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Abstract
Preclinical and clinical trials of stem cell therapy have 
been carried out for treating a broad spectrum of dis-
eases using several types of adult stem cells. While 
encouraging therapeutic results have been obtained, 
much remains to be investigated regarding the best cell 
type to use, cell dosage, delivery route, long-term safety, 
clinical feasibility, and ultimately treatment cost. Logistic 
aspects of stem cell therapeutics remain an area that re-
quires urgent attention from the medical community. Re-
cent cardiovascular trial studies have demonstrated that 
growth factors and cytokines derived from the injected 
stem cells and host tissue appear to contribute largely to 
the observed therapeutic benefits, indicating that trophic 
actions rather than the multilineage potential (or stem-
ness) of the administered stem cells may provide the un-
derlying tissue healing power. However, the capacity for 
trophic factor production can be aberrantly downregulat-
ed as seen in human heart disease. Skeletal muscle is a 
dynamic tissue with an impressive ability to continuously 
respond to environmental stimuli. Indeed, a relation ex-
ists between active skeletal muscle and low cardiovascu-
lar risk, highlighting the critical link between the skeletal 
muscle and cardiovascular systems. Adding to this no-
tion are recent studies showing that stem cells injected 
into skeletal muscle can rescue the failing rodent heart 
through activation of the muscle trophic factor network 

and mobilization of bone marrow multilineage progenitor 
cells. However, aging and disease can adversely affect 
the host tissue into which stem cells are injected. A bet-
ter understanding of the host tissue response in stem 
cell therapy is necessary to advance the field and bridge 
the gap between preclinical and clinical findings. 
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INTRODUCTION
Stem cell therapy has entered the realm of  clinical trials 
evaluating several types of  adult stem cells and targeting a 
broad spectrum of  diseases (www.clinicaltrials.gov). These 
investigations have generally demonstrated the safety of  
stem cell administration. However, consistent and repro-
ducible beneficial effects of  stem cells, as might be inferred 
from various animal studies, have not been demonstrated. 
In cardiac repair, mixed results have been reported without 
a clear consensus on the best cell for tissue regeneration[1,2]. 
Interestingly, although the multilineage differentiation po-
tential (stemness) of  stem cells was originally thought to 
mediate their cardiovascular therapeutic attributes, it has 
now become clear that the secretion of  multiple growth 
factors and cytokines (trophic action) by the injected stem 
cells is primarily responsible for many of  the observed 
therapeutic benefits[3-8]. These recent findings have neces-
sitated a revised view on the action of  the exogenously 
delivered stem cells, and prompted us to adopt a more 
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integrative approach in optimizing stem cell therapeutics. 
Specifically, a better understanding of  the cross-talk mech-
anism, mediated by the injected stem cells and host tissue, 
may prove insightful in transitioning toward future routine 
clinical use of  adult stem cells.

Infection or injury typically triggers an inflammatory 
response in the host, and resolution of  the inflamed state 
is an actively executed program. Similarly, implantation 
of  large numbers of  stem cells, whether autologous or 
allogeneic, is expected to elicit some host tissue immune 
response at least during the acute phase, and the dura-
tion and extent of  this response may dictate the outcome 
of  the cell therapy. Even in the case of  implantation of  
medical devices possessing an inert and nonimmunogenic 
surface, a sequence of  host inflammatory events can lead 
to fibrous capsule development, which can greatly com-
promise the device performance[9]. Although this consider-
ation is particularly relevant for ex vivo-expanded stem cells, 
which may harbor xenoantigens resulting from the use of  
animal components (such as fetal bovine serum) in the 
culture medium, the topic has been discussed previously[10], 
and thus will not be covered here. Implanted stem cells are 
metabolically and functionally active, capable of  interacting 
with the host tissue microenvironment and producing bio-
active trophic factors, some of  which may intervene in the 
host immune cascade. As elaborated below, these paracrine 
mediators can exert profound effects on the well-being of  
the host through modulation of  tissue response. The focus 
of  this editorial is to dissect this molecular cross-talk be-
tween the host tissue network and implanted bone marrow 
mesenchymal stem cells (MSCs) in the context of  cardio-
vascular therapy. 

