
Francesco Bifari, Luciano Pacelli, Mauro Krampera, Stem 
Cell Research Laboratory, Section of Hematology, Department of 
Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, 
Italy
Author contributions: Bifari F and Pacelli L wrote the manus­
cript; Krampera M wrote and reviewed the manuscript.
Correspondence to: Mauro Krampera, Assistant Professor, 
Stem Cell Research Laboratory, Section of Hematology, Department 
of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, 
Italy. mauro.krampera@univr.it
Telephone: +39-45-8074420  Fax: +39-45-8027403
Received: February 8, 2010  Revised: March 17, 2010
Accepted: March 24, 2010
Published online: June 26, 2010

Abstract
The possibility of treating degenerative diseases by 
stem cell-based approaches is a promising therapeutical 
option. Among major concerns for the clinical application 
of stem cells, some derive from the possibility that stem  
cells may be rejected by the immune system as a conse
quence of histoincompatibility and that stem cells thems
elves may interfere with the normal functions of host 
immune response. Therefore, the immunogenicity and the  
immunomodulatory properties of stem cells must be caref
ully addressed. Although these properties are common 
features of different stem cell types, some peculiarities 
can be recognized and characterized for their proper cli
nical use.
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INTRODUCTION
In the case of  tissue injury, activation of  the immune sy­
stem and cell regeneration from precursor cells normally 
occur. In mammals, these defensive mechanisms may differ 
depending on the organ considered: some organs such as 
the skin are highly regenerating; others such as the cent­
ral nervous system (CNS) apparently are not. Embryonic 
and adult stem cells, due to their ability to self-renew and 
differentiate into many cell types, have been recently consi­
dered as promising tools for regenerative and cell-based 
therapies in a number of  degenerative diseases[1]. Especially, 
those resulting from the destruction and/or dysfunction 
of  a limited number of  cell types such as diabetes mellitus, 
Parkinson’s disease[2], spinal cord injury[3], liver[4] and heart 
failure[5], Duchenne’s muscular dystrophy[6] and osteog­
enesis imperfecta[7]. Embryonic stem cells (ES) have rem­
arkable long-term proliferative potential, providing the 
possibility of  unlimited expansion in culture[8] and a broad 
differentiation potential[9]. However, important ethical and 
safety issues still need to be addressed[10], i.e. the risk of  
teratoma formation after transplantation[1,11]. On the other 
hand, ES cells are highly prone to be killed by effector cells 
in immunocompetent allogeneic recipients[12]. Strategies 
to provide HLA-matched human ES are focused on the 
establishment of  HLA-typed ES bank[13].

Adult, tissue-specific, somatic stem cells have more re
stricted proliferation and differentiation potential but less  
ethical and safety implications. Many adult tissues host a 
stem cell compartment that could be ex-vivo expanded and 
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used as a therapeutic tool for tissue regeneration. Theoret­
ically, tissue-specific, adult stem cell-based therapy could 
be designed in the autologous setting. However, many 
of  the clinical and preclinical studies with tissue specific 
adult stem cells require the allogeneic setting[14]. Thus, the 
immunological properties of  these stem cells as well as 
the interaction with host immune effector cells are very 
important.

Some of  the benefits obtained with stem cell therapy 
are not due to cell replacement but rather to the protective 
effect of  trophic and anti-apoptotic factors released in the 
damaged tissues by either the grafted stem cells themselves 
or by endogenous cells following the interaction with the 
grafted stem cells[15-18]. Many of  these factors are mediators 
of  inflammation that allow stem cells to survive and 
specifically migrate to the damaged area[19] such as cell-
adhesion molecules and chemokine receptors[20,21]. The ability 
of  different stem cell types, especially mesenchymal stem 
cells, to modulate the immune response has been described 
in many in vitro and in vivo studies. Immunomodulatory 
mechanisms seem to play an important role not only in 
the autologous and allogeneic therapeutic approaches but 
also for the normal endogeneous tissue regeneration[22]. 
Considering the pathological processes occurring upon 
degeneration, cell loss and immune activation/inflammation 
are indeed strictly related. Therefore, it is not surprising that 
stem cells and the immune system may play a finely tuned 
cross-talk aimed to confine tissue loss and to promote rege
neration (Figure 1). 

