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Abstract
Cell-based regenerative medicine is of growing inter-
est in biomedical research. The role of stem cells in this 
context is under intense scrutiny and may help to define 
principles of organ regeneration and develop innovative 
therapeutics for organ failure. Utilizing stem and pro-
genitor cells for organ replacement has been conducted 
for many years when performing hematopoietic stem 
cell transplantation. Since the first successful transplan-
tation of umbilical cord blood to treat hematological 
malignancies, non-hematopoietic stem and progenitor 
cell populations have recently been identified within um-
bilical cord blood and other perinatal and fetal tissues. 
A cell population entitled mesenchymal stromal cells 
(MSCs) emerged as one of the most intensely studied as 
it subsumes a variety of capacities: MSCs can differenti-
ate into various subtypes of the mesodermal lineage, 
they secrete a large array of trophic factors suitable of 
recruiting endogenous repair processes and they are 
immunomodulatory.

Focusing on perinatal tissues to isolate MSCs, we will 
discuss some of the challenges associated with these 
cell types concentrating on concepts of isolation and 
expansion, the comparison with cells derived from other 
tissue sources, regarding phenotype and differentiation 
capacity and finally their therapeutic potential. 
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INTRODUCTION
Regenerative medicine is of  growing interest in biomedical 
research. The role of  stem cells to regenerate, repair and 
replace tissues or organs is intensely studied. In general, 
organ injuries or local defects induce a mobilisation of  
endogenous immature progenitor cells either locally or sys-
temically. Then mediated by the milieu, regulated by factors 
of  the extracellular matrix, cellular components or soluble 
mediators, the precursors differentiate along a hierarchy of  
committed to mature cells to functionally regenerate the 
cellular compartment of  the organ[1]. Hematopoietic stem 
cell (HSC) transplantation conducted in a routine scale 
is mimicking these processes[2]. In HSC transplantation, 
umbilical cord or placental blood (CB) came into focus as 
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a third source after the first successful transplantation per-
formed by Gluckman et al[3] in 1989. Despite this approach, 
cells from fetal tissues have become increasingly interesting 
also for tissue engineering approaches to regenerate solid 
organs. This is based on reports of  solid organ engraftment 
after experimental or clinical whole CB transplantation[4].

Multipotent cells have been observed in the fetal cir-
culation but there seems to be an inverse correlation in 
frequency of  cells with endothelial and mesodermal dif-
ferentiation potential[5]. Besides mesenchymal stromal 
cells (MSCs), a plethora of  different stem and progenitor 
cell populations have been described in perinatal tissues 
with potential ranging from embryonal-like[6-8] to lineage-
committed progenitor cells[5,9]. Whether or not these dif-
ferentially named cells refer to similar cell populations 
obtained by different isolation or culture methods, whether 
these cells relate to a common ancestor[10], are in constant 
(epi)genetical transition enabling them to shift to different 
phenotypes[11], emerge upon in vitro culture or by dediffer-
entiation effects[12] remains unidentified and represents a 
major challenge for the future.

WHY ARE PERINATAL TISSUES 
INTERESTING FOR POTENTIAL CELL 
THERAPEUTIC USE?
Human embryonic stem cells (hESCs) are derived from 
the inner cell mass exhibiting a tremendous proliferative 
potential and in addition pluripotent differentiation poten-
tial into cells of  all three germ layers. Currently however, 
three major factors limit their clinical application[13]. Firstly, 
the ethical debate: in some countries it is not allowed to 
generate or even work with hESC lines. Secondly, pluripo-
tent hESCs induce teratoma formation after transplanta-
tion. Still methods are inferior to ascertain that no residual 
pluripotent hESCs are present in a transplant of  differenti-
ated cells. Thus the risk of  teratoma formation cannot be 
fully excluded. Thirdly, hESCs may elicit immune reactions 
after transplantation. In the future, probably autologous 
induced pluripotent stem cells from adult somatic cells 
may help to overcome at least issues one and three[14,15]. By 
then, adult tissues will have to be regarded as an ethically 
sound option.