TROPHIC ACTIONS OF MESENCHYMAL 
STEM CELLS
Bone marrow-derived MSCs have been extensively used in 
preclinical and clinical studies primarily because of  the ease 
of  cell isolation in large scale and their inherent immune 
privileged status[3,10,11]. Although MSCs can be used for 
therapeutic tissue engineering by virtue of  their ability to 
differentiate into specialized cells, the beneficial effects of  
MSCs in treating cardiomyopathy, stroke, and osteoarthritis 
have been attributed mainly to their trophic activities[5,12-16]. 
We have used quantitative polymerase chain reaction 
(qPCR), flow cytometry, enzyme-linked immunosorbent 
assay, and Western blotting to show that bone marrow 
MSCs produce a diverse array of  growth factors and cy-
tokines such as angiopoietin-1, BDNF, BMP-7, FGF-1, 
FGF-2, FGF-5, FGF-7, FGF-9, G/M-CSF, GDF-9, 
HGF, IGF-1, IGF-2, IL-6, IL-11, LIF, MCP-1, NGF-β, 
SCF, SDF-1, TGF-β1, and VEGF[13,17,18]. While various 
single growth factor therapeutic regimens have been at-
tempted with FGF, HGF, IGF, and VEGF, demonstrating 
impressive beneficial results in cardiac regeneration[19-22], 
the MSC therapy is unique in its engagement of  function-
ally synergistic trophic factors[5,23], which may be required 
for efficient activation of  the endogenous stem cell repair 

mechanism and a more sustained therapeutic effect. Thera-
peutically, the repertoire of  MSC trophic factors can act 
in synergy to (1) inhibit apoptosis and limit tissue injury; 
(2) attenuate pathologic fibrotic remodeling; (3) promote 
angiogenesis and vasculogenesis; (4) activate resident tissue 
stem cells; and (5) modulate host immune response and 
reduce inflammatory oxidative stress[3].

Previous studies have shown that cells that are directly 
injected into the skeletal muscle bed are largely trapped in 
the local musculature[24]. To demonstrate that the trophic 
actions of  MSCs underlie their cardiovascular therapeutic 
effects, we injected MSCs into the hamstrings of  car-
diomyopathic hamsters away from the myocardium, and 
confirmed that the intramuscularly injected MSCs were 
retained in the local muscular bed[25]. qPCR and histologi-
cal cell-tracking assays revealed little, if  any, cell migration 
from the injected site to other tissues, indicating that the 
vast majority of  the injected MSCs were trapped in the 
musculature as expected. Despite this finding, the intra-
muscular MSCs significantly improved cardiac function 
by promoting heart cell regeneration[12]. Further, MSC-
conditioned medium upon intramuscular injections was 
also found to be therapeutically effective for treating ham-
ster heart failure, thus providing the ultimate proof  for the 
critical role of  trophic factors in stem cell therapy[12,13]. 

PARACRINE RESPONSE OF MUSCLE 
TISSUE
Skeletal muscle is a dynamic tissue with an adaptive capac-
ity to continuously respond to environmental stimuli[26]. Its 
impressive ability to regenerate after injury or ischemic in-
sult is coupled with the ability to produce many cardiopro-
tective growth factors and cytokines. Indeed, the ability of  
skeletal muscle to function as a trophic factor-producing 
organ has increasingly been recognized[27-30]. Cytokines and 
growth factors produced and released by skeletal muscle, 
collectively designated as myokines, can potentially exert 
numerous trophic actions on other organs. Using both 
in vivo muscle injection and in vitro C2C12 skeletal myo-
cyte culture, we have demonstrated muscle expression of  
several trophic factors such as HGF, IGF-2, NGF, and 
VEGF in response to trophic factor injections[31].In addi-
tion, implanted stem cells have been found to stimulate 
host muscle cells to produce angiogenic factors, resulting 
in neovascularization[32,33].

Delivery of  MSCs by intramuscular injection offers a 
relatively noninvasive strategy as skeletal muscle, being the 
most abundant tissue in the body, is amenable to repeated 
injection of  large numbers of  stem cells. This approach if  
validated clinically is expected to facilitate future stem cell 
therapy. The intramuscular injection regimen for heart fail-
ure treatment draws significant comparison to the relation 
between active skeletal muscle and low cardiovascular risk, 
and highlights the critical link between the skeletal muscle 
and cardiovascular systems. Exercise training can promote 
muscle production of  trophic factors including HGF, 
IGF, IL-6, and VEGF[27,28,34,35], some of  which have been 
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used in pre-clinical or clinical studies for cardiovascular 
therapy[19,20,36]. These effects of  exercise have been shown 
to induce angiogenesis, mobilize bone marrow progenitor 
cells, and protect myocardium after infarction. Indeed, we 
found that the skeletal muscle in response to MSC injec-
tions produced many trophic factors in a more sustained 
fashion. The hallmark of  this unique and relatively nonin-
vasive cardiac repair regimen thus lies in the trophic cross-
talk mechanisms mediated initially by the exogenous short-
lived MSC-derived trophic mediators and subsequently by 
the myriad of  endogenous muscle-derived trophic factors. 
These trophic factors collectively activate several signal-
ing transduction pathways well known for their regulatory 
roles in cell growth, differentiation, and survival, e.g. those 
mediated by PI3K/AKT, ERK1/2, and JAK/STAT3. 
These data together indicate that skeletal muscle actively 
produces growth factors, and the trophic capacity can be 
further boosted in response to stem cell signaling in vitro 
and in vivo.