EMBRYONIC STEM CELLS
ES express low levels of  HLA class Ⅰ molecules[23] which 
are up-regulated by IFN-γ stimulation, after teratoma for­
mation[11,23,24] or differentiation[24-28] and almost undetectable 
expression of  HLA class Ⅱ and costimulatory molecules[25]. 
Although the immune stimulation induced by ES is lower 
than that by allogeneic adult cells, HLA class Ⅰ molecule 
expression in ES is sufficient for rejection mediated by 
cytotoxic T cells[25,29]. Data regarding immunogenicity of  
ES are not concordant. Mouse ES have been shown to 
survive in immunocompetent mice[24,30] as well as in rats[31] 
and sheep[32] for many weeks after transplantation. Similarly, 
rat ES permanently engraft in allogeneic recipients leading 
to allo-specific down-regulation of  the host immune re­
sponse[33]. On the contrary, murine ES transplantion into in­
jured myocardium determined tissue infiltration by T cells,  
B cells and macrophages, followed by the disappearance 
of  ES cells and their progeny over a period of  weeks[28,34]. 
When transplanted in an immunocompetent xenogeneic 
host, human ES triggered robust cellular and humoral 
immune responses leading to intragraft infiltration of  in­
flammatory cells and subsequent ES rejection[35]. In this 
setting, CD4+ T cells seem to play an important modulatory 
role in ES immune-mediated rejection. Notably, repeated 
transplantation of  ES into immunocompetent hosts results 
in accelerated human ES death, suggesting an adaptive 
donor-specific immune response[28]. Transplantation in im­

munodeficient mice or together with the administration of  
immunosuppressive drug regimens can mitigate the anti-ES  
immune response and significantly prolongs xeno-trans­
plantation survival. Beside the low immunogenicity, ES have 
also shown evidence of  immunomodulatory properties 
both in vitro and in vivo. Human ES are not recognized in vitro  
by NK cells and inhibit T-cell activation by third party an­
tigen presenting cells[25]. However, ES cells injected in vivo 
into immunocompetent recipients resulted in being highly 
susceptible to killing by NK cells due to their expression 
of  ligands of  the activating NK receptor NKG2D[11]. For 
this reason and as a consequence of  the increasing tissue 
transplantation demand, some countries are making efforts 
to establish HLA-typed human ES banks to collect HLA-
matched human ES to overcome the current immunologi­
cal problem[13].

NEURAL STEM CELLS
Neural stem/progenitor cells (NSCs) are tissue precursor 
cells that have been found in the main neurogenic regions of  
the adult brain, i.e. hippocampus, subventricular zone (SVZ), 
olfactory bulb[36,37] and in some non-neurogenic regions,  
i.e. spinal cord[38]. Despite their self-renewal capability, NSC 
neuro-glial differentiation potential and the possible use 
in autologous setting are still debated. Among technical 
problems, of  relevance is that NSCs are not easily acces­
sible, they are difficult to expand in vitro as homogeneous 
stem cell population and show a low rate of  in vivo neuronal 
differentiation efficiency[39]. Moreover, adult NSCs can be 
easily expanded only from rodent adult brain; by contrast, 
it is difficult to obtain adult NSCs from human tissues. For 
this reason, most of  the studies on human NSCs are carried 
out with NSCs of  fetal origin[40-42].

