, recombinant soluble angiotensin-converting enzyme 2, monoclonal antibodies, antiviral 
molecules, IFN therapy, corticosteroids, herbal medicines, and vaccines, have been explored[66]. Considering the high 
impact that critical cases of COVID-19 still have on health and their complex pharmacological management, the search for 
new therapeutic approaches is urgent[67]. Research shows that MSCs have strong immunomodulatory and anti-inflam-
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Figure 3 Characteristics of clinical trials involving umbilical cord-derived mesenchymal stem cells therapy for pulmonary diseases. A: 
Masking of clinical trials; B: Allocation of clinical trials; C: Intervention model of clinical trials; D: Status of clinical trials; E: Phase of clinical trials. N/A: Not available.

matory properties and can resist ARDS and cytokine storms in patients with COVID-19[68,69]. Since the outbreak of the 
pandemic, a series of clinical trials of MSC therapy have been conducted in an effort to resolve immune dysfunction 
caused by severe inflammation due to COVID-19.

To date, 17 clinical trials of UC-MSC treatments for COVID-19 have been registered in the Clinical Trial Database 
(Table 1). Consequently, 9 clinical trials were open-label; 1 clinical trial was single-blinded for the participants; 5 were 
triple-blinded for the participants, care providers, and investigators; and 2 were quadruple-blinded for the participants, 
care providers, investigators, and outcome assessors. Among all the eligible clinical trials, 14 were randomized, 1 was 
nonrandomized, and 2 did not provide relevant descriptions. The vast majority of clinical trials (n = 12) were in phase I, 
phase II or combined phase I/II, accounting for 70.5% of the total. Remarkably, only a small portion of the patients were 
in phase III (n = 2 or 11.8%). Therefore, most trials were in the early phases, and the results from these trials need to be 
further tested in advanced-phase trials. Among the 17 enrolled trials, 2 were completed; 1 was active but not recruiting; 3 
were still recruiting; 2 were not yet recruiting; 2 were withdrawn; and 7 had an unknown status. The clinical trials were 
conducted in 6 countries. China hosted the largest number of clinical trials (n = 9), followed by the United States (n = 3) 
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Table 1 Clinical trials of umbilical cord mesenchymal stem cells therapy for patients with coronavirus disease 2019

UC-MSCs administration protocol
No Trial ID

Frequency Dose (cells) Route
Phase Status Patients Age (yr) Follow-up time Mask Allocation Country