Adult stem cells have been identified in a variety of  
tissues; MSCs for example in every tissue tested so far[16]. 
Here the problem arises on how to isolate these very rare 
cells and from which sources. The most often analysed tis-
sue is bone marrow (BM). But cell procurement is highly 
invasive and cell numbers are low and necessitate further 
ex vivo expansion. Furthermore, cell numbers, at least in 
BM, have been shown to decline with age[17].

Thus, postnatal gestational tissues inherit numerous 
advantages starting with the young chronological age that 
minimizes the feasibility for incorporated mutations and 
ending with the non-invasive procurement. hESC cells 
from Wharton’s Jelly (WJ) and the amnion arise from the 
epiblast but are not ethically controversial or tumorigen-

ic[18]. Early focus on perinatal tissues harbouring stem cells 
arose from HSCs identified in CB[19]. Subsequently, besides 
cord blood, fetal liver, lung, brain, villous placenta, fetal 
membranes as well as amniotic fluid were identified to host 
MSCs[20-22]. Apart from abortal tissues, in the majority of  
cases perinatal tissues are discarded at birth and thus cells 
are harvestable without any risk for the baby or its mother. 
Accordingly, there is an unlimited supply, easy access and 
minimal ethical/legal issues associated with perinatal tis-
sues. Tissues may be stored for autologous use or also al-
logeneic settings as fetal cells have been demonstrated to 
be immuno-privileged[21]. Hence CB storage is one strategy 
increasingly followed in numerous countries, not only for 
allogeneic but also for potential autologous applications[23].

Antenatal stem cells may be derived from diagnostic 
samples during amniocentesis[24]. Due to their extensive 
proliferation potential, a low amount of  cells may expand 
to similar numbers as cells obtained at high numbers from 
adult tissues. In addition to enhanced expansion capacities, 
stem cell properties might be enriched in fetal/perinatal 
stromal cells (Table 1). Frequencies of  cells exerting telom-
erase activity and expressing pluripotency markers are 
significantly higher compared to stem cells derived from 
the adult[21,25,26]. Thus, perinatal tissues feature a promising 
source for MSCs for cell therapy due to their multipotency, 
immuno-privilege and not-tumorigenicity.

BIOLOGY OF MESENCHYMAL STROMAL 
CELLS
The acronym MSCs is used to abbreviate marrow stromal 
cells, mesenchymal stem cells and mesenchymal stromal 
cells. Classically, MSCs have been isolated from the BM. 
However, alternative tissues have been identified, includ-
ing adipose tissue, cutaneous tissues, fetal tissues, dental 
pulp, hair follicle, synovium, blood, etc[16]. MSCs exhibit an 
in vitro expansion potential and more importantly a broad 
differentiation potential into not only mesodermal (includ-
ing osteoblasts, adipocytes and chondrocytes) but also 
endodermal (hepatocyte-like cells) and ectodermal cells 
(neuronal, neuroglial cells) (For a comprehensive overview, 
we recommend the special issues 35/3 and 35/4 2008 in 
Transfusion Medicine and Hemotherapy). 

Admittedly, the common definition of  a stem cell has 
not been fulfilled with MSCs so far[27]: it has not been dem-
onstrated that a single implanted MSC can regenerate and 
maintain a whole tissue compartment as has been shown 
for HSCs. In addition, MSCs grown in culture do not exert 
an unlimited self-renewal capacity associated by a lack of  
telomerase activity and telomere length shortening upon 
proliferation[28]. This is in contrast to hESCs which display 
no replicative senescence in culture. Hence, there is a trend 
towards redefining these cells as “mesenchymal stromal 
cells” (MSCs)[29].

Nevertheless, MSCs emerged as central candidates in 
the entire field of  cellular therapies. Besides the secretion 
of  trophic factors, MSCs exert fundamental immunomod-
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ulatory functions[30]. In vitro analyses provide a multiplicity 
of  data demonstrating that MSCs, despite the constitutive 
expression of  HLA class Ⅰ and the interferon γ (IFN γ)-
inducible expression of  HLA class Ⅱ, can suppress al-
logeneic T, NK and B cell responses but also can affect 
dendritic cell functions and tumor cell growth[31]. 