For a long time the central nervous system has been 
considered an immune privileged organ as it does not co­
ntain either lymphoid or dendritic cells and it is partially 
isolated from circulating immune cells by the blood-brain 
barrier (BBB)[43]. However, this privilege is not absolute as 
neural grafts placed in CNS may be rejected although less 
quickly than in other organs. However, the rejection can be 
enhanced by brain trauma leading to BBB interruption and 
infiltration by immune effector cells[44]. Primary neural cell 
culture has been reported to up-regulate major histocompat­
ibility complex (MHC) proteins in cell populations normally 
displaying low expression profiles in vivo[45]. In vitro cultured 
NSCs before differentiating exhibit low MHC molecule ex­
pression[46,47] that then increases especially in differentiated 
astrocytes[47]. Isolated NSCs express also the costimulatory 
molecules CD80 (B7.1) and CD86 (B7.2). The exposure to 
pro-inflammatory cytokine (i.e. IFN-γ and TNF-α) enhanc­
es the expression of  CD80, CD86 and MHC class Ⅰ (but 
not class Ⅱ) molecules[48,49]. Similarly, in vitro expansion of  
human forebrain and spinal cord neural cells results in the 
induction of  HLA class Ⅰ and Ⅱ molecules[50]. However,  
human NSC lines can be recognized by allogeneic PBLs 
regardless low levels of  MHC expression[51]. In a model of  
brain trauma allogeneic NSC grafts may be immunogenic 
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as shown by the evidence of  lymphocyte infiltration after 
transplantation[52]. In addition, human neural progenitor 
cells express many adhesion molecules involved in inflam­
mation such as α2, α6 and β1 integrins[53], CD44 and che­
mokine receptors (CCR3, CCR6, CCR7, CCR9, CXCR3)[54]. 
Less than 25% of  human NSCs express the inflamma­
tory chemokine receptors CCR4, CCR5 and CXCR4[41]. 
Nevertheless, the in vivo trophic and immunomodulatory 
properties of  NSCs have recently become as evident as 
their regenerative potential[20,55-57]. Rodent SVZ-derived and 
human ES-derived NSCs exhibit an inhibitory effect on 
T lymphocytes both in vitro and in vivo[55,56,58,59]. Rodent and 
human NSCs can suppress T cell proliferation in a dose-
dependent fashion[41] and inhibit antigen (myelin)-specific 
immune responses. Interestingly, the suppression of  T 
cell proliferation from NSCs does not require cell-to-cell 
contact[55,56,58,59]. Mouse and human NSCs may impair the 
activation of  myeloid dendritic cells (DCs)[60] and the dif­
ferentiation of  CD14+ myeloid cells into CD1a+ immature 
and then functional (antigen-presenting) DCs. Additionally, 
NSCs prevent the up-regulation in DCs of  the costimulato­
ry molecules CD80, CD86 and of  MHC class Ⅱ molecules 
induced by LPS as well as the in vivo DC activation within 
draining lymph nodes[60]. The in vivo immunomodulatory 
properties of  NSC have been tested in several neurological 
diseases in which the immune response plays a role[61]. 

MESENCHYMAL STEM CELLS
First described in bone marrow as multipotent non-hem­

apoietic progenitor cells[62], mesenchymal stem cells/mul­
tipotent marrow stromal cells (MSCs) are multipotent 
adult stem cells capable of  differentiating both in vitro and 
in vivo into various tissues of  mesodermal origin such as 
fibroblasts, osteocytes, adipocytes and chondrocytes[63]. 
Moreover, some studies have shown the MSCs potential 
to differentiate into tissues of  endodermal and neuroec­
todermal lineages including hepatocyte[64], epithelia[65] and 
neurons[66,67]. Stromal cell precursors with the immunophe­
notype and multilineage differentiation potential of  MSCs 
are present also in adult lymphoid tissues such as lymph 
nodes[68] spleen and thymus[69]. MSCs reside virtually in all 
the tissues as part of  the pericyte population in the vascu­
lature wall[70]. Besides their differentiation potential, MSCs 
can exert important trophic effects supporting hematopoi­
esis and angiogenesis[71,72].

MSCs exert a profound immune modulatory effect ca­
pable of  suppressing lymphocyte proliferation in vitro and 
prolonging MHC-mismatched skin graft survival in vivo[73]. 
Subsequently, MSC regulatory activity has been character­
ized on a large number of  effector cells of  adaptive and 
innate immunity including CD4+ and CD8+ T cells[74-82], 
B cells[76,83-87], NK cells[76,88-90], monocyte-derived DCs[91-96] 
and neutrophils[96]. The interaction with MSCs leads to 
lymphocyte[78,97] and DC[97] anergy due to early proliferation 
arrest and inhibits apoptosis of  resting and activated neu­
trophils[96]. MSCs may suppress immune reactions in vitro  
and in vivo in a MHC-independent manner[75,76]. Interest­
ingly, the immune regulatory properties are expressed not 
only by bone marrow MSCs but also by MSCs derived 
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Figure 1  Different mechanisms may have a role in the positive effects following the recruitment of stem cells. (1) modulation of the immune effector cells involved in 
the onset and extension of tissue damage; (2) release of trophic and anti-apoptotic factors that may either hamper tissue degeneration or favor spontaneous cell recovery; and (3) 
direct replacement of dead cells through tissue-specific differentiation.