1 NCT04293692 4 (at days 1, 3, 5 and 7) 0.5 × 106/kg IV N/A Withdrawn 48 18-75 N/A Triple-blind Randomized China

2 NCT05682586 2 (at days 1 and 4) 1 × 106/kg IV III Recruiting 60 18-75 N/A Open-label Randomized China

3 NCT05501418 1 N/A IV I/II Active, not recruiting 75 20-80 12 months Single-blind Randomized China

4 NCT05719012 3 (at months 1, 2, and 3) N/A IV II Not yet recruiting 70 18-80 96 wk Triple-blind Randomized China

5 NCT04273646 4 (at days 1, 3, 5 and 7) 0.5 × 106/kg IV N/A Unknown 48 18-65 96 wk Open-label Randomized China

6 NCT05689008 2 (at days 1 and 4) 1 × 106/kg IV III Recruiting 60 18-85 N/A Open-label Randomized China

7 NCT04457609 1 1 × 106/kg IV I Unknown 40 18-95 N/A Triple-blind Randomized Indonesia

8 NCT05132972 3 (at days 0, 3, and 6) 1 × 106/kg IV II/III Recruiting 42 18-75 90 d Quadruple-blind Randomized Indonesia

9 NCT04288102 3 (at days 0, 3, and 6) 4.0 × 107 IV II Completed 100 18-75 90 d Quadruple-blind Randomized China

10 NCT04366271 1 N/A N/A II Withdrawn 100 40-80 N/A Open-label Randomized Spain

11 NCT04371601 4 (once every 4 d) 1 × 106/kg IV I Unknown 60 18-70 N/A Open-label Randomized China

12 NCT04429763 1 1 × 106/kg N/A II Unknown 30 18-79 N/A Triple-blind Randomized United States

13 NCT04461925 3 (at days 1,4 and 7) 1 × 106/kg IV I/II Unknown 30 18-75 N/A Open-label Non-Randomized Ukraine

14 NCT04269525 4 (at days 1, 3, 5 and 7) 3.3 × 107 IV II Unknown 16 18-80 N/A Open-label N/A China

15 NCT04437823 3 (at days 1, 3, and 5) 0.5 × 106/kg IV II Unknown 20 30-70 N/A Open-label Randomized Pakistan

16 NCT04573270 1 N/A IV I Completed 40 18 to older N/A Triple-blind Randomized United States

17 NCT05286255 2 (at days 1 and 4) 1.25-1.5 × 106/kg IV I Not yet recruiting 10 18-80 N/A Open-label N/A United States

UC-MSCs: Umbilical cord mesenchymal stem cells; IV: Intravenous; N/A: Not available.

and Indonesia (n = 2). All 17 clinical trials were designed specifically for adults or older adults. UC-MSCs were usually 
administered intravenously once or multiple times, and the doses ranged from 0.5 × 106/kg to 1 × 106/kg per injection.

Many registered clinical trials have reported these findings. Shi et al[62] conducted a randomized, double-blind, and 
placebo-controlled phase II trial in which 65 severe COVID-19 patients with lung damage received UC-MSC treatment on 
days 0, 3, and 6 and 35 patients (control group) received placebo (NCT04288102). That study showed that, compared with 
the placebo, UC-MSC administration significantly improved the whole-lung lesion volume from baseline to day 28. The 
distance traveled in the 6-min walk test (6-MWT) was increased in patients treated with UC-MSCs. These results 
suggested that UC-MSC administration is a potentially safe and effective therapeutic treatment for COVID-19 patients 
with lung damage. To evaluate the effects of these interventions on reducing the mortality rate and preventing long-term 
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pulmonary disability, a phase III trial is necessary in the future. In Jakarta, Indonesia, a double-blind, multicenter, 
randomized controlled trial at four COVID-19 referral hospitals was conducted by Dilogo et al[36] (NCT04457609). Forty 
randomly allocated critically ill patients with COVID-19 were included in this study; 20 patients were given a single 
intravenous infusion of 1 × 106 cells/kg body weight (BW) UC-MSCs in 100 mL of saline solution, and 20 patients 
received a placebo (100 mL of saline solution) as a control group. UC-MSC treatment significantly improved the survival 
rate of critically ill patients with COVID-19 by modulating the immune system toward an anti-inflammatory state. The 
survival rate in the UC-MSC group was 2.5 times greater than that in the control group, and the survival rate of patients 
with comorbidities was 4.5 times greater than that of the controls. Moreover, the intravenous administration of UC-MSCs 
was safe and well tolerated and did not cause life-threatening complications or acute allergic reactions. A randomized, 
double-blind phase II study involving 17 patients with COVID-19 also yielded encouraging results[70]. Compared to 
those in the placebo group, the levels of ferritin, IL-6, MCP1-CCL2, CRP, D-dimer, and neutrophil levels were lower, and 
the numbers of CD3+ and CD4+ T lymphocytes and NK cells were greater in the treatment group. These findings indicate 
that UC-MSC infusion plays an important role in the early prevention of severe complications and the reduction of 
sequelae in critically ill patients with COVID-19. Our research team also performed considerable work during the 
COVID-19 epidemic[71-74]. One of our previous studies reported the case of a 54-year-old patient with severe COVID-19 
who receivedWharton’s jelly (WJ)-MSCs[75]. The pulmonary function and symptoms of the patient significantly 
improved 2 d after WJ-MSCs transplantation, and the patient recovered and was discharged 7 d after treatment. During 
the treatment period, the inflammatory indices and immune status of the COVID-19 patients significantly improved, 
which suggested that WJ-MSC transplantation may improve the prognosis of patients with COVID-19 by regulating the 
inflammatory response and promoting the recovery of antiviral immune cells and organs.

