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Abstract
AIM: To understand the neuroprotective mechanism 
of human umbilical cord blood-derived mesenchymal 
stem cells (hUCB-MSCs) against amyloid-β42 (Aβ42) 
exposed rat primary neurons.

METHODS: To evaluate the neuroprotective effect 
of hUCB-MSCs, the cells were co-cultured with Aβ42-
exposed rat primary neuronal cells in a Transwell 
apparatus. To assess the involvement of soluble fac-
tors released from hUCB-MSCs in neuroprotection, an 
antibody-based array using co-cultured media was 
conducted. The neuroprotective roles of the identified 
hUCB-MSC proteins was assessed by treating recombi-
nant proteins or specific small interfering RNAs (siRNAs) 
for each candidate protein in a co-culture system.

RESULTS: The hUCB-MSCs secreted elevated levels of 

decorin and progranulin when co-cultured with rat pri-
mary neuronal cells exposed to Aβ42. Treatment with 
recombinant decorin and progranulin protected from 
Aβ42-neurotoxicity in vitro . In addition, siRNA-mediat-
ed knock-down of decorin and progranulin production 
in hUCB-MSCs reduced the anti-apoptotic effects of 
hUCB-MSC in the co-culture system.

CONCLUSION: Decorin and progranulin may be in-
volved in anti-apoptotic activity of hUCB-MSCs exposed 
to Aβ42.

© 2012 Baishideng. All rights reserved.
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INTRODUCTION
Alzheimer’s disease (AD) is currently an incurable neu-
rodegenerative disease. The proposed main causes of  
AD are amyloids, tau theory, mitochondria dysfunction 
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and chronic inflammation[1,2]. These causes gradually and 
progressively induce neuronal loss in the brain, which 
progressively diminishes mental activity. Mesenchymal 
stem cells (MSCs) have shown promise in the treatment 
of  AD in vitro and in vivo[3-5]. MSCs can be collected from 
various human sources including bone marrow, umbili-
cal cord blood, adipose tissue and Wharton’s jelly[6,7]. 
Although MSCs have the capacity for differentiation of  
into bone, cartilage and adipose, and so are compelling 
candidates for regenerative therapies, the paracrine ac-
tion of  MSCs has been spotlighted as the major role of  
stem cells in disease models[8-13]. 

Our group has studied the paracrine effect of  human 
umbilical cord blood-derived MSCs (hUCB-MSCs) in 
the treatment of  AD in vitro and in vivo. We found that 
hUCB-MSC secretes a variety of  proteins including 
galectin-3 for neuron survival[14] and soluble intercellular 
adhesion molecule-1 (sICAM-1) for the induction of  Aβ 
degrading enzyme and neprilysin on microglia when co-
cultured with rat primary neuronal cells during exposure 
to amyloid-β42 (Aβ42)[15]. These actions reduce Aβ and 
improve memory deficit in an AD-transgenic mouse 
model[3].

In this study, we identify two additional soluble 
proteins, progranulin and decorin, which are released 
from hUCB-MSC under AD microenviroment. The 
data provide another example of  the paracrine action of  
hUCB-MSCs for AD therapy.

MATERIALS AND METHODS
Cell culture
This study was approved by the Institutional Review 
Board of  MEDIPOST. Umbilical cord blood was col-
lected from umbilical veins after neonatal delivery with 
informed consent of  the pregnant mothers. hUCB-
MSCs were isolated and expanded as described previ-
ously[15]. Pregnant Sprague-Dawley rats were purchased 
from Orientbio (Kyeonggi, South Korea). Brain tissue 
was dissected from embryonic-day-14 rat cortex and 
hippocampus, and cells were mechanically dissociated in 
Ca2+/Mg2+-free Hank’s balanced salt solution as we have 
described before[14,15]. Rat primary neuronal cultures were 
treated with Aβ42 (Sigma-Aldrich, St. Louis, MO, United 
States) for 12 h or 24 h. hUCB-MSCs (8 × 104 cells/cm2) 
were co-cultured in the upper chamber (pore size: 1 μm) 
of  a Transwell apparatus (Falcon) with Aβ42-exposed 
rat primary neuronal cells or BV2 cells.