from other tissues including fat[98], thymus, spleen[69], and 
others[99-101]. Moreover, MSCs differentiated into fibroblasts, 
adipocytes, and osteoblasts[102-104] retain similar functions. 
At present, there is no unique and hierarchically prevalent 
mechanism responsible for MSC immune regulation but 
there is a redundant panel of  mechanisms which suggests 
the in vivo importance of  the immune regulation by stromal 
cell compartment. Some contradictory results have been 
produced by different groups probably due to different ex­
perimental factors related to MSC origin, culture conditions, 
lymphocyte subset and cell activation state. Interactions 
between MSCs and cells of  the adaptive immune system 
could vary depending on the microenvironment in which 
the reaction takes place. On the whole, both soluble factors 
and cell-cell contact are involved. 

In vivo, MSC infusion can significantly lower the incidence 
and cure the refractoriness to treatment of  graft-versus-host  
disease (GvHD) after allogeneic hematopoietic stem cell 
transplantation in humans[14,105] and improve experimental 
autoimmune encephalomyelitis (EAE) in mice[106,107].

MSCs are unable to induce significant alloreactivity[75]. 
Human MSCs express low-intermediate level of  HLA 
-class Ⅰ and LFA-3 and they do not express the co-stim­
ulatory molecules CD80 (B7-1), CD86 (B7-2), CD40 or 
CD40L even after IFN-γ stimulation[76,102,108] which in turn 
may induce HLA-class Ⅱ molecule up-regulation[76]. In ad­
dition, human MSCs express HLA-G, a non-classical MHC 
class Ⅰ antigen that may prevent the immune response 
against MSCs, as shown by blocking experiments although 
the expression seems to decrease in culture[109]. MSCs may 
escape not only from the recognition by alloreactive T-cells 
but also the cell-specific lysis by CD8+ cytotoxic cells[110] 
and freshly isolated NK cells[80]. By contrast, activated NK 
cells are capable to lyse MSCs efficiently[88]. Moreover, MSCs 
exogenously loaded with the relevant MHC class Ⅰ peptide 
epitopes still remain resistant to lysis[111]. Transplanted allo­
geneic MHC-mismatched MSCs fail to induce specific rejec­
tion, thus engrafting in adult rodent, porcine and baboon 
experimental models. Engraftment of  allogeneic MSCs in 
immune-compromised hosts or inside immune privileged 
sites have been shown in animals and in humans[73,112]. Xe­
nogenic transplantation (mouse MSCs into rats) may induce 
immunological tolerance[113]. By contrast, allogeneic MSC 
transplantation into hosts with intact immune system may 
determine MSC rejection[114,115]. The infusion of  alloge­
neic MSCs can prime naïve T cells in immunocompetent 
mice[116]. Moreover, intra-coronary injection of  adult human 
MSCs in rat myocardium is associated with rejection and 
macrophages infiltration[117]. Culture conditions may affect 
MSC immunogenicity[118]. However, patients treated with 
allogeneic human MSCs did not show anti-allogeneic MSC 
antibody production or T-cell priming[119].

MSCs and T lymphocytes 
T cell proliferation, activation and effector functions may 
be affected by MSCs in vitro[74] and in vivo[73]. Inhibition of  
T-cell proliferation by MSCs occurs not only when T cells 
are triggered by non-specific stimuli such as allogeneic 