UC-MSCs for ARDS
ARDS, an acute respiratory condition in critically ill patients, is characterized by acute and refractory hypoxemia, noncar-
diogenic pulmonary edema, diffuse alveolar-capillary membrane damage, and reduced compliance (or increased lung 
stiffness)[5]. Patients with severe pneumonia induced by SARS-CoV-2 rapidly develop ARDS and die of multiple-organ 
failure[76]. The outbreak of COVID-19 has led to a significant increase in the number of ARDS patients worldwide. 
Despite advances in supportive therapies, ARDS still has very high mortality and long-term morbidity. In the United 
States, the incidence of ARDS ranges from 64.2 to 78.9 cases/100000 person-years[77]. Despite decades of basic and 
clinical research, there is still no safe and effective pharmacotherapy for ARDS. Therefore, there is an urgent need for new 
therapeutic methods to minimize lung tissue damage caused by inflammation and reduce the mortality rate in patients 
with ARDS. An increasing number of early clinical trials have verified the therapeutic potential of UC-MSC therapy, and 
the results of phase I/II clinical studies have demonstrated its feasibility, preliminary safety and efficacy in patients 
suffering from ARDS[78-80].

To date, 14 clinical trials assessing the safety and efficacy of UC-MSC therapy in ARDS patients have been registered 
(Table 2). These clinical trials were mainly conducted in the United States (n = 5) and China (n = 3) and accounted for 57% 
of the total. The main intervention models were single-group, parallel and sequential assignment. Among all the included 
clinical trials, 3 clinical trials involved single-group assignment, 8 involved parallel assignment, 2 involved sequential 
assignment, and 1 did not provide relevant information. Eight clinical trials were randomized, 2 were nonrandomized, 
and 4 did not report the allocation. Most trials (n = 12) were in the early phases, with the exception of 2 trials that were 
not described. All the clinical trials included adults and elderly individuals. Six clinical trials were open-label. In terms of 
the blinding design, 1 was double-blinded for the participants and care providers; 4 were triple-blinded for the 
participants, care providers, and investigators; and 2 were quadruple-blinded for the participants, care providers, invest-
igators, and outcome assessors.

To evaluate the safety and explore the possibility of three injections of UC-MSCs in patients with mild-moderate ARDS 
induced by COVID-19, a single-center, open-label, phase I clinical trial with a placebo-control group was conducted at 
Imam Reza Hospital[81]. Ten patients in the intervention group received three intravenous infusions of UC-MSCs (1 × 106 
cells/kg BW per injection) on days 1, 3 and 5, and 10 patients in the placebo-control group were administered normal 
saline. The follow-up period in this clinical trial was 17 d. According to their results, the SPO2/FIO2 ratio and serum CRP 
levels were significantly improved, and the serum inflammatory cytokines (IL-6, IFN-γ, TNF-α and IL-17A) were also 
significantly reduced after UC-MSC intravenous infusion, which demonstrated that multiple transplantations of UC-
MSCs can decrease cytokine storms and ameliorate respiratory functions. Monsel et al[82] conducted a double-blind, 
multicenter trial for the treatment of SARS-CoV-2-induced ARDS (NCT04333368). Among these patients, 21 patients were 
randomly assigned to receive 3 rounds of intravenous infusions of UC-MSCs (1 × 106/kg per infusion) over 5 d after 
recruitment, and 24 patients received saline (0.9%) solution as the control. There was no significant difference in the 
incidence of infusion-associated adverse events (AEs) between these two groups, and no serious AEs linked to UC-MSC 
infusion were observed. These findings suggest that intravenous administration of UC-MSCs is safe for patients with 
SARS-CoV-2-induced ARDS. A phase I/II randomized, double-blind, placebo-controlled trial of 24 patients was 
conducted in the UHealth System/Jackson Health System in Miami, Florida (NCT04355728)[21]. In this study, 12 ARDS 
patients received two intravenous infusions (at days 0 and 3) of UC-MSCs; controls received two infusions of vehicle 
solution. The results showed that the 31-d mortality rate was 9% in the UC-MSC treatment arm and 58% in the control 
arm. After UC-MSC treatment, lung inflammation in ARDS patients was alleviated, and this change was accompanied by 
a significant decrease in inflammatory factor levels. In addition, the UC-MSC-treated group exhibited a shorter recovery 
time than the control group. Severe UC-MSC infusion-related AEs were not observed in either group. Therefore, UC-MSC 
infusion may be a safe and effective treatment option for ARDS patients. To explore the maximum tolerable dose of 
infused UC-MSCs, Yip et al[83] administered different doses of UC-MSCs (1.0 × 106 cells/kg, 5.0 × 106 cells/kg, 1.0 × 107 
cells/kg) intravenously to 9 patients with moderate to severe ARDS. Their results demonstrated that a single intravenous 



