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Abstract
Recent advances in reprograming somatic cells from 
normal and diseased tissues into induced pluripotent 
stem cells (iPSCs) provide exciting possibilities for 
generating renewed tissues for disease modeling and 
therapy. However, questions remain on whether iPSCs 
still retain certain markers (e.g. aging) of the original 
somatic cells that could limit their replicative potential 
and utility. A reliable biological marker for measuring 
cellular aging is telomere length, which is maintained 
by a specialized form of cellular polymerase known as 
telomerase. Telomerase is composed of the cellular re-
verse transcriptase protein, its integral RNA component, 
and other cellular proteins (e.g. dyskerin). Mutations 
in any of these components of telomerase can lead to 
a severe form of marrow deficiency known as dyskera-
tosis congenita (DC). This review summarizes recent 
findings on the effect of cellular reprograming via  iPS 
of normal or DC patient-derived tissues on telomerase 
function and consequently on telomere length mainte-
nance and cellular aging. The potentials and challenges 
of using iPSCs in a clinical setting will also be discussed.
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BASIC BIOLOGY OF HUMAN TELOMERES 
AND TELOMERASE
Telomerase is a ribonucleoprotein complex whose main 
function is to elongate chromosomal 3’ end sequences 
known as telomeres. The function of  this unique enzyme 
in terminal DNA elongation is necessary in order to 
overcome the “end-replication problem” whereby con-
ventional DNA polymerases cannot fully replicate linear 
DNAs[1,2]. Human telomerase is composed of  a special-
ized reverse transcriptase protein (hTERT) and its in-
trinsic RNA template (hTERC), as well as the associated 
proteins dyskerin, NOP10, NHP2, GAR1, and TCAB1 
(Figure 1). Telomere erosion (by 50-100 bp per cellular 
division) limits the replicative capacity of  the majority of  
somatic cells, which do not express active telomerase[3,4]. 
Cells whose telomeres shorten to a “critical length” enter 
cellular crisis, which is characterized by replicative senes-
cence or apoptosis, meaning cells either stop dividing 
or commit suicide[5,6]. Stem cells, germ cells, and certain 
types of  somatic cells (e.g. lymphocytes) express the 
telomerase enzyme, allowing them to maintain telomere 
length and escape cellular crisis.

Human telomerase reverse transcriptase (hTERT) has 
been extensively characterized[7]. The protein is defined 
by the catalytic domain, which contains seven conserved 
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reverse transcriptase motifs essential for enzymatic activ-
ity. Functionally important regions have also been defined 
in the human RNA template (hTERC) (Figure 1)[8]. The 
template region is absolutely required for the hTERT 
protein to reverse transcribe it into telomeric DNA re-
peats. Other regions include the pseudoknot domain, 
required for hTERT binding and enzymatic activity, and 
the Box H/ACA domain, which is required for hTERC 
RNA processing and stability. Proper assembly and func-
tion of  the telomerase complex also require other cellular 
proteins, such as dyskerin, NOP10, NHP2, and GAR1 
(Figure 1).

DYSKERATOSIS CONGENITA
Dyskeratosis congenita (DC) is a rare inherited disorder 
characterized by mucosal leukoplakia, nail dystrophy, and 
abnormal skin pigmentation[9]. The majority of  the cases 
occur in children, who, in addition to the aforementioned 
physical anomalies, suffer from bone-marrow failure 
syndromes and sometimes other symptoms indicative of  
premature aging, such as dental abnormalities, esophago-
stenosis, alopecia, and pulmonary disorders. Hematopoi-
etic malignancies (e.g. MDS, Hodgkin’s and acute myelog-
enous leukemias) and/or solid tumors of  the GI tract, 
nasopharynx and skin have also been observed in some 
DC patients[10]. Since this disease affects rapidly renew-
ing tissues, it has been speculated that DC is a telomerase 
disease. In support of  this theory, most DC patients have 
short telomeres[11,12] and carry mutations in one of  the 
three main components of  the telomerase holoenzyme 
complex, dyskerin (DKC), hTERT protein, and hTERC 
RNA[13].