MESENCHYMAL STROMAL CELLS FROM 
UMBILICAL CORD BLOOD
Although MSCs seem to be present in any tissue analyzed 
so far, the presence of  circulating MSC has been contro-
versially discussed[32]. Indeed MSCs circulate in peripheral 
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Table 1  Comparison of different perinatal sources of mesenchymal stromal cells regarding mesenchymal stromal cell characteristics

Source of 
MSCs

Isolation Origin Isolation 
efficacy

Frequency Expansion 
potential

Immune
phenotype

Differentiationa Immuno-
suppression

Senescence/
genetic stability/
safety

Ref.

Cord blood Ficoll gradient
Lineage 
depletion

Fetal At best 
60%

Very rare, 
1/108 MNC
Inverse 
correlation 
with 
gestational 
age

Dependent 
on seeding 
density

SSEA-3, 
SSEA-4, 
TRA 1-60, 
TRA 1-82, 
Nanog

Osteogenic
Chondrogenic
Adipogenic-
significantly 
reduced 
compared to 
adult MSC
endothelial

Inhibition 
of T cell 
proliferation

Cells senescence
Stable Karyotype
Non tumorigenic 

[20,32] and own 
unpublished 
data
[49,61,93,95,96]

Umbilical 
Cord 
(Wharton´s 
jelly)
Including UC 
matrix stem 
cells, UC 
perivascular 
cells, UC 
stroma cells

Removal 
of vein and 
arteries
Mechanical 
dissection,
Collagenase + 
hyaluronidase 
digestion

Fetal 100% 10-50 × 103

/cm UC
High 
Expansion 
potential

20% no 
HLA 
class Ⅰ, nor 
class Ⅱ

SSEA-4, 
TRA 1-60

Osteogenic
Chondrogenic
Adipogenic-
significantly 
reduced 
compared to 
adult MSC
Neurogenic
Myogenic, 
cardiac
endothelial

Inhibition 
of T cell 
proliferation

Late senescence
Telomerase
Stable karyotype
Non-tumorigenic

Reviewed in 
[59,95,97]

Amniotic 
Fluid

Centrifugation Fetal 21/23 
samples

Frequency 3 
CFU-f/mL 
AF range 
1-6
0.9%-1.5%

Expansion 
significantly 
higher than 
for BM-
MSCs
doubling 
time 18 h

Lower 
expression 
of CD44 
and CD105 
compared 
to BM-
MSCs
90% 
positive for 
Oct-4

Osteogenic
Adipogenic
Chondrogenic
Hepatogenic
Neurogenic
Myogenic, 
cardio

Inhibition 
of T cell 
proliferation

Longer telomeres 
than BM-MSCs
Stable karyotype
Non tumorigenic 

[95,98]

Placenta 
(Amnion, 
chorion and 
decidua 
basalis)

dissection 
digestion with 
collagenase 
and DNase, 
Percoll 
gradient

Fetal/
maternal

62.5%-
100%

Expansion 
significantly 
higher than 
for BM-
MSC

SSEA-4, 
TRA 1-60, 
TRA 1-81

Osteogenic
Chondrogenic
Adipogenic-
significantly 
reduced 
compared to 
adult MSC

Inhibition 
of T cell 
proliferation

Cells senescence
Rarely 
chromosomal 
changes no 
transformation
No toxicity 
when injecting 
1x107MSC/kg

[26,50,99,100]

Amnion
(contains  
besides MSCs 
amniotic 
epithelial 
cells)

Mechanical 
peeling,  
mincing
Trypsin 
treatment,
digestion with 
collagenase 
or/and DNase

Fetal 4 × 106/100 
cm2 starting 
material
Or 1 × 106 
/g of tissue

First 
trimester 
proliferate 
better 
than third 
trimester

SSEA-3, 
SSEA-4,
Nanog

Adipogenic
Chondrogenic
Osteogenic
Myogenic, 
skeletal
Myogenic, 
cardio
Angiogenic
Neurogenic
Pancreatic

Inhibition 
of T cell 
proliferation

Cells senescence
Stable Karyotype
Non tumorigenic 

Reviewed in 
[21] 
[95,101,102]

Chorion 
(contains  
besides MSCs 
chorionic 
trophoblastic 
cells)