Meng M et al. UC-MSCs therapy for pulmonary diseases

WJSC https://www.wjgnet.com 78 February 26, 2024 Volume 16 Issue 2

Table 2 Clinical trials of umbilical cord mesenchymal stem cells therapy for patients with acute respiratory distress syndrome

UC-MSCs administration protocol
No Trial ID

Frequency Dose (cells) Route
Phase Status Patients Age (yr) Follow-up 

time Mask Allocation Country

1 NCT05387278 3 (at days 1, 3, 5 and 7) N/A IV I Recruiting 20 18-75 12 wk Quadruple-
blind

Randomized United States

2 NCT03608592 1 1 × 106/kg IV N/A Unknown 26 18 to 
older

N/A Open-label N/A China

3 NCT05741099 1 N/A IV I/II Recruiting 20 18-85 N/A Triple-blind Randomized China

4 NCT04355728 2 (within 24 h and within 
72 h)

1 × 108 IV I/II Completed 24 18 to 
older

N/A Triple-blind Randomized United States

5 NCT04452097 1 Group 1: 0.5 × 106/kg; group 2: 1 × 106/kg; group 
3:1.5 × 106/kg

IV I/II Not yet recruiting 39 18-80 N/A Open-label Non-
randomized

China

6 NCT04494386 1/2 (at days 1 or 1 and 3) 1 × 108 IV I/II Active, not 
recruiting

60 18 to 
older

12 months Triple-blind Randomized United States

7 NCT04456361 1 1 × 108 IV I Active, not 
recruiting

9 18 to 
older

3 months Open-label N/A Mexico

8 NCT04565665 2 (at days 1 and within 7 
d)

N/A IV I/II Recruiting 70 18 to 
older

12 months Open-label Randomized United States

9 NCT03042143 1 N/A IV I Recruiting 129 16 to 
older

N/A Quadruple-
blind

Randomized United 
Kingdom

10 NCT04347967 1 N/A IV I Not yet recruiting 18 20-85 N/A Open-label N/A China

11 NCT04333368 3 (at days 1, 3 and 5) 1 × 106/kg IV/CVC I/II Completed 40 18 to 
older

12 months Triple-blind Randomized France

12 NCT05240430 1 1 × 106/kg IV N/A Recruiting 1 18 to 
older

4 wk N/A N/A Turkey

13 NCT04400032 3 (at days 1, 2, and 3) Group 1: 7.5 × 107, group 2: 1.5 × 108, group 3: 2.7 × 
108

IV I/II Completed 15 18 to 
older

N/A Open-label Non-
randomized

Canada

14 NCT04490486 2 (at days 0 and 3) 1 × 108 IV I Withdrawn 21 18 to 
older

N/A Double-blind Randomized United States

UC-MSCs: Umbilical cord mesenchymal stem cells; IV: Intravenous; CVC: Central venous catheter; N/A: Not available.

UC-MSC infusion of up to 1.0 × 107 cells/kg was excellently tolerated in ARDS patients without serious AEs. Intere-
stingly, several inflammatory indicators (i.e., CD11b+/CD16+, CD11b+/MPO+, CD16+/MPO+, and CD14+CD33+) 
substantially decreased on the first day after cell infusion, followed by a significant gradual increase from day 3 to day 7, 
and then a significant decrease compared to baseline treatment on the 30th d after cell infusion. Therefore, the anti-inflam-
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matory effect of single-dose UC-MSC reinfusion in the human body may have a certain timeliness.

UC-MSCs for BPD
BPD is a chronic lung disease in premature infants that is characterized by the arrest of alveolarization, fibroblast 
activation, and inflammation. Many risk factors can increase a baby’s risk of developing BPD, including premature birth, 
oxygen poisoning, intrauterine growth delay, smoking, ventilation support, infection, inflammation, patent ductus 
arteriosus, congenital factors, and immature lung development[84-88]. The pathogenesis of BPD involves a variety of 
pathophysiological factors, including abnormal angiogenesis, inflammation, oxidative stress, and impaired lung repair
[89]. Epidemiological studies have shown that the incidence of BPD in very preterm infants increases with decreasing 
gestational age and birth weight and reaches as high as 40%[90,91]. BPD can affect the nervous, circulatory and 
respiratory systems and has a serious impact on the survival rate and quality of life of premature infants[92]. Despite 
major advances in understanding disease pathologies, there is no single treatment or combination therapy available for 
preventing or treating BPD. As a more promising novel therapeutic option, MSCs have been widely used in clinical 
practice due to their anti-inflammatory and paracrine effects. MSCs can also contribute to the repair of lung injuries by 
restoring the integrity of lung epithelial/endothelial cells, which provides a new approach for the application of MSCs in 
BPD[93,94].