There are three different patterns of  DC disease in-
heritance: X-linked recessive, autosomal dominant, and 
autosomal recessive. The X-linked form of  the disease 
is most severe and is caused by mutations in the DKC1 
gene on chromosome Xq28 that encodes dyskerin. Dys-
kerin is a nucleolar protein that is predicted to function 
in ribosomal RNA processing, in addition to a role in the 
biogenesis of  the telomerase enzyme complex. Indeed, 
primary fibroblasts and lymphoblasts from X-linked DC 
patients have a lower level of  hTERC RNA, which cor-
responds to lower levels of  telomerase enzymatic activ-
ity and shorter telomere lengths than matched normal 
cells[14,15]. Interestingly, most Dkc1 mutations are missense 
mutations and one contains a 3’ deletion, indicating that 
frameshift and null mutations are possibly incompatible 
with life[16-26]. Indeed, a DKC1-null mouse is embryonic 
lethal[27]. In humans, one mutation (A353V) accounts for 
approximately 30% of  all X-linked DC cases and is also 
seen quite frequently in a severe form of  a disease known 
as Hoyeraal-Hreidarsson syndrome. 

The autosomal dominant form of  DC (AD-DC) is 
much less severe and less common than the X-linked 
form. Mutations in hTERT protein and hTERC RNA, as 
well as in the telomere binding protein TIN2, have been 

associated with AD-DC[28]. The vast majority of  these 
mutations are heterozygous, resulting in a haploinsuf-
ficiency effect on telomerase function that accounts for 
the observed telomere shortening. In AD-DC families, 
the genetic lesion does not change, yet the onset of  dis-
ease features occurs, on average, 20 years earlier in the 
children than in their parents. Telomere length appears to 
play a role in this accelerated disease presentation in later 
generations, as telomeres are significantly shorter in the 
later generations of  affected families than in the earlier 
ones, leading to the “disease anticipation” idea based on 
telomere length measurement[29].

The causal gene(s) for the autosomal recessive form 
of  DC remain somewhat elusive. A homozygous mu-
tation (R34W) in the telomerase-associated NOP10 
protein was found in all 3 affected members of  a single 
family and appears to segregate with the disease, as unaf-
fected family members are heterozygous. Patients and 
unaffected carriers do in fact have significantly shorter 
telomeres than controls. However, this mutation was not 
identified in any of  the other 15 families screened, sug-
gesting that it may be a very rare genetic risk factor[30]. 
A recent screen of  another small cohort of  DC patients 
identified two out of  nine unrelated patients with unique 
compound heterozygous missense mutations in the 
TCAB1 locus (gene names WDR79 and WRAP53)[31]. 
TCAB1 is a WD40-repeat containing protein that binds 
the CAB box sequence within TERC[32]. It is a constitu-
ent of  the active telomerase holoenzyme and inhibition 
of  TCAB1 prevents telomerase from localizing to Cajal 
bodies where RNA-protein complexes are assembled 
and modified[33]. The proband from one of  the families 
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Figure 1  Telomerase enzyme. Simplified illustration of the telomerase enzyme 
showing its main components: hTERT, hTERC, Dyskerin, NOP10, NHP2, GAR1, 
and TCAB1. Functional regions of the hTERC RNA (template, pseudoknot, CR4-
CR5, Box H/ACA, and CR7) are indicated. Mutations in hTERT, hTERC, TCAB1, 
NOP10 or Dyskerin have been shown to be associated with a severe form of hu-
man bone-marrow deficiency known as dyskeratosis congenita.



has mutations in exon 2 (F164L) and exon 8 (R398W) 
of  the gene, and the proband of  the second family has 
mutations in exon 7 (H376Y) and exon 9 (G435R). They 
have classic DC symptoms and much shorter telomeres 
than healthy age-matched controls. The healthy parents 
and siblings of  each proband carry only a single mutant 
TCAB1 allele, which is consistent with autosomal reces-
sive inheritance. The mutations were not detected in 380 
control individuals, again suggesting that these are rare 
mutations[31].