Mechanical 
removal, 
dispase and 
collagenase 
digestion

Fetal Expansion 
significantly 
higher than 
for BM-
MSC

Adipogenic
Chondrogenic
Osteogenic
Myogenic, 
skeletal
Neurogenic

Inhibition 
of T cell 
proliferation

Cells senescence
Stable Karyotype
Non tumorigenic 

Reviewed in 
[21] 

aDifferentiation potential assessed in vitro and in non-clonal cultures. MSCs: Mesenchymal stromal cells; UC: Umbilical cord; AF: Amniotic fluid-derived.



blood and CB but at much lower frequencies than their he-
matopoietic counterparts. Thus they are difficult to isolate 
and culture. Furthermore the frequency of  MSCs within 
fetal blood decreases sharply with advanced gestational 
age[5,33]. But, interesting for future use, MSCs have also been 
isolated from cryopreserved term CB[34].

The first reports dealing with issues of  MSCs in CB 
claimed that either stromal feeder cells[35,36] or osteopro-
genitors can be cultured[37]. Later on, Goodwin et al[38] and 
Erices et al[39] demonstrated cells capable of  differentiating 
into bone, cartilage and adipose tissue. This encouraging 
data were neglected by a number of  authors who tried 
but failed to isolate MSCs from CB but succeeded with 
BM[40,41]. Analyzing factors which might influence the 
unpredictable isolation success in full-term CB ranging 
between 20%-40% of  utilized CB units, we demonstrated 
that by selecting units with decreased storage time and a 
high volume of  cell-rich CB, the isolation success can be 
enhanced towards 60%[20]. The infrequent isolation sug-
gests that either MSCs circulate in extremely low frequen-
cies in CB or that reliable culture conditions equivalent to 
those for BM have yet to be defined. Anyhow, currently 
the chance of  using CB-MSCs in autologous therapeutic 
settings is considerably hampered[42] (Table 1). 

At present no unique phenotype comparable to CD34 
for HSC[43] has been identified which allows a standardised 
prospective isolation of  MSCs with predictable differentia-
tive potential[44]. Recent data indicate a perivascular origin 
of  MSCs[16,45]. MSCs could be prospectively isolated using 
markers for pericytes, but it is doubted that all pericytes in-
habit MSC characteristics[46]. With the markers to prospec-
tively isolate pure MSCs still under debate, the expression 
profile of  culture-expanded MSCs consists of  a variety of  
markers typical for other cell lineages. Thus a combina-
tion of  expressed and not-expressed (most importantly all 
hematopoietic lineage) markers is currently used to define 
MSCs. Classically, MSCs express CD44, CD73 (SH-3, 
SH-4), CD90 (Thy-1), CD105 (SH-2, Endoglin), CD106 
(VCAM-1) and HLA class Ⅰ but lack the expression of  
CD14, CD34, CD45 (Leucocyte Common Antigen) and 
HLA class Ⅱ[47] (Table 1). 

Since currently the immunophenotype is insufficient to 
define MSCs, the demanded assay is to analyze their differ-
entiative capacity at least towards the mesodermal lineage. 
MSCs respond to osteogenic stimuli with the upregulation 
of  osteogenic markers, assessed either by PCR, immuno- 
or histochemical staining. When assessed quantitatively, 
CB-MSCs seem to have a stronger osteogenic potential  
in vitro compared to BM-MSCs[48,49]. The differentiation 
into the chondrogenic lineage can be induced by using a 
micromass culture and various growth factors. CB-MSCs 
form cartilage as well as BM-MSCs but the type of  carti-
lage may differ dependent on the tissues source used[50].

Differing observations have been published regarding 
the adipogenic differentiation capacity of  CB-MSCs. In 
some studies CB-MSCs demonstrate no to only low level 
adipogenic differentiation after culture in adipogenic me-
dia[48,50-52] (Table 1). However, other authors reported no 
limited adipogenic potential[38,39,53].

A variety of  data support the idea that there is no me-
sodermal germ-layer restricted differentiation potential in 
CB-MSCs. Depending on the in vitro stimulus, CB-MSCs 
can also differentiate into neural cells, neuroglial and 
hepatocyte-like cells, endothelial cells, skeletal myoblasts, 
respiratory epithelial cells and cardiomyogenic cells[32] 
(Table 1). Goodwin et al[38] observed a variety of  mark-
ers indicative for osteoblastic and neural lineages already 
expressed on BM-MSCs but induced in CB-MSCs upon 
induction, suggesting a commitment of  BM-MSCs in 
contrast to CB-MSCs. The inducible expression as well 
as differing responsiveness to differentiative stimuli may 
therefore relate to a more primitive cell population con-
tained in CB.