There were 18 registered clinical trials using UC-MSCs for the treatment of BPD (Table 3). These clinical trials were 
mainly conducted in five countries, namely, China, South Korea, Vietnam, Canada and the United States. In terms of 
grouping design, 6 clinical trials used single-group assignment, 10 used parallel assignment, and 2 did not describe the 
grouping design. Only 10 trials, including randomized (n = 7) and nonrandomized (n = 3) studies, provided necessary 
descriptions of random allocation. There were 10 phase I clinical trials, 4 phase II trials, and 3 phase I/II trials, accounting 
for 56%, 22%, and 17%, respectively. Twelve clinical trials were open-label; 1 was double-blinded for the participants and 
care providers; 3 were triple-blinded for the participants, care providers, and investigators; and 3 were quadruple-
blinded for the participants, care providers, investigators, and outcome assessors.

Moreira et al[95] studied the feasibility and effectiveness of nasal administration of UC-MSCs in the treatment of 
hyperoxia-induced BPD in a rat model. Lung alveolarization, vascularization, and pulmonary vascular remodeling were 
restored in BPD rats receiving UC-MSC treatment. The results of the gene and protein analyses indicated that the 
beneficial effects of UC-MSCs were partially attributed to collaborative efforts targeting angiogenesis, immune regulation, 
cell survival, and wound healing. Gene and protein analyses suggest that the beneficial effects of UC-MSCs are due in 
part to concerted efforts targeting immune regulation, angiogenesis, cell survival, and wound healing. Therefore, nasal 
administration of UC-MSCs for BPD treatment is a noninvasive, feasible route of administration with potential for 
widespread clinical application. Many registered clinical trials have also published their research findings. A study 
conducted by Chang et al[96] included 9 patients with preterm infants at high risk for BPD (NCT01297205). The first three 
patients received a low dose of UC-MSCs intratracheally administered at a concentration of 1 × 107 cells/kg BW, while the 
subsequent six patients received a high dose of UC-MSCs intratracheally administered at a concentration of 2 × 107 cells/
kg BW. No AEs related to infusion were observed. The levels of IL-6, IL-8, MMP-9, TNF-α, and transforming growth 
factor-β1 in tracheal aspirate fluid were significantly decreased after UC-MSC transplantation. Among the 9 infants who 
received UC-MSC transplantation, only 3 developed moderate BPD, which showed that UC-MSCs could significantly 
lower BPD severity. The intratracheal transplantation of UC-MSCs was found to be safe and feasible for preterm infants. 
In a phase I dose-escalation trial involving 2 dosing regimens, Powell and Silvestri[97] investigated the safety and efficacy 
of intratracheal administration of UC-MSCs (NCT02381366). In this trial, 12 preterm infants at the highest risk for BPD 
were randomized into two groups. In this study, 12 premature infants with BPD received two doses of UC-MSCs (low 
dose, 1 × 106 cells/kg; high dose, 2 × 107 cells/kg) via endotracheal administration. All patients completed the 84-d follow-
up. The 12 patients tolerated the treatment well, with no reports of dose-limiting toxicity within the first 72 h. 
Additionally, no serious AEs related to the drug were observed during the 84 d in this study. Based on the above studies, 
UC-MSCs may be a safe and effective treatment method for BPD.