HOW TO REPROGRAM A SOMATIC 
NUCLEUS?
The successful cloning of  an entirely new animal (e.g. 
Dolly the sheep) from a single cell via somatic cell nuclear 
transfer (SCNT) technology heralded humankind into 
a brave new era of  genetic engineering[34]. For the first 
time, it is possible to reprogram a somatic cell to behave 
“young” again; to coax it into behaving like an embryonic 
stem cell that can then differentiate into cells of  a variety 
of  different lineages, which is the hallmark of  pluripo-
tency. By all measures, this is an intrepid undertaking with 
an outcome that is beyond anyone’s expectations. SCNT 
technology involves transferring a somatic cell nucleus 
into an enucleated donor oocyte and stimulating this chi-
meric cell to divide and differentiate into cells of  different 
lineages, the exact mechanisms of  which are unknown[34]. 
Factors that can allow the cloned cell to achieve pluripo-
tency remained largely unknown until a seminal discovery 
made by Takahashi and colleagues reported in 2006 that 
only four transcriptional factors (Sox2, c-Myc, Oct4, and 
Klf4) were needed to reprogram mouse fibroblasts to 
pluripotency[35]. In other words, it takes only four cellular 
factors to reprogram somatic cells to induced pluripotent 
stem cells (iPSCs), albeit at relatively low frequencies that 
vary by the age and tissue origin of  the cells[35-39]. Other 
researchers have shown that different cellular factors (i.e., 
Nanog and Lin28) can also be used to achieve a similar 
outcome[40]. However, it was noted that many SCNT-
transduced cells failed to divide and possibly entered a 
stage of  cellular senescence or apoptosis[41], which might 
involve some of  the known stress-activated senescence 
genes (e.g. p53, p21WAF/CIP and p16INK4a) of  the p53 and 
pRb stress response pathways[41-45].

EFFECTS OF CLONING ON TELOMERES 
AND TELOMERASE OF NORMAL CELLS
It was shown that telomeres of  cells collected from the 
SCNT cloned sheep were shorter than those from age-
matched control animals[46,47], raising a concern that the 
cloned cells might inherit telomeres of  similar lengths 
as those from the donor nucleus. However, subsequent 
analysis of  telomere lengths from other cloned animals 
(e.g. cattles) have shown that telomeres were elongated 

during the cloning process[48] due possibly to reactivation 
of  telomerase in blastocyst stage embryos in the cloned 
nucleus[49].

It was demonstrated that iPSCs could not be gener-
ated from somatic cells from late generations (G3) of  
telomerase-null mice, possibly due to the high degrees 
of  genomic instability as a result of  telomere fusions, 
and that reintroduction of  telomerase could restore the 
efficiency of  generating iPSCs[50]. Interestingly, iPSCs 
derived from normal human and mouse cells show pro-
gressive telomere elongation with passaging in cultures, 
indicating that telomere elongation can occur post-
programming[50-53]. Studies have also shown that telomer-
ase enzymatic activity is significantly activated upon iPS 
manipulation[38-40,50,52,54] as a result of  upregulated expres-
sion of  the TERT protein and TERC RNA, as well as of  
the associated protein dyskerin[52,54]. The level of  increase 
in TERT transcript and telomerase function, however, 
differs between human and mouse cells, about 100 fold 
in human iPSCs and a modest 2-3 fold in mouse iPSCs, 
possibly reflecting mechanistic differences in telomerase 
regulation in different organisms. During normal embry-
onic development, telomerase function is down regulated 
upon differentiation of  iPSCs into different lineages, 
resulting in a telomere shorting effect. Several factors, in-
cluding but not necessarily limited to chromatin structure, 
can influence the dynamics of  telomere maintenance dur-
ing and/or post-programming of  the cells.