Comparative analysis of  genomic and proteomic ex-
pression profiles in comparison to mature lineages as well 
as hESCs revealed shared patterns but also marked dif-
ferences which might result from differing isolation and 
culture conditions and may have to be re-evaluated after 
adjusting to common and standardised protocols[32].

STROMAL CELLS FROM THE UMBILICAL 
CORD
The presence of  fibroblast-like cells with myogenic prop-
erties within the umbilical cord (UC) matrix was described 
years ago[54]. Colony-forming units fibroblast (CFU-F) 
can be obtained at higher frequencies and in contrast to 
CB from every UC[55] (Table1). Cells derived from WJ, the 
gelatinous part of  the UC, but also cells in the perivascular 
region have been associated with multilineage differen-
tiation potential[25,56,57]. Recently, Ishige et al[58] compared 
MSCs derived from the arterial, venous or gelatinous part 
of  the cord. They observed different frequencies, slightly 
different osteogenic potential but similar phenotype in 
these populations. In contrast to circulating MSCs, UC-
derived cells express pan-cytokeratin markers. Expression 
however may vary when perivascular cells are compared to 
WJ cells[55,59].

Similar to cells derived from CB, UC-derived cells 
exert higher proliferative capacities compared to BM but 
also improved properties of  in vitro osteogenesis and neu-
rogenesis at the expense of  adipogenesis[55]. Comparing 
MSCs from the same donor derived from either the cord 
blood or cord matrix revealed significant differences in the 
gene expression profiles[60]. In CB-MSCs genes related to 
development, osteogenesis and immune system were ex-
pressed whereas UC-MSCs express genes associated with 
cell adhesion, morphogenesis, secretion, angiogenesis and 
neurogenesis.

STROMAL CELLS FROM THE PLACENTA
The composition and origin of  cells within amniotic fluid 
change throughout gestation[61,62]. Human amniotic fluid-
derived MSCs (AF-MSCs) are abundant and can be isolat-
ed by plastic adherence in minimal medium. The prolifera-
tive capacities exceed that of  BM-MSCs but markers and 
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properties are shared with MSCs from adult tissues. One 
exception is observed regarding the expression of  HLA 
class Ⅰ and Ⅱ which seems to be reduced, suggesting even 
more pronounced immunological inertness compared to 
adult MSCs.

The human placenta, besides supporting fetal develop-
ment, may also represent a reservoir of  stem/progenitor 
cells. Four regions can be distinguished harbouring dif-
ferent cell types: the amniotic epithelial (AEC), amniotic 
mesenchymal (AMSC), chorionic mesenchymal (CMSC) 
and finally the chorionic trophoblastic cells[21]. As these cell 
preparations might be contaminated with maternal cells, the 
fetal origin has to be demonstrated with methods sensitive 
enough to detect less than 1% of  maternal cells (Table 1).

The two fetal membranes, amnion and chorion, 
emerge from the basal surface of  the placenta to encase 
the fetus within the amniotic fluid. Amnion is composed 
of  a mono-epithelial layer and a fibroblast layer beneath 
the basal membrane. A layer of  collagen fibres separates 
the amniotic and chorionic mesoderm. After delivery, to 
separate stem cells from the fetal membranes, both mem-
branes are peeled apart and enzymatically digested. AMSCs 
are gained after removing the epithelial layer by trypsin fol-
lowed by collagenase treatment. For chorion, the maternal 
parts are mechanically removed and then the trophoblast 
layers digested using dispase and the chorion stromal cells 
released by collagenase. Primary yields are high with ap-
proximately 6 × 106 AECs and 2 × 106 AMSCs per gram 
amnion[63].