UC-MSCs for COPD
COPD is a chronic inflammatory lung disease caused by airway and alveolar abnormalities, and irreversible airway 
limitation is a common feature[98]. According to the World Health Organization, COPD will become the third leading 
cause of death by 2030 and represents a considerable burden on the health-care system[99]. At present, the pathogenesis 
of COPD is mainly the result of interactions between genetic factors and acquired factors, but the exact pathological 
mechanism is still unclear[100]. Some studies have suggested that smoking is the main environmental factor triggering 
COPD, but other factors also include airway hyperresponsiveness, sex, genetics, occupation, lung growth, and 
development[101,102]. Currently available treatment methods for COPD, which mainly focus on treating the symptoms 
and slowing the progression of these disorders, include anti-inflammatory drugs, corticosteroids, long-acting muscarinic 
antagonists, and β2-adrenergic receptor agonists[103,104]. These treatments may help minimize airflow limitation and 
future exacerbations but cannot reverse lung damage or improve quality of life in patients with COPD. Recent advances 
in cell therapy have demonstrated that MSCs are safe and effective at improving quality of life and clinical conditions and 
are potential candidates for clinical use in the treatment of COPD[105].

Currently, the use of a total of 3 UC-MSC transplantations is being verified in clinical trials for the treatment of COPD 
(Table 4). These clinical trials are being conducted in China, Vietnam, Antigua, and Barbuda, all of which are in early 
phases. Río et al[106] conducted a preclinical study using UC-MSC cellular therapy for COPD. They tested the therapeutic 
effects of different routes of administration (intravenously and intratracheally) on COPD mice and analyzed the relevant 
molecular changes through protein array analysis. The results showed that UC-MSCs can effectively reduce lung 
emphysema regardless of the administration route and modify the inflammatory profile in elastase-treated mice, which is 
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Table 3 Clinical trials of umbilical cord mesenchymal stem cells therapy for patients with bronchopulmonary dysplasia

UC-MSCs administration protocol
No Trial ID

Frequency Dose (cells) Route
Phase Status Patients Age Follow-up 

time Mask Allocation Country

1 NCT04062136 2 (at days 1 and 
8)

1 × 106/kg IV I Unknown 10 1-6 months N/A Open-label N/A Vietnam

2 NCT02381366 1 Dose A: 1 × 107/kg; dose B: 2 × 107/kg N/A I/II Completed 12 3-14 d N/A Open-label N/A United 
States

3 NCT03645525 1 2 × 107/kg Endobronchial I/II Recruiting 180 2-3 wk N/A Quadruple-
blind

Randomized China

4 NCT03601416 1 Dose A: 1 × 106/kg, dose B: 5 × 106/kg IV II Unknown 21 28 d to 1 yr N/A Open-label Randomized China

5 NCT03558334 1 Dose A: 1 × 106/kg, dose B: 5 × 106/kg IV I Unknown 12 28 d and older N/A Open-label Non-
randomized

China

6 NCT01207869 1 3 × 106/kg Endobronchial I Unknown 10 1 wk to 6 
months

N/A Double-blind Randomized China

7 NCT03873506 1 Dose A: 1 × 106/kg, dose B: 5 × 106/kg IV I Unknown 30 1 months to 5 
yr

N/A Open-label N/A China

8 NCT03774537 1 Dose A: 1 × 106/kg, dose B: 5 × 106/kg IV I/II Unknown 20 4-14 d N/A Open-label Non-
randomized

China

9 NCT03631420 1 Dose A: 3 × 106/kg, dose B: 1 × 107/kg, dose C: 3 
× 107/kg

N/A I Recruiting 9 3-51 d N/A Open-label N/A China

10 NCT01632475 1 Dose A: 1 × 107/kg, dose B: 2 × 107/kg IV I Active, not 
recruiting

9 4 months to 2 
yr

N/A Open-label N/A Korea

11 NCT01297205 1 Dose A: 1 × 107/kg, dose B: 2 × 107/kg IV I Completed 9 5-14 d N/A Open-label N/A Korea

12 NCT04003857 1 1 × 107/kg IV II Recruiting 60 6-60 months N/A Triple-blind Randomized Korea

13 NCT01897987 1 1 × 107/kg IV N/A Completed 62 7 months 60 months Triple-blind Randomized Korea

14 NCT01828957 1 1 × 107/kg IV II Completed 69 5-14 d N/A Quadruple-
blind

Randomized Korea

15 NCT02023788 1 Dose A: 1 × 107/kg, dose B: 2 × 107/kg IV I Completed 8 45-63 months 5 yr Open-label N/A Korea

16 NCT03378063 1 N/A N/A I Withdrawn 100 1-3 months N/A Open-label Non-
randomized

China

17 NCT03392467 1 N/A N/A II Recruiting 60 Up to 13 d N/A Quadruple-
blind

Randomized Korea

18 NCT04255147 1 Dose A: 1 × 106/kg, dose B: 3 × 106/kg, dose C: 1 
× 107/kg

IV I Recruiting 9 7-28 d N/A Open-label N/A Canada



Meng M et al. UC-MSCs therapy for pulmonary diseases

WJSC https://www.wjgnet.com 81 February 26, 2024 Volume 16 Issue 2

UC-MSCs: Umbilical cord mesenchymal stem cells; IV: Intravenous; N/A: Not available.