ACTIVATION OF MUSCLE STEM CELLS
Whereas most tissue-specific stem cells are difficult to 
identify, muscle satellite (stem) cells can be readily identi-
fied based on their unique location between the plasma 
membrane and the ensheathing basal lamina[37,38]. In un-
damaged skeletal muscle, the majority of  satellite cells 
are quiescent. Activated satellite cells caused by injury or 
exercise are able to proliferate, differentiate, and fuse to 
augment existing muscle fibers and to form new fibers[37,38]. 
Critical roles of  stem cell niches have also been established 
for hematopoietic and intestinal crypt stem cells that can 
be recruited for tissue repair when required[39]. Stem cell 
activity is controlled by supporting extracellular matrix 
and cells in the immediate vicinity[40]. These influences can 
be mediated by direct cell contact or secretion of  soluble 
products. Among the multiple trophic factors produced 
by MSCs, FGF-2, HGF, IGF-1, SDF-1, and VEGF have 
been shown to activate muscle satellite cells[41-45]. In this 
context, we have demonstrated that MSC injections causes 
activation of  muscle satellite cells, which mediates effec-
tive formation of  new myofibers and capillaries in both 
injected and non-injected muscles[25]. In addition, cell track-
ing studies revealed that the injected MSCs could directly 
participate in de novo capillary formation, although the ex-
tent to which this process might take place in vivo is prob-
ably limited[46]. Trophic factor actions further lead to the 
expansion of  myocardial progenitor cells expressing c-kit, 
CD31, or CD133 markers[12,31]. Expansion of  these cardiac 
progenitor cells in the diseased myocardium are thought to 
critically contribute to de novo cardiomyogenesis and angio-
genesis necessary for cardiac regeneration[47].

MOBILIZATION OF BONE MARROW 
PROGENITOR CELLS
Mobilization of  bone marrow progenitor cells plays an im-
portant role in tissue repair[48]. The MSCs used here have 

been shown to express trophic factors such as HGF, LIF, 
G/M-CSF, SDF-1, and VEGF[13,17,18], which are capable 
of  mobilizing bone marrow progenitor cells. It should be 
noted that administration of  G-CSF has been proposed 
as a potential new therapy for myocardial infarction[49], 
and intramuscular injection of  LIF plasmid DNA has 
been found to be cardioprotective[50]. Indeed, we detected 
elevated levels of  circulating HGF, LIF, and M-CSF along 
with increased circulating c-kit+, CD31+, and CD133+ bone 
marrow progenitor cells after MSC therapy[12]. The mobi-
lized progenitor cells subsequently repopulate the diseased 
myocardium, and participate in endogenous cardiac repair 
mechanisms. Notably, we have obtained evidence that this 
cell mobilization mechanism becomes impaired in the old 
cardiomyopathic hamster, which may explain at least in 
part why the MSC therapeutic regimen fails to rescue the 
aging heart (see below). The molecular cross-talk between 
the injected MSCs and the bone marrow compartment 
illustrates the dynamic and functionally relevant signaling 
cascade involved in stem cell repair. The signaling cascade 
depicted here further activates myocardial expression of  
growth factor genes, highlighting an additional cross-talk 
mechanism between the injected MSCs and myocardium.

The effect of  MSC administration on mobilization 
of  bone marrow progenitor cells can be mimicked by 
administration of  statins[51], which are a class of  HMG-
CoA reductase inhibitors currently used clinically to lower 
cholesterol levels, retard the progression of  atherosclero-
sis, and reduce death from cardiovascular disease[52]. Both 
MSCs and statins appear to mobilize bone marrow cells 
harboring the CD133 and/or c-kit surface markers, which 
are also expressed by some cardiac stem cells[12,51]. These 
circulating progenitor cells are thus likely to play a major 
role in contributing to myocardial regeneration, although 
detailed cellular and molecular mechanisms underlying this 
tissue repair process remain to be elucidated. It would be 
of  interest to determine whether a combined MSC and 
statin therapy may more potently recruit bone marrow 
progenitor cells, resulting in a more effective cardiac thera-
peutic regimen.