Enzyme-linked immunosorbant assay and antibody array
Enzyme-linked immunosorbant assay (ELISA) was per-
formed according to the manufacturer’s instructions. A 
progranulin ELISA kit (R and D Systems, Minneapolis, 
MN, United States) and a kit for decorin (R and D Sys-
tems) were used in analyzing each conditioned medium. 
The capture antibody was diluted in phosphate-buffered 
saline and added to a 96-well plate for pre-coating. After 
overnight incubation, each plate was washed and blocked 

by the reagent. After aspiration, 100 mL of  medium was 
incubated in wells coated with capture antibody for 2 h. 
After incubation of  streptavidin-horseradish peroxidase, 
substrate solution was added. For the antibody array, the 
collected medium was dialyzed at 4 ℃ for 3 h then la-
beled with biotin reagent according to the recommended 
protocol. Biotin-labeled proteins in the medium were 
reacted with a glass chip assembly and further incubated 
with streptavidin-conjugated fluorescent dye. The glass 
chip was scanned and analyzed using Analysis Tool Soft-
ware (Ray-Bio, Norcross, GA, United States).

Small interfering RNAs treatment
Small interfering RNAs (siRNAs) for decorin and pro-
granulin were purchased from Bioneer (Daejon, South 
Korea) and non-targeted control siRNA was from Ther-
mo Scientific Dharmacon (Chicago, IL, United States). 
siRNA was treated with Lipofecamine-2000 (Invitrogen, 
Carlsbad, CA, United States) for 6 h without fetal bovine 
serum and antibiotics. siRNA treated cells were washed 
and cultured overnight in Dulbecco’s modified Eagle’s 
medium without antibiotics.

Immunostaining
Fixed cells were stained with antibodies for microtubule 
associated protein 2 (MAP2; Millipore, Billerica, MA, 
United States) and fluorescein isothiocynate (FITC; Cy3) 
secondary antibodies (Jackson Immunoresearch Labo-
ratories, Bar Harbor, ME, United States). Stained cells 
were photographed using a fluorescence microscope 
(Nikon, Tokyo, Japan).

RESULTS
Co-culture of rat primary neuronal cells enhances 
secretion of decorin and progranulin by hUCB-MSCs
Since we already reported that co-culture of  hUCB-
MSCs protects from Aβ-mediated neurotoxicity in 
vitro[14], we sought to confirm these results in a co-cultu-
red system using Live/Dead staining (Figure 1). hUCB-
MSCs were co-cultured with Aβ42-exposed rat primary 
neuronal cells for 24 h in a Transwell chamber. Green 
and red fluorescence indicated lived and dead rat prima-
ry neuronal cells, respectively. The co-culture of  hUCB-
MSC protects Aβ42-mediated neurotoxicity in rat prima-
ry neuronal cells (Figure 1A and B). To identify soluble 
factors from hUCB-MSC during co-culture, we analyzed 
secreted proteins in the medium using an antibody-based 
array (unpublished data). Among the identified proteins, 
we focused on progranulin and decorin because their 
protein levels were highly elevated when hUCB-MSCs 
were co-cultured with rat primary neuronal cells in the 
presence of  Aβ42 (Figure 1C). To confirm the accuracy 
of  the antibody-based array, we performed ELISA to 
quantify the progranulin and decorin presence in the 
medium. Progranulin and decorin were also elevated du-
ring co-culture compare to hUCB-MSCs cultured alone 
(Figure 1D). However, Aβ42 exposure slightly inhibited 
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secretion of  decorin and progranulin (P < 0.05). Each 
ELISA was human specific because the medium used for 
rat primary neuronal cells did not react with decorin and 
progranulin of  hUCB-MSCs. These data suggest that 
secretion of  decorin and progranulin were induced in 
hUCB-MSCs by the co-culture of  rat primary neuronal 
cells in the presence or absence of  Aβ42.

Treatment of recombinant decorin and progranuiln 
increases neuron viabilty
To test whether decorin and progranulin participate 
in the neuroprotection against Aβ42-neurotoxicity, 
recombinant decorin and progranulin were treated in 
Aβ42-exposed rat primary neurons at three doses (10 
ng/mL, 20 ng/mL and 50 ng/mL). After treatment of  
recombinant decorin or progranulin for 36 h, rat primary 
neuronal cells were analyzed by Live/Dead staining. 
Almost the same neuroprotective effect of  decorin and 
progranulin was apparent at each dose (data not shown). 