Table 4 Clinical trials of umbilical cord mesenchymal stem cells therapy for patients with chronic obstructive pulmonary disease

UC-MSCs administration protocol
No Trial ID

Frequency Dose (cells) Route
Phase Status Patients Age (yr) Follow-up time Mask Allocation Country

1 NCT04433104 2 (at mo 1 and 4) 1 × 106/kg IV II Unknown 40 40-75 12 months Single-blind Non-Randomized Vietnam

2 NCT04206007 1 N/A IV I Active, not recruiting 9 40-75 48 months Open label N/A China

3 NCT05147688 1 1 × 108 IV I Recruiting 20 Child, adult, older adult 48 months Open-label N/A Antigua and Barbuda

UC-MSCs: Umbilical cord mesenchymal stem cells; IV: Intravenous; N/A: Not available.

most likely due to mitochondrial transfer, immunomodulation, and homing to the injured areas. In the clinical study 
conducted by Le Thi Bich et al[19], 20 patients with COPD (9 at stage C and 11 at stage D according to the Global Initiative 
for Obstructive Lung Disease classification) were infused with 1 × 106 cells/kg of expanded allogeneic UC-MSCs. After 6 
months of follow-up, the COPD incidence, Modified Medical Research Council score, and number of exacerbations were 
significantly lower in patients who underwent UC-MSC transplantation than in those who did not. No UC-MSC infusion-
related toxicity or death occurred during the administration process. However, there were no significant decreases in the 
forced expiratory volume in 1 s, CRP, or 6-MWT values after treatment (at 1, 3, and 6 months, respectively) compared to 
the corresponding values before treatment. In summary, in vitro and in vivo research results suggest that UC-MSCs may 
be a safe and effective treatment method for moderate-to-severe COPD and are worthy of further clinical promotion.

UC-MSCs for PF
PF is a chronic progressive lung disease that eventually leads to death and respiratory failure and is characterized by 
inflammation and fibrosis of the interstitium and destruction of the alveolar histoarchitecture[48,107]. There are various 
risk factors that initiate lung tissue damage and PF, including smoking, virus or bacterial infections, autoimmune 
reactions, air irritants, chemotherapy, ionizing radiation, and pollutants[108-110]. IPF, regarded as the most common type 
of pulmonary fibrosis, is a progressive disease of the lower respiratory tract with an incidence of 4.6 to 16.3 cases per 
100000 worldwide[111]. Despite decades of scientific research, the factors involved in the onset of the histopathological 
cascade in PF have not been identified. Currently, there are no effective therapeutic approaches for preventing 
pulmonary fibrosis development. Emerging MSC-based therapy has been shown to be a new and promising therapeutic 
strategy due to its anti-inflammatory and antifibrotic effects, and accumulating evidence indicates that MSC 
transplantation potentially alleviates and ameliorates PF[112-114]. Many studies have revealed the beneficial treatment 
effects of MSC administration in patients with PF[115,116].

According to the ClinicalTrials.gov website, a total of 3 clinical trials focused on UC-MSC-based therapy for PF were 
registered (Table 5). All 3 clinical trials were phase I. Two trials are currently being recruiting, and 1 has been completed. 
UC-MSCs are usually administered intravenously once, and the doses range from 1 × 106 cells/kg to 1 × 108 cells/kg per 
injection. Currently, there are no published results corresponding to registered clinical trials. da Silva et al[117] reported a 
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Table 5 Clinical trials of umbilical cord mesenchymal stem cells therapy for patients with pulmonary fibrosis

