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Abstract
Stem cells are a population of cells that has infinite or 
long-term self-renewal ability and can produce various 
kinds of descendent cells. Transforming growth factor β 
(TGF-β) family is a superfamily of growth factors, includ-
ing TGF-β1, TGF-β2 and TGF-β3, bone morphogenetic 
proteins, activin/inhibin, and some other cytokines such 
as nodal, which plays very important roles in regulat-
ing a wide variety of biological processes, such as cell 
growth, differentiation, cell death. TGF-β, a pleiotropic 
cytokine, has been proved to be differentially involved 

in the regulation of multi-lineage differentiation of stem 
cells, through the Smad pathway, non-Smad pathways 
including mitogen-activated protein kinase pathways, 
phosphatidylinositol-3-kinase/AKT pathways and Rho-
like GTPase signaling pathways, and their cross-talks. 
For instance, it is generally known that TGF-β promotes 
the differentiation of stem cells into smooth muscle 
cells, immature cardiomyocytes, chondrocytes, neuro-
cytes, hepatic stellate cells, Th17 cells, and dendritic 
cells. However, TGF-β inhibits the differentiation of stem 
cells into myotubes, adipocytes, endothelial cells, and 
natural killer cells. Additionally, TGF-β can provide com-
petence for early stages of osteoblastic differentiation, 
but at late stages TGF-β acts as an inhibitor. The three 
mammalian isoforms (TGF-β1, 2 and 3) have distinct 
but overlapping effects on hematopoiesis. Understand-
ing the mechanisms underlying the regulatory effect of 
TGF-β in the stem cell multi-lineage differentiation is of 
importance in stem cell biology, and will facilitate both 
basic research and clinical applications of stem cells. In 
this article, we discuss the current status and progress 
in our understanding of different mechanisms by which 
TGF-β controls multi-lineage differentiation of stem cells.
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INTRODUCTION
Stem cell research originated in the middle of  last cen-
try[1,2], thereafter developing rapidly. The concept of  stem 
cells is used to explain not only physiological develop-
ment and regeneration, but also the clonal origination of  
tumor cells, such as the confirmation by Fialkow et al[3] 
that chronic myelocytic leukemia is derived from a stem 
cell common to the granulocyte, erythrocyte, platelet and 
monocyte/macrophage lineages. Adult stem cell (ASC)-
based therapies have been successful for several decades, 
with the first transplantation of  hematopoietic stem cells 
(HSCs) occurring over 50 years ago. HSC transplantation 
has now become a standard clinical procedure, particu-
larly as a treatment for leukemia and lymphoma[4,5]. There 
have been countless research studies on stem cells pub-
lished in scientific journals in recent years. A very recent 
leap forward is the successful generation by Takahashi  
et al[6,7] in 2007 of  induced pluripotent stem cells from 
mouse somatic cells or adult human dermal fibroblasts 
by transduction of  four defined transcription factors, 
which avoided the ethical dispute concerning the clinical 
application of  embryonic stem cells (ESCs). In 2009, the 
US Food and Drug Administration allowed the second 
human clinical trials using ESCs in an inherited juvenile 
macular degeneration, Stargardt disease. In 2010, the ap-
plication guideline of  the Chinese National Key Basic 
Research and Development Plan gave preferential sup-
port to the following research fields: the maintenance 
of  stemness and stem cell differentiation, stem cells and 
senescence, stem cells and regeneration of  organs, struc-
ture and function of  proteins involved in stem cell differ-
entiation and cell reprogramming. Nowadays, stem cells 
research encompasses nearly all fields of  life sciences and 
medicine, and has become one of  the most popular top-
ics in basic life science research and regenerative medi-
cine. Several of  the most interesting clinical trials in stem 
cells are currently in progress[8,9].

The transforming growth factor β (TGF-β) family is 
a superfamily of  growth factors, which includes TGF-β1, 
TGF-β2 and TGF-β3, bone morphogenetic proteins 
(BMPs), activin/inhibin, and some other cytokines such 
as nodal. The TGF-β family plays very important roles in 
regulating a wide variety of  biological processes, namely: 
cell growth, apoptosis, differentiation, migration, extracel-
lular matrix (ECM) production, immunity, angiogenesis, 
tumor metastasis and invasion, and embryonic develop-
ment[10,11]. In this article, we mainly discuss the various 
roles of  TGF-β signaling in multi-lineage differentiation 
of  stem cells.