Like BM-MSCs, AMSCs and CMSCs display a fibro-
blastoid phenotype upon adherence to plastic, can form 
typical colonies, display differentiation potential into me-
sodermal lineages and express the range of  markers used 
to characterise MSCs. Furthermore these cells express 
some pluripotency markers, SSEA-4, TRA-1-61, and 
TRA-1-80[26] (Table 1). Regarding the differentiation poten-
tial, slight differences have been described. AMSCs seem 
to be more directed to an adipogenic potential whereas 
CMSCs more to chrondo-, osteo-, myo- and neurogenic 
lineages[24]. Portmann-Lanz et al[64] demonstrated no obvi-
ous effects by the gestational age but the excess of  adipo- 

and neurogenic potential was detected to be higher in 
ASCs compared to CSCs. ASCs seem to inherit also some 
vasculogenic and hepatic potential[21,65].

CELL THERAPY WITH FETAL 
MESENCHYMAL STROMAL CELLS
MSCs are promising candidates for use in regenerative 
medicine. Most clinical studies have been conducted using 
BM-MSCs (www.clinicaltrials.gov). Current studies listed 
there and case reports published focusing on perinatal 
MSC sources are summarized in Table 2.

Studies in general focus on either local or systemic 
administration of  MSCs. Preclinical models indicated that 
the site-directed administration appears to result in engraft-
ment and integration of  the MSCs mediated by extent of  
tissue injury. But owing to problems in quantifying engraft-
ment, published results vary enormously for MSC biodis-
tribution and assessing the therapeutic outcome[66].

The systemic administration, in contrast, seems to re-
sult in general in even less persistence of  tissue-localized 
MSCs. After infusion, MSCs remain in the circulation 
for no more than 1 h[67]. Thereafter MSCs are detectable 
primarily in the lungs and then secondarily in the injured 
organs, albeit at low frequencies. Specific homing to and 
survival in the BM has been shown not only for BM-MSCs 
but also for CB-MSCs after transplantation into immuno-
deficient nude mice without conditioning pretreatment[68].

Basically, clinical expectations are associated with three 
functional aspects of  MSC: (1) Tissue repair by either re-
parative cells directly or by secretion of  paracrine effectors; 
(2) Stromal capacities to support engraftment, of  especially 
HSCs; and (3) Immune modulation.

Tissue repair by either reparative cells directly or by 
secretion of paracrine effectors
Figure 1 depicts a range of  those tissues which have been 
the object of  pre-clinical investigation to induce tissue 
repair or tissue regeneration with perinatal MSCs. Interest-
ingly, in preclinical models, tissue targets of  all three germ 
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Table 2  Current clinical trials listed at www.clinicaltrials.gov (research August 2010) employing mesenchymal stromal cells from 
umbilical cord blood, umbilical cord or placenta or case studies applying mesenchymal stromal cells from perinatal sources

UCB-MSCs Safety and efficacy study of umbilical cord blood-derived mesenchymal stem cells to promote engraftment of unrelated 
hematopoietic stem cell transplantation

UCB-MSCs Safety and efficacy study of umbilical cord/placenta-derived mesenchymal stem cells to treat myelodysplastic syndromes
UCB-MSCs Stem cell therapy for type 1 diabetes mellitus
UCB-MSCs Study to compare the efficacy and safety of cartistem® and microfracture in patients with knee articular cartilage injury or 

defect
UC-MSCs A research study looking at specific tissue of the umbilical cord
UC-MSCs Allogeneic mesenchymal stem cell for Graft-versus-host disease treatment
UC-MSCs/Placenta-MSCs Safety and efficacy study of umbilical cord/placenta-derived mesenchymal stem cells to treat myelodysplastic syndromes
Placenta-MSCs Safety of intramuscular injection of Allogeneic PLX-PAD cells for the treatment of critical limb ischemia

UCB-MSCs Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic 
limb disease animal model[103]

UCB-MSCs A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with 
improved sensory perception and mobility, both functionally and morphologically: a case study[104]



layers have been investigated and proved some success 
of  perinatal stem cell transplantation (Table 3). Whether 
this success resulted from direct engraftment and cellular 
differentiation is doubted more and more because overall 
engraftment levels are extremely low and lack long-term 
persistence. Rather, in a variety of  settings, the secretion 
of  regenerative or immune-suppressive factors ameliorated 
clinical signs.