peripheral blood lymphocytes, dendritic cells or mitogens 
such as phytohaemagglutinin (PHA) or IL-2[74] but also 
when T cells are activated by their specific antigen[75]. Simi­
larly, T cell-mediated IFN-γ production[75,76,78] and cytotoxic 
activity[75,110] may be inhibited. Proliferation of  CD4+ and 
CD8+ T cells is equally inhibited by MSCs[74-76]. This effect 
does not seem to be related either to the lack of  activation 
or the induction of  apoptosis[78]. In fact, in T-cell/MSC co-
culture the number of  T cells expressing early activation 
markers i.e. CD25 and CD69 is not affected although some 
data are contradictory[102,108,120,121]. CD8+ T-cell mediated 
lysis is suppressed by MSCs if  they are added at the begin­
ning of  the mixed lymphocyte culture[80] but not when T 
cells are already in the cytotoxic phase[122,123] thus suggesting 
that it is the generation of  activated lytic effector cells af­
fected rather than the lytic effector phase. MSCs interfere 
with naive CD4+ T cell differentiation into T helper (Th)-1 
effector cells by decreasing the amount of  IFN-γ produced. 
In addition, MSCs may induce a Th-2 shift, by increasing 
the production of  IL-4[124]. Both naive and memory T cells 
can be inhibited by MSCs[75]. In a mouse model, IFN-γ 
production by T cells may be restored after MSC removal 
from culture[75]; by contrast, T cell proliferation is irrevers­
ibly abrogated by cyclin-D2 inhibition, thus suggesting a 
mechanism of  T cell arrest anergy in the early G1 phase of  
the cell cycle[78]. This anergic state is only partially reverted 
by exogenous IL-2. Other studies with human MSCs show 
that T cell unresponsiveness is transient and may be re­
stored by MSC removal[125].

The presence of  CD4+/CD25+ T cells is not required 
for the anti-proliferative effect of  MSC on T-cells[75]; how­
ever, MSCs may induce the expansion of  these regulatory T 
cells[123,124] capable of  inhibiting mixed lymphocyte reactions 
and T cell activation[126]. MSC-induced suppression of  T cell 
proliferation does not require MHC restriction but it may 
be mediated also by allogeneic MSCs[29] in a dose-dependent 
and antigen-independent manner[75,103]. The optimal ratio 
between MSCs and responder T cells is quite variable from 
1:100[75] to 1:1[93] depending on the MSC model (human or 
animal), the culture conditions and the origin and purity of  
MSCs but most studies show that at 1:10 ratio the maxi­
mum inhibitory effect normally occurs[75,76,124]. It is difficult 
to assess if  these ratios are reached inside the tissues but 
they are not unlikely; in addition, the persistence of  the im­
mune regulatory properties in MSC-derived tissue stromal 
cells[104,127] would suggest that this phenomenon may have a 
physiological role also in vivo. MSC may inhibit the apopto­
sis of  proliferating thymocytes cultured in the absence of  
trophic factors and resting T-cells[127,128]. Moreover, MSCs 
may rescue from activation-induced cell death (AICD) T 
cells over-stimulated by T cell receptor (TCR) engagement 
through a down-regulation of  Fas receptor and Fas lig­
and[128]. 

MSC-induced immunosuppression is due to both solu­
ble factors and cell-cell contact but the latter mechanism 
is prevalent in rodent MSCs[74-82]. Most of  the inhibitory 
soluble factors are not constitutively secreted by MSCs but 
they can be induced by the interaction between activated ef­
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fector cells and MSCs. A broad panel of  factors is involved 
in the immune regulation induced by MSCs including 
interferon-γ (IFN-γ)[69,75], IL-1β[120], transforming growth  
factor-β1 (TGF-β1)[74,82,103], indoleamine 2,3-dioxygen­
ase (IDO)[75,76,79], IL-6[129,130], IL-10[91,92], prostaglandin E2 
(PGE2)[124], hepatocyte growth factor (HGF)[74], tumor 
necrosis factor (TNF)-α[122,125,131], nitrix oxide (NO)[64], heme 
oxygenase-1 (OH-1)[132], HLA-G5[109,133] and other unknown 
factors. This probably reflects the redundancy of  the MSCs 
immune regulatory mechanisms. It is interesting that cy­
tokines flavoring the immune responses such as IFN- γ 
produced by activated T lymphocytes or NK cells may 
promote the immune modulation by MSCs which in turn 
suppress T- or NK-cell proliferation. This effect is related at 
least in part to the enhancement of  the IDO activity[76,134]. 
However, human IFN-γ receptor 1(R1)-deficient MSCs 
do not elicit IDO transcription despite the preservation of  
immune regulation[135]. Following cell-cell contact with T 
cells, MSCs can secrete the soluble isoform of  HLA-G5, 
CCL-1 and LIF that seem to mediate, at least in part, the 
expansion of  functional CD4+CD25highFoxP3+ regulatory 
T cells[83,136,137]. MSCs recruit, regulate and maintain T-regu­
latory phenotype and function for a long period of  time.