HOST TISSUE AS A MAJOR 
COMPETENCE FACTOR IN STEM CELL 
THERAPY
Aging and disease can greatly affect the environment in 
which stem cells are injected. Genomic, cellular, and struc-
tural damage elicited by reactive oxygen species increase 
with age and translate into impaired tissue function, and 
oxidative stress triggered by inflammation has been impli-
cated in the pathogenesis of  many diseases[53,54]. A major 
challenge encountered in stem cell therapy is rapid loss of  
most of  the injected cells after implantation[25]. This is pre-
sumably caused in part by hostile diseased tissue environ-
ments usually infiltrated with inflammatory, fibrotic, fatty, 
and calcified components, making it difficult for the exog-
enously delivered stem cells to engraft and survive. Stud-
ies have suggested that old brains are less able to support 
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the expansion and differentiation of  neuronal progenitor 
cells[55]. Although it is not clear if  this is due to an intrinsic 
age-related deficit in neuronal progenitor cells, studies of  
endothelial progenitor cells have revealed disease- and age-
associated functional impairment[56,57]. Interestingly, the 
degree of  regeneration of  the bone marrow stroma is in-
versely related to chronological age[58], and while the basal 
hematopoietic capacity is maintained throughout life, the 
ability of  hematopoietic stem cells to respond to stress and 
differentiation cues appears to decrease with age[59,60].

Satellite cells of  aging muscle exhibit a markedly im-
paired ability to produce myoblasts, which is associated 
with insufficient up-regulation of  the Notch ligand Del-
ta[61]. Increased Wnt signaling during aging further diverts 
satellite cells toward a fibrogenic lineage, contributing to in-
creased tissue fibrosis with age[62]. Although the adult heart 
contains resident cardiac stem cells capable of  supporting 
limited myocardial regeneration[47], age-associated senes-
cence of  cardiac stem cells leads to a decreased number of  
cardiomyocytes and heart failure[63]. Consistent with these 
demonstrations, aged tissue has been found to be more 
refractory to stem cell therapy[64], which may be associated 
with inadequate cell-matrix interaction and the presence of  
inhibitory elements. For instance, the extra lamina caused 
by the deposition of  collagen in older dystrophic muscle[65] 
can potentially impede stem cell engraftment and survival. 
The presence of  degraded fibronectin and elastin products 
can cause necrotic cell death[66]. Since the Notch signaling 
cascade in muscle satellite cells is mediated by myofiber 
expression of  Delta, which is impaired in aged muscle[61], 
changes in aged myofibers are expected to impact signifi-
cantly on the efficacy of  the intramuscularly implanted 
MSCs. Given that stem cell therapy primarily targets age-
associated tissue dysfunction and degeneration, host tissue 
competence will need to be taken into consideration in 
future cell therapeutics.

PERSPECTIVE
Stem cell therapeutics is entering into the clinical realm 
with much enthusiasm and optimism. Recent cardiovas-
cular trial studies have demonstrated that growth factors 
and cytokines derived from the injected stem cells and 
host tissue appear to contribute largely to the observed 
therapeutic benefits. Thus, trophic actions rather than mul-
tilineage potentials (or stemness) of  the administered stem 
cells are taking the center stage. Also emerging from these 
studies is that host tissue competence can greatly influence 
the outcome of  stem cell therapy. Logistic aspects of  stem 
cell therapeutics remain an area that requires urgent atten-
tion from the medical community. In cardiac repair for in-
stance, intracoronary infusion or intramyocardial injection 
are mostly used for cell delivery. These delivery methods 
are invasive, often clinically unsuitable, and can introduce 
harmful scar tissue, arrhythmia, calcification, or microin-
farction in the heart[67-70]. As demonstrated here with intra-
muscular injections of  MSCs, stepping outside of  the heart 
and taking an integrative therapeutic approach can offer an 

innovative cardiac repair regimen, which, if  validated clini-
cally, could minimize many perceived side effects of  stem 
cell therapy and reduce the treatment cost. Skeletal muscle 
can be a major source of  therapeutic trophic factors due 
to the large body mass of  the tissue, and activation of  the 
skeletal muscle trophic factor network can potentially be 
an attractive therapeutic strategy for regenerative medicine. 
A better understanding of  host tissue response in stem 
cell therapy is thus likely to provide additional insights for 
formulating logistically sound and therapeutically effective 
stem cell therapeutics. 
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