UC-MSCs administration protocol
No Trial ID

Frequency Dose (cells) Route
Phase Status Patients Age (yr) Follow-up 

time Mask Allocation Country

1 NCT05468502 1 Dose A: 6.0 × 106, dose B: 3.0 × 107, dose C: 6.0 × 107, 
dose D: 9.0 × 107

IV I Recruiting 18 50-75 N/A Open-
label

N/A China

2 NCT02277145 1 1 × 106/kg IV I Completed 10 Adult, older adult N/A Open-
label

N/A China

3 NCT05016817 1 1 × 108 IV I Recruiting 20 Child, adult, older 
adult

48 months Open-
label

N/A Antigua and Barbuda, Argentina, 
Mexico

UC-MSCs: Umbilical cord mesenchymal stem cells; IV: Intravenous; N/A: Not available.

case in which a 30-year-old patient with COVID-19 progressed to PF and received UC-MSCs (5 × 107, 2 doses 2 d apart). 
After UC-MSC treatment, improvements in the patient’s chest computed tomography scan were observed, with a 
decrease in ground-glass opacity and pneumonia infiltration, as well as an increase in the PaO2/FiO2 ratio and a 
reduction in the need for vasoactive drugs. Simultaneously, modulation of different cell populations in the PB was also 
observed, as indicated by a reduction in inflammatory monocytes and an increase in the frequency of patrolling 
monocytes, type 2 classical dendritic cells, and CD4+ lymphocytes. These findings suggested that UC-MSC therapy may 
be a potential treatment option for critically ill patients with fibrosis caused by COVID-19. Unfortunately, considering the 
limited number of published results, the effectiveness and safety of UC-MSCs for treating PF still require additional high-
quality multicenter clinical trials for further confirmation.

CONCLUSION
With the increasing use of UC-MSC therapy for clinical treatment, UC-MSC-based therapy approaches are continuing to 
evolve at a rapid pace, especially for treating currently incurable and devastating lung diseases. However, many 
problems remain to be solved, such as the number of cells, transplantation routes, and mechanism of action. To date, 
however, a comprehensive systematic analysis of clinical trials from the Public Clinical Trial Database has not been 
published. In this study, 55 clinical trials of pulmonary diseases worldwide were systematically analyzed. These clinical 
trials were widely distributed and conducted in 13 countries. Currently, these clinical trials have several limitations. For 
example, 63.6% of clinical trials are in the early phases, during which safety has largely been demonstrated. The relatively 
small number of recruited subjects has also been a prominent limitation in these clinical trials. There are certain 
disparities caused by the different groups of recruited participants, therapeutic regimens and doses and frequencies of 
UC-MSCs in previous clinical trials. In addition, among the 55 clinical trials included in this study, 11 trials were 
completed. To date, available data from published clinical studies have proven the safety and efficacy of UC-MSC 
therapy for various lung diseases, with few infusion-related reactions and late adverse effects. In particular, the great 
majority of clinical trials were recruiting or active but not recruiting. Therefore, the current positive conclusions about the 
prevention or treatment of lung diseases by UC-MSCs need to be further validated and evaluated.
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Although great progress has been made in preclinical and clinical studies of UC-MSC therapy, there are still substantial 
challenges in the clinical setting. According to the summary analysis of registered clinical trials, factors such as donor 
selection, culture conditions, cell consistency, dosage of UC-MSCinfusion, long-term therapeutic effects, and potential 
tumorigenicity remain the bottlenecks in clinical treatment mediated by UC-MSCs. Standardization of the evaluation of 
UC-MSCs was lacking, which was an important problem for cell viability and homing. The use of UC-MSCs in clinical 
practice requires a large number of cells; however, long-term in vitro culture and continuous passages of UC-MSCs may 
exert important influences on phenotypic characterization and biological function. Thus, UC-MSCs require a standard 
treatment protocol, such as donor sources, cell usage and dosage, manufacturing protocols, quality control, and delivery 
routes. Before clinical application, a series of tests, including bacteriological tests, viability and phenotype tests, 
oncogenicity tests, and endotoxin assays, should be carefully performed to ensure cell quality control. These challenging 
questions regarding UC-MSC therapy need to be addressed, as they could contribute to the translation of cell therapy 
from bench to bedside for patients suffering from lung diseases. To determine the long-term efficacy of UC-MSC therapy 
for lung disease, prospective, multicenter, randomized, controlled and long-term follow-up clinical trials with large 
sample sizes are still necessary.
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