Representative percentage of  dead cells using 10 ng of  
decorin or progranulin in Aβ42-exposed rat primary 
neuronal cells is shown in Figure 2B. Since neuron and 
glia cells were mixed in the rat primary neuronal cells, 
we tried to stain MAP2-positive neurons in recombi-
nant decorin- and progranuin-treated cells exposed to 
Aβ42 (Figure 2C). Treatment of  each protein reduced 
Aβ-mediated neurotoxicity because MAP2-positive 
cells were very apparent in Aβ-exposed neurons with 
decorin or progranulin, compared to controls. These 
data suggest that secreted decorin and progranulin from 
hUCB-MSCs have an anti-apoptotic effect against Aβ42-
neurotoxicity in vitro.

Knock-down of decorin and progranulin secretion 
reduces the neuroprotective effect of hUCB-MSC 
To assess whether the anti-apoptotic effect of  hUCB-
MSC against Aβ42 was mediated by the action of  
decorin and progranulin, each siRNA for decorin and 

Figure 1  Decorin and progranulin are highly secreted from human umbilical cord blood-derived mesenchymal stem cells. A: Human umbilical cord blood-
derived mesenchymal stem cells (hUCB-MSCs) were co-cultured with amyloid-β42-exposed rat primary neuronal cells for 24 h in a Transwell chamber. Then, rat 
primary neuronal cells were stained by Live/Dead staining. Green color indicates surviving neuronal cells. B: Percentage of dead cells was calculated (P < 0.05, n = 4 
per group); C: To identify paracrine factors, co-cultured media was analyzed by antibody-based array (RayBio). Spot intensity of progranulin and decorin in co-cultured 
media was much higher compared to rat primary neuronal cells in the absence of hUCB-MSC (P < 0.05, n = 3 per group); D: Each medium used in the Transwell was 
analyzed by enzyme-linked immunosorbant assay for progranulin and decorin (aP < 0.05, cP < 0.05, n = 3 per group).
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progranulin were used for a 6-h pretreatment of  hUCB-
MSCs cocultured with Aβ42-exposed rat primary neu-
rons for further 24 h. Pretreatment using either siRNA 
inhibited the secretion of  decorin and progranulin (Fig-

ure 3A). To analyze the surviving neurons in rat primary 
neuronal culture by siRNA treated hUCB-MSCs, MAP2 
was visualized by staining with anti-MAP2 antibody (Fig-
ure 3B). siRNA treated hUCB-MSCs were not protective 
against Aβ42 neurotoxicity. The percentage of  surviving 
neurons is depicted in Figure 3C. The data suggested 
that decroin and progranulin released from hUCB-MSC 
mediate an anti-apoptotic effect of  hUCB-MSCs against 
Aβ42 neurotoxicity in vitro.

DISCUSSION
MSC display paracrine action in pathological condi
tions[16]. Especially, we observed that hUCB-MSCs also 
secreted a variety of  proteins by incubation with body 
fluid collected from patients (unpublished data). When 
we analyzed co-cultured media by various biochemical 
approaches such as antibody array, we identified several 
proteins including galectin-3 and sICAM-1. We have 
previously reported on the function of  each identified 
protein in an AD model[14,15]. Here, we report on the role 
of  decorin and progranulin in hUCB-MSC-action in an 
AD model. hUCB-MSCs seem to act simultaneously in 
an AD microenviroment because Aβ reduction and in-
creased neuron survival were observed after application 
of  the hUCB-MSCs.

During co-culture of  hUCB-MSCs with rat primary 
neurons, secretion of  decorin and progranulin were 
increased in the presence or absence of  Aβ42 (Figure 
1). These elevations were confirmed by two-different 
methods: antibody-based array and ELISA. Since hUCB-
MSCs protected from Aβ42 neurotoxicity in vitro, we 
tested whether decorin and progranulin participated in 
the neuroprotection of  hUCB-MSCs in an AD model. 
Human recombinant decorin and progranulin were used 
to treat Aβ42-exposed rat primary neurons for 24–36 h 
and then neuronal survival was tested in vitro. The two 
proteins protected against Aβ42 neurotoxicity in vitro. 
These data support the suggestion that decorin and 
progranulin are soluble factors which are released from 
hUCB-MSC to protect Aβ42 neurotoxicity in vitro. 