Preclinical models are difficult to design and interpret 
because a multitude of  parameters like animal and disease 
model, mode of  application, cellular source (species and 
tissue source), cell number, ex vivo culture and differentia-
tion, post transplantation analysis have been demonstrated 
to affect the experimental outcome. This is exemplified in 

the following: Zhao et al[69] and Satore et al[70] transplanted 
AF-MSCs to treat acute ischemic myocardium in a porcine 
or rat model. In the study of  Zhao et al[69], the transplanted 
cells survived for at least 2 mo and exhibited myocardial 
commitment with finally myocardiocyte in situ differentia-
tion. However, Sartore et al[70] could not detect significant 
myocardial engraftment. These contrary results may be 
due to the mixed cell population used because Zhao et al[69] 
excluded AEC cells before transplantation. Furthermore, 
ex vivo culture conditioning and species sources differed. 
Sartore et al[70] ex vivo cultivated the cells before autotrans-
plantation into porcine ischemic hearts. Zhao et al[69] co-
cultivated human MSCs with neonatal rat heart explants 
before xenotransplating in rat ischemic hearts. Also, cell 
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Table 3  Differentiation potential of perinatal mesenchymal stromal cells

Mesoderm Endoderm                                 Ectoderm

Bone [74,75,105-109] Skin, skin epithelium [110] Lung, respiratory epithelium [111,112]

Cartilage [76,113,114] Nerve, neuronal, glial [64,115-124] Liver, hepatocytes [125-128]

Adipose tissue [48,49,51,129] Islets, beta cells [130,131]

Skeletal muscle [54,132-136]

Cardiac muscle [77,137-142]

Vessels, Endothelium [116,129,143-145]

Stromal support [79,81,82,146,147]

Immune regulation [83,148-151]

Figure 1  Therapeutic potential of perinatal mesenchymal stromal cells assessed in preclinical models. 
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Some refrences-if highly interesting or comparing mesenchymal stromal cells (MSCs) from different tissues- refer to in vitro data. This list can by no means 
be regarded as comprehensive. It shall just give an overview on the broad (pre)clinical potential of MSCs.
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passaging and cell dose may affect the capacity of  engraft-
ment. This example highlights that preclinical data have to 
be extremely carefully compared and evaluated to extrapo-
late therapeutic efficacy. 

The concept of  using fetal stromal cells for fetal tis-
sue engineering is the one most intensely studied to treat 
congenital abnormalities[71]. Obtaining fetal biopsies for 
autologous purposes is amendable but associated with a 
not negligible risk and thus currently considered for life-
threatening diseases. By means of  tissue engineering, a few 
studies indicate that a variety of  defects may be treatable. 
In one study, diaphragm reconstruction was achieved us-
ing hAMSCs[72]. The Hoerstrup group is focussing on fetal 
MSCs in cardiovascular engineering, e.g. to generate living 
heart valves[73]. Apart from treating congenital abnormali-
ties, the tendency of  improved osteogenic differentiation 
potential, prompted investigators to study bone and carti-
lage formation with fetal stromal cells[22,74-76]. All data indi-
cate that fetal tissue derived MSCs might be candidates for 
hard tissue engineering.

Further publications suggest that the search for the op-
timal tissue to derive MSCs might be advisable. For exam-
ple Iop et al[77] indicate dissimilar cardiovascular properties 
of  fetal compared to adult MSCs. This is also suggested by 
a variety of  authors with regard to neuroregenerative pro-
tocols[64].

Stromal capacities to support engraftment, especially of 
hematopoietic stem cells
In CB transplantation, the cell dose as major determinant 
of  rate and incidence of  hematopoietic recovery is limited 
to the volume which can be collected from one placenta. 
Strategies to improve engraftment are under investigation 
and include ex vivo expansion of  HSCs and co-infusion of  
MSCs. Ex vivo expansion of  CB-HSCs has been achieved 
on monolayers of  MSCs derived from various tissues. In 
fact CB-MSCs constitutively secrete a variety of  growth 
factors affecting HSCs[78]. Thus, stromal layers derived 
from CB-MSCs as well as from BM-MSCs were capable 
of  maintaining and amplifying colony-forming cells over 
a prolonged period of  time[79,80]. Furthermore the co-
transplantation of  CB-MSCs can lead to an enhanced and 
accelerated engraftment of  CB-HSCs within the murine 
NOD/SCID (nonobese diabetic/severe combined im-
mune deficiency) transplantation model[81,82].