MSCs were found to express some Toll-like receptors 
such as TLR 1, TLR3, TLR4 and TLR5. The triggering 
of  TLR3 and TLR4 by their natural ligands may suppress 
MSC immune regulatory activity thus suggesting that T-cell 
responses may arise efficiently during infections leading to 
pathogen elimination[138].

MSCs and NK cells
MSCs inhibit both IL-2- and IL-15-induced NK prolifera­
tion[75,88]. Soluble factors or cell-cell contact mediate differ­
ent effects depending on the experimental settings. Thus, 
IFN-γ secretion following IL-2-mediated NK stimulation 
is responsible for the inhibition of  NK proliferation by 
MSCs[75]; on the other hand, MSC-dependent inhibition 
of  IL-15-activated NK cells requires both cell-cell contact 
and soluble factors such as TGFβ1 and PGE2 that are 
produced during MSC/NK co-culture[88]. The influence of  
MSCs on cytotoxicity of  freshly isolated NK is still con­
troversial. In some studies with freshly isolated NK cells, 
no MSC-mediated modulation of  cytotoxicity has been 
observed towards HLA-class Ⅰ negative targets (K562 cell 
line) whereas MSCs may impair the cytolytic activity against 
HLA-class Ⅰ positive targets[88]. In other experiences, MSCs 
not only inhibit the cytokine-induced proliferation of  fresh­
ly isolated NK cells but also prevent their effector functions 
and cytokine production against HLA- class Ⅰ -positive as 
well as class I-negative target cells (SKNBE and HTLA-30 
cell lines)[90]. Thus, MSC suppression of  NK cytolytic activi­
ties may be stronger against HLA-class Ⅰ negative targets 
expressing a limited number of  ligands for different NK re­
ceptors. Instead, when considering IL-15-activated NK, the 
suppressive effect of  MSCs on NK cytotoxicity depends on 
culture time. In fact, short-term co-culture of  IL-15-stimu­
lated NK cells and MSCs leads to the inhibition of  NK cy­
tolytic activity against both the HLA class Ⅰ -negative and 

-positive cells[89]. This phenomenon is associated with the 
reduction of  IL-15-induced cytokines such as IFN-γ, IL-10 
and TNF-α and it requires cell-cell contact[89]. Similar re­
sults have been obtained with prolonged co-culture of  IL-
2-activated NK cells with MSCs, leading to the decrease of  
killing against the HLA class Ⅰ-negative K562 cell line[75]. 
Taken together, these data show that MSCs may inhibit 
NK functions against HLA class Ⅰ-negative and positive 
targets which, in turn become less susceptible to NK attack. 
The suppression of  NK lytic activity and IFN-γ secretion 
have been related to the release by MSCs of  HLA-G5[133], a 
soluble isoform of  non classical HLA class Ⅰ, usually ex­
pressed in a few healthy tissues such as cytotrophoblasts but 
also involved in tumor-driven immune escape and to IDO  
activity[90].

MSC susceptibility to NK-mediated killing by activated 
NK is due to the MSC expression of  some ligands for NK 
receptors such as NKp30, NKG2D and DNAM-1 KK[89]. 
After IL-2 activation, NK may lyse MSCs in both autolo­
gous and allogeneic settings[89]. However, this phenomenon 
may be partially prevented by IFN-γ which up-regulates the 
expression of  HLA Ⅰ molecules by MSCs[95]; in addition, 
MSCs may inhibit the surface expression of  NKp30 and 
NKG2D as well as NKp44 activating receptor, thus impair­
ing NK effector functions[139].