The role of  decorin in cell survival has been reported 
in various disease models. Decorin expressed in endo-
thelial cells prevents apoptosis of  the cells in a collagen 
lattice[17]. In a myocardial infarction model, decorin 
treatment significantly mitigated fibrosis compared to 
control[18]. In addition, decorin stimulated cell prolifera-
tion and reduced apoptosis in the infarct area. Especilly, 
decorin promotes robust axon growth on inhibitory 
CSPGs and myelin via a direct effect on neurons[19]. 
Decorin pretreatment of  meningial fibroblasts in vitro re-
sulted in a three-fold increase in neurite outgrowth from 
co-cultured adult sensory neurons[20]. The secretion of  
decorin has been reported[21, 22]. Expression of  decorin in 
adipose progenitor cells[23] supports the idea that hUCB-
MSCs secrete decorin.

Recently, mutations in the progranulin (PGRN) gene 
were found to cause familial and apparently sporadic 
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Figure 2 Recombinant progranulin and decroin protect against amyloid-
β42-neurotoxicity in vitro. A: Instead of human umbilical cord blood-derived 
mesenchymal stem cells, 10 ng of progranulin and decroin were used to treat 
amyloid-β42 (Aβ42)-exposed rat primary neuronal cells, After 36 h, each cell 
was assayed by Live/Dead staining. The green and red colorindicate live and 
dead cells, respectively; B: Percentage of dead cells in decroin- and progran-
ulin-treated cells exposed to Aβ42; C: To show survived neurons in rat primary 
neuronal cells, cells were stained by anti-microtubule associated protein 2 anti-
body. PGRN: Progranulin; DCN: Decorin.
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Figure 3  Knock-down of decorin and progranulin by siRNAs reduces the anti-apoptotic effect on human umbilical cord blood-derived mesenchymal stem 
cells in a Transwell chamber. A, B: Each siRNA was pretreated in human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) for 6 h. These cells 
were co-cultured with rat primary neuronal cells for 24 h. After co-culturing, the medium was analyzed by enzyme-linked immunosorbant assay for progranulin (A) (aP 
< 0.05, n = 3 per group) and decorin (B) (aP < 0.05, n = 3 per group); C: Rat primary neurons in each condition were stained by anti-microtubule associated protein 2 
(MAP2) antibody. Red color indicates MAP2-positive neurons and nuclei were visualized by DAPI (blue); D: The percentage of MAP2-postive neuron in each condi-
tions were analyzed (aP < 0.05, n = 3 per group). CONT: Control; PGRN: Progranulin; DCN: Decorin.
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frontotemporal lobe dementia[24]. Mutations in progranu-
lin cause tau-negative frontotemporal dementia linked 
to chromosome 17. These data indicated that mutations 
in PGRN as a cause of  neurodegenerative disease and 
indicate the importance of  PGRN function for neuronal 
survival[25]. Interestingly, it has been demonstrated that 
progranulin neurotrophic factor enhances neuronal sur-
vival and axonal growth[26]. PGRN stimulates ribosomal 
S6 kinase (p90RSK) and phosphatidylinositol-3 kinase/
Akt cell survival pathways, and rescues cortical neurons 
from cell death induced by glutamate or oxidative stress. 
Although progranulin is a well-known secreted pro-
tein[25], there is no report regarding secretion of  progran-
ulin in MSCs. Since we confirmed mRNA expression 
of  progranulin in hUCB-MSCs (unpublished data) and 
since ELISA with rat-derived progranulin was negative 
(Figures 1 and 3), progranulin is expected to be secreted 
from hUCB-MSCs. Collectively, these reports support 
the view that decorin and progranulin are survival factor 
for cells in neurodegenerative diseases.

In previous reports, we have been shown that hUCB-
MSCs exhibited neuroprotection in an AD model via 
paracrine action. Especially, sICAM-1 was released from 
hUCB-MSCs and stimulated microglia to produce the A 
degrading enzyme neprilysin[15]. Presently, we implicate 
progranulin and decorin as additional paracrine fac-
tors that exert an anti-apoptotic effect against Aβ42-
neurotoxicity (Figure 4). Since hUCB-MSCs seem to 
act as part of  a cocktail of  several drugs, we expect the 
emergence of  paradigm-shifting approaches such as 
stem cell therapeutics for AD in the near future.
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