TGF-β SIGNALING
TGF-β was originally identified as a component of  the 
“sarcoma growth factor” that was able to mediate trans-
formation of  non-neoplastic rat kidney NRK and murine 
fibroblasts[12,13]. Since its discovery, the TGF-β family has 
been confirmed to regulate a wide variety of  biological 
processes[14]. TGF-β can promote or inhibit cell growth 

depending on the cell type. For instance, TGF-β pro-
motes the growth of  fibroblasts, osteoblasts, and other 
mesenchymal cells, while it inhibits the growth of  epi-
thelial cells and neuroectodermal cells. TGF-β also has 
multiple immunomodulatory effects. In the initial stages 
of  inflammation, TGF-β exhibits immune stimulation by 
recruiting inflammatory cells and producing inflamma-
tory cytokines, while in the concluding stage of  inflam-
mation it shows immunosuppressive activity. Additionally, 
TGF-β can suppress or promote carcinogenesis depend-
ing on the cell type and stimulation context[15]. Eight 
Smad proteins are encoded in the human and mouse ge-
nomes, including receptor-regulated Smads, (also known 
as RSmads - Smad1, Smad2, Smad3, Smad5, and Smad8), 
Co-Smad (Smad4, serves as a common partner for all 
RSmads), and inhibitory Smads (Smad6 and Smad7)[16]. It 
is well-known that TGF-β exerts multiple biological ef-
fects via Smad[17] and non-Smad[18] pathways. In the Smad 
pathway, TGF-β binds to pairs of  receptor serine/threo-
nine kinases, known as the TGF-β type Ⅰ (TβR-Ⅰ) and 
type Ⅱ (TβR-Ⅱ) receptors, and forms a hetero-tetrameric 
receptor complex. In this complex, TβR-Ⅱ phosphory-
lates a serine/threonine-rich region that is located N-ter-
minal to the canonical kinase domain of  TβR-Ⅰ. Smad2 
or Smad3 is then phosphorylated by TβR-Ⅰ, and these 
receptor-activated Smads (R-Smads) later form a com-
plex with a common Smad4. Activated Smad complexes 
translocate into the nucleus, where they regulate tran-
scription of  target genes, through physical interaction 
and functional cooperation with DNA-binding cofac-
tors and transcriptional coactivators or corepressors[16,19]. 
In non-Smad pathways TGF-β utilizes a multitude of  
intracellular signaling pathways including extracellular 
regulated kinase (ERK)[20], p38 kinase[21], c-Jun N-terminal 
kinase (JNK)[22], phosphatidylinositol-3-kinase (PI3K)/
AKT[23], or Rho-like GTPase[24] signaling pathways, to 
regulate cell function and sometimes coordinate with the 
Smad pathway.

STEM CELLS
Stem cells are a population of  cells which has infinite 
or long-term self-renewal ability and can produce vari-
ous kinds of  descendent cells. Self-renewal and multi-
lineage differentiation are two basic characteristics of  
stem cells[25]. According to their differentiation abilities, 
stem cells are classified as totipotent stem cells, pluripo-
tent stem cells, multipotent stem cells and monopotent 
stem cells. Based on their origins, stem cells are defined 
as ESCs and ASCs. ESCs have almost unlimited capacity 
for proliferation and the ability to form all cell types, but 
their clinical application is limited by ethical disputes, the 
formation of  teratomas and the possibility of  provok-
ing immune reaction after their transplantation into a 
new host[26,27]. Although ASCs can differentiate into only 
specified cell types, their easy isolation and amplification 
in vitro, low culture cost and the absence of  ethical con-
cerns have given ASCs great potential and a promising 
future in clinical applications.So far, ASCs have already 
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been found in a variety of  tissues including HSCs, mes-
enchymal stem cells (MSCs), reproductive stem cells[25]. 