MSCs and dendritic cells 
MSCs strongly inhibit DC generation from peripheral blo­
od monocytes[91,92] without interfering with LPS-induced 
maturation of  immature DCs. Moreover, MSCs block 
monocytes by determining division arrest anergy[140]. Inhibi­
tion of  DC differentiation by MSC seems to be reversible 
as MSCs do not affect the maturation process of  DCs 
once they are already committed into immature DC. MSCs 
produce a shift from DCs type 1 to a more tolerogenic 
phenotype DC type 2 by increasing interleukin-10 (IL-10) 
production[93] and decreasing TNF-α secretion. This leads 
to a reduced number of  IFN-γ-producing Th1 cells[124] and 
favors IL-4-producing Th2 cells and regulatory T cells[124]. 
The mechanisms leading to the inhibition of  DC commit­
ment by MSC imply both secretion of  soluble factors and 
cell-to-cell contact. IL-6, macrophage-colony-stimulating 
factor and PGE2 are involved[116,130]. Interestingly, PGE2 
seems to be a key inhibitory mediator acting independently 
of  IL-6.

MSCs and B cells
B-cell development occurs in the bone marrow and is stri­
ctly dependent on the close interaction of  B-cell progeni­
tors with stromal cells that produce trophic factors both 
supporting B-cell survival and proliferation and maintaining 
long-living plasma cells. Depending on experimental con­
ditions, particularly regarding the strength and the quality 
of  B-cell stimulation, MSCs have been shown to either 
inhibit or support both proliferation and differentiation 
of  B-cells. The proliferative stimuli used in MSC/B-cells 
interaction studies were either T-independent[75,141] or T-de­
pendent[78,142], specific[83] or not specific[139]. When strong 
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primary stimulus is used to activate B cells such as BCR 
triggering, CD40, Toll-like receptor 9 (TLR9), IL2R and 
IL4R, the inhibition of  proliferation and immunoglobulin 
production occurs. The addition of  blocking antibodies 
against the molecules of  the programmed death pathway 
(PD-1, PD-L1 and PD-L2) may restore about 30% of  B 
cell proliferation[139]. The arrest of  B-lymphocytes cell cycle 
in G0/G1 phases rather than the induction of  apoptosis[83], 
seems to be the MSC-dependent mechanism. Notably, 
adipose tissue-derived MSCs suppressed Ig production to 
a much greater extent than BM-MSCs. However, in some 
culture conditions, IgG secretion and B-cell proliferation 
can be induced[143] and B-cell survival sustained and this 
effect does not depend on the presence of  IFN-γ in the 
culture. In the absence of  B cell receptor triggering, naïve B 
cells stimulated with an agonist of  TLR9 are promoted to 
proliferate and differentiate into immunoglobulin-secreting 
cells by MSC. The effects of  MSCs on B cells are dose-
dependent and the MSC/B-cell ratios at which effects have 
been observed may vary according to culture conditions. 
Most results have been observed MSC modulatory effect at 
1:1 ratio[83] but other studies suggest that lower ratios such 
as 1:10[143,144] and 1:30[141] are still effective.

Pre-clinical and clinical trials based on the immunom­
odulation of  MSCs have been attempted. Overall data 
are encouraging and confirm the profound immunomod
ulation of  MSCs described in vitro[14,107,145-150].

OTHER STEM CELL TYPES
Other stem cell populations have been studied for their 
immunomodulatory properties. Amnion-derived multip­
otent progenitor cells express MHC class Ⅰ molecules but 
they lack MHC class Ⅱ antigens and the co-stimulatory 
molecules B7-1 and B7-2. Moreover, they express HLA–G 
that can be increased after IFNγ treatment. These stem cells 
may inhibit peripheral blood mononuclear cell proliferation 
in response to mitogens, alloantigens and recall antigens. 
This immunomodulatory effect was found to be dependent 
on cell-to-cell contact. Recently, a stem cell population with 
trophic and immunoregulatory functions from human 
intestinal tissues was characterized. Immunomodulatory 
activity was shown in co-cultures with normal heterologous 
phytohemagglutinin-stimulated peripheral blood monon­
uclear cells[151].

CONCLUSION
Tissue damage derives from both cell degeneration and 
development of  inflammation, variably combined. The 
therapeutical potential of  stem cell-based therapy is com­
plex and related to different effects in vivo that may vary  
depending on the pathological microenvironments. Many 
stem cell types have both regenerative potential and immu­
nomodulatory functions. As stem cells not only may be 
theoretically rejected by immune system but also interfere 
with the normal functions of  host immune response, the 
understanding of  their immunomodulatory properties in vitro  
and in vivo have great relevance for their proper clinical use.
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