Telomere chromatin structure has been shown to be 
altered during the reprogramming process. High levels of  
trimethylation of  histone at lysine 9 (H3K9) and of  his-
tone H4 at lysine 20 (H4K20) are normally observed at 
telomeric regions, whereas lower levels, as in embryonic 
stem cells, are detected upon cellular reprograming[50]. 
The subtelomeric DNA regions in human iPSCs have 
also been shown to be hypermethylated, as compared to 
those in the original somatic cells, and to contain high de-
grees of  heterogeneity in their methylation patterns[51]. In 
contrast to human iPSCs, no obvious changes were ob-
served in the subtelomeric regions of  mouse fibroblasts 
upon reprogramming[50]. It is possible that the repro-
gramming-induced changes in methylation at or near the 
subtelomeric regions may alter the expression of  genes 
in the vicinity. For example, it has recently been shown 
that mouse and human iPSCs upregulate the expression 
of  TERRA RNA[50,51], which is known to regulate both 
telomere length and its chromatin structure[55]. Deng and 
colleagues have shown that the association of  TERRA 
RNA with a telomeric DNA binding protein TRF2 can 
facilitate heterochromatin structural formation via its 
association with the histone HP1α and trimethylated 
H3K9[56]. While heterogeneity in levels of  telomere-spe-
cific gene expression may exist in human vs mouse iPSCs, 
a general consensus is that the chromatin structures at 
subtelomeric and/or telomeric regions can change upon 
reprogramming and can revert back as in the original so-
matic cells[57-59].
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EFFECTS OF iPS MANIPULATION ON 
TELOMERES AND TELOMERASE OF DC 
PATIENT-DERIVED CELLS
Recent studies (described above) suggest that reprogram-
ming of  somatic cells via iPS technology can hold great 
promise for correcting defects in telomerase function 
and/or telomere attrition observed in patients with DC, 
a disease with short telomeres leading to limited bone-
marrow stem cell reserve and renewal capacity[60]. The 
question is whether iPS reprogramming of  somatic cells 
collected from DC patients can reactivate telomerase 
enzymatic activity to elongate telomeres. To address 
this question, Agarwal and colleagues[54] attempted to 
reprogram fibroblasts collected from either an X-linked 
DC patient with the del37L mutation in the dyskerin 
gene[14,26] or an autosomal dominant DC patient who is 
heterozygous for a truncated form of  the hTERC gene 
(del378-451) due to an 821 bp deletion on chromosome 
3q26.2-3[60]. In both cases, the mutations greatly reduced 
the levels of  hTERC RNA expression in the cells[15,60]. 
The patients’ primary fibroblasts were retrovirally trans-
duced with Oct4, Sox2, Klf4, and c-Myc genes, the plu-
ripotent phenotype of  the iPSCs was monitored by con-
ventional iPSC assays[61], and the mean telomere lengths 
were measured by Southern blot. Significant upregulation 
of  telomerase activity was observed in DC patient cells-
derived iPSCs, which correspondingly showed telomere 
elongation upon cellular passaging. More importantly, 
differentiated cells showed down-regulated telomerase 
activity and accelerated telomere attrition. Given that 
the hTERC gene expression in the original fibroblast 
cells has been shown to be suboptimal[15,60], it is quite 
unexpected that telomere lengths in their iPSCs can be 
elongated to a degree similar to control fibroblasts. A 
possible explanation is that the hTERC gene expression 
in the iPSCs was found to be significantly upregulated (by 
3-8 fold); this the authors attributed to a unique feature 
of  pluripotency as several of  the telomerase-associated 
genes could be targeted by pluripotency-associated tran-
scription factors[54]. 