Immune modulation
Several studies based on initial reports by Le Blanc et al[31] 
report that MSCs not only evade immune recognition but 
furthermore play a role in modulating immune and inflam-
matory responses. They are currently clinically exploited 
as a tool for managing tolerance in clinical transplantation, 
including graft versus host disease. MSCs interact with a 
variety of  immune cells to affect both the innate and adap-
tive immune system modulating various effector functions 
to induce immunosuppression and an anti-inflammatory 
milieu in various injury models. Immunological responses 
elicited by fetal and adult MSCs seem to be comparable 

and fetal MSCs are also anti-proliferative to T cells[83]. 
Comparing MSCs from BM, adipose tissue, CB and WJ 
indicated similar immunomodulatory capacities of  all cell 
types, demonstrating that this is a broad stromal capac-
ity not restricted to a developmental or tissue origin[84]. 
Analyzing specific aspects of  immune regulations in more 
detail, however, indicate that cells from different tissues 
or developmental age may behave slightly differently. 
Unrestricted somatic stem cells from CB can induce a bal-
ance between T cell effector responses and dendritic cell 
maturation depending on the cytokine milieu. Here espe-
cially, interferon-γ and tumor necrosis factor-alpha play a 
role[85,86].

MSCs are considered to be non-immunogenic. The fe-
tal-maternal interface seems to be immunologically special 
to enable maternal acceptance of  the fetal allograft. Thus 
fetal or perinatal MSCs might be specifically interesting for 
allogeneic settings[21]. This idea is challenged by findings by 
Cho et al[87]. They demonstrated in a swine model that the 
first injection of  WJ derived MSCs was non-immunogenic. 
However, repetitive administrations as well as injection 
into inflamed skin or interferon activation mediated allo-
reactive immune responses.

CLINICAL MANUFACTURING OF FETAL 
STROMAL CELLS
The employment of  adult stem cell types in clinical studies, 
in general, necessitates manufacturing, processing and test-
ing of  cellular products according to the current national 
regulations, including current good tissue practice (GTP) 
and good manufacturing practice (GMP)[17].

As indicated, fetal MSCs have proven valuable in fetal 
tissue engineering. Having diagnosed a structural birth 
defect and performed diagnostic amniocentesis to procure 
AF-MSCs, the months until birth allow for cell isolation, 
expansion, cryopreservation, thawing, secondary expan-
sion and tissue engineering of  the graft. A protocol validat-
ing a three stage procedure for manufacturing AF-MSCs 
has been introduced by Steigman et al[88] and Brooke et al[89] 
provide a protocol for placental MSCs.

The authors also discuss the aspect of  using fetal bo-
vine serum (FBS). FBS contains xenogeneic proteins which 
are internalized by MSCs. Consequently, a host of  poten-
tial problems can arise such as viral and prion transmission 
or immunological reactions. These risks have initiated the 
search for alternative substitutes: recently serum, plasma 
or platelet derived supplements have been introduced en-
abling the FBS-free propagation of  MSCs[90-92]. Obviously 
the same holds true for CB-MSCs: very recently human 
platelet lysate has been established as supplement to ex-
pand CB-MSCs for clinical applications, paving its way to 
the clinic[93,94].

CONCLUSION
The potential application of  autologous stem cells col-
lected at birth requires immense technical and financial 
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resources for storing the frozen cell samples throughout 
the period of  life. Although such a procedure seems pos-
sible from a technical point of  view, it is highly debatable 
whether the eventual use and possible benefits justify these 
efforts. 

For allogeneic use, the presence of  stem cell popula-
tions collectable at birth provides a readily accessible and 
currently probably under-utilized stem cell source with 
little ethical conflict and numerous advantages. For alloge-
neic applications however, efficient and reproducible meth-
ods to isolate, expand and differentiate and quality control 
these perinatal progenitor cells are required. If  one can 
extrapolate from the lessons learned in HSC transplanta-
tion, stem cell populations harvestable at the time of  birth 
promise to develop as adequate alternatives to other adult 
tissues.
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