PROMISES, OBSTACLES AND 
CHALLENGES OF iPS TECHNOLOGY
One exciting potential of  iPSCs is to use them to model 
the pathogenesis of  human disease in vitro. Toward this 
end, Batista et al[62] have recently derived iPSCs from 
fibroblasts collected from: autosomal dominant DC 
patients with mutations in hTERT (P704S and R979); 
X-linked DC patients with dyskerin mutations (L54V 
and del37L); and autosomal recessive DC patient with 
the recently identified disease-associated mutations in 
TCAB1 gene (H376Y/G435R)[31], using either retrovirus 
or lentivirus expressing the four required transcription 
factors (Sox2, c-Myc, Klf4 and Oct4). The authors found 
that, even in the undifferentiated state, iPSCs derived 

from these DC patients exhibit the precise features of  
each form of  the disease. Unlike an earlier study[54], pro-
found defects in telomere maintenance were observed[62]; 
the reasons for the discrepancy between the studies are 
unclear but is likely due to possible differences in experi-
mental conditions or statistical variations among the iPS 
clones[63]. In the Batista study[62], iPSCs derived from the 
hTERT-mutated cells with telomerase haploinsufficiency 
exhibited blunted telomere elongation effect during 
reprogramming. In iPSCs from X-linked DC patients, 
dyskerin mutations severely impaired telomerase assem-
bly and function, and hence disrupted telomere synthesis 
during reprogramming. In iPSCs derived from cells with 
the TCAB1 mutations, which led to the mis-localization 
of  the telomerase enzyme from Cajal bodies to nucleoli, 
proper telomere synthesis was abrogated during repro-
gramming. Prolonged passaging of  some of  the undiffer-
entiated iPSC cultures could lead to progressive telomere 
attrition and eventual loss of  self-renewal capacity of  the 
cultures, closely mimicking processes that might occur to 
the tissue stem cells of  the patients. These findings sug-
gest that iPSCs can serve as a good cell-culture-based sys-
tem for disease modeling and for developing therapeutic 
strategies (e.g. drug screening). 

While recent studies have shown great potential for 
iPSCs in disease modeling, several obstacles still exist 
before contemplating the clinical application of  iPSCs 
to treat human diseases. First and foremost, since most 
successful iPS studies involve the use of  retroviral or 
lentiviral transduction, safety is a principle and valid 
concern. Several non-viral techniques to deliver the trans-
genes have recently been developed that should lessen 
the concern of  possible turmorigenesis[64]. Despite recent 
advances in iPS technology development, the efficiency 
of  reprogramming somatic cells still remains an issue. 
Recent observations have also indicated that the epigen-
etic changes at telomeres and elsewhere in the genome 
of  iPSCs are not necessarily identical to those found in 
embryonic stem cells[65]. This line of  investigation clearly 
deserves more attention as any aberrance in chromatin 
structure and function potentially renders the iPSCs use-
less, or worst yet, prone to chromosome instability.This 
would lead to acquisition of  undesired mutations[66] and/
or increase in chromosome copy number variations[67-69] 
that cause enhanced susceptibility to cellular transforma-
tion. It is not entirely clear either how to differentiate 
iPSCs into various cellular lineages in order to generate 
tissue-specific stem cells for clinical utility.

While the therapeutic usage of  iPSCs in clinics ap-
pears to be beyond the reach of  current technologies[70], 
several recent studies have provided exciting proof  of  
concepts. A number of  human and mouse fibroblast-
derived iPSCs have been successfully differentiated into 
a variety of  tissue/cell types, such as cardiomyocytes[71,72], 
hematopoietic cells[73,74], endothelial-like cells[75], insulin-
secreting islet-like cells[76], retinal pigment epithelial 
cells[77,78], and neurons[79,80]. Using a humanized mouse 
model of  sickle cell anemia, Hanna and colleagues have 
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successfully used genetically engineered skin-derived 
iPSCs to correct a genetic defect caused by the FANCA 
gene[73]. It is also possible to introduce the iPSC-differ-
entiated endothelial progenitor cells into the livers of  
genetically defective hemophilic mice in order to cure 
bleeding disorder[81]. These studies offer exciting potential 
and optimism for advancing iPS technology for possible 
future clinical use in humans.
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