DIFFERENT ROLES OF TGF-β IN THE 
MULTI-LINEAGE DIFFERENTIATION OF 
STEM CELLS
TGF-β is a pleiotropic cytokine and mainly regulates 
stem cell differentiation through the Smad pathway in-
cluding Smad2, Smad3 and Smad4, which play crucial 
roles in mediating the intracellular responses to TGF-β, 
non-Smad pathways including ERK, p38 kinase, PI3K/
AKT, and Rho-like GTPase signaling pathways, and their 
cross-talks. 

TGF-β in smooth muscle differentiation
Both in vivo and in vitro experiments have proved that 
stem cells can differentiate into smooth muscle cells 
(SMCs)[28-31], and stem cells have become the potential 
seed cells of  SMCs in artificial blood vessels. TGF-β is a 
critical cytokine in the differentiation of  stem cells into 
SMCs, but the downstream signaling mechanisms in this 
process have not yet been elucidated[32-34]. In a model of  
smooth muscle differentiation, when neural crest stem 
cell line Monc-1 was induced into SMCs by TGF-β, a 
rapid induction of  phosphorylation of  Smad2 and Smad3 
was observed. When the cells were transfected with 
small interfering RNA (siRNA) targeting either Smad2 or 
Smad3, α-smooth muscle actin (α-SMA) expression was 
decreased, which indicated that TGF-β- activated Smad2 
and Smad3 were necessary for complete induction of  
at least one SMCs marker, α-SMA, and that Smad2 and 
Smad3 may cooperate to induce a smooth muscle phe-
notype in Monc-1 cells[35]. When endogenous TGF-β 
was inhibited with an adenovirus expressing a soluble 
truncated TGF-β type II receptor, an antibody specific 
for TGF-β1, or siRNA to knockdown expression of  
TGF-β1, the increase in SMC-selective gene expression, 
α-SMA, myocardin, or smooth muscle myosin heavy 
chain (SMMHC), was also attenuated in the ESCs, and 
the decrease in α-SMA and myocardin expression could 
not be rescued by the addition of  exogenous TGF-β1. 
When using siRNA to knockdown expression of  Smad2 
or Smad3, it was found that α-SMA promoter activ-
ity was dependent on both Smad2 and Smad3 whereas 
SMMHC activity was Smad2 dependent, which suggested 
that different TGF-β signaling pathways may contribute 
to induction of  early (α-SMA) vs late (SMMHC) SMCs 
markers[36,37]. In sphingosylphosphorylcholine (SPC)-
induced differentiation of  human adipose tissue-derived 
MSCs to smooth muscle-like cells, G(i/o)-ERK-depen-
dent autocrine secretion of  TGF-β can activate a Smad2-
SRF/myocardin-dependent pathway[38]. Additionally, 
TGF-β1-promoted smooth muscle differentiation of  a 
murine embryonic mesenchymal progenitor cell (MPC) 
line, C3H10T1/2, is through the inhibition of  Notch3 
mediated by Smad activity and p38 kinase, activation of  

Hes1 by Smad2 but not Smad3, and Hes1 augmented 
transcription of  smooth muscle differentiation gene, 
SM22α, in collaboration with Smad3[39]. However, the 
effects of  TGF-β and Notch signaling on human MSCs 
and ESCs are different from those in C3H 10T1/2 cells. 
TGF-β can induce Notch ligand Jagged 1 (JAG1) and 
SMC markers, including α-SMA, calponin 1 (CNN1), 
and myocardin in human MSCs, which are dependent 
on the activation of  Smad3 and Rho kinase. Knocking 
down JAG1 expression partially blocked α-SMA and 
CNN1 expression and completely blocked myocardin 
expression. Meanwhile, the activation of  Notch signaling 
induced the differentiation of  human MSCs and ESCs 
into SMCs, and resulted in an increase of  neural markers 
and a decrease of  endothelial markers in human ESCs 
(hESCs)[34]. In other words, the effects of  TGF-β and 
Notch on SMCs markers expression may depend on the 
cell types involved.

TGF-β in cardiac and skeletal muscle differentiation 
Experimental evidence indicates that TGF-β can induce 
the differentiation of  bone marrow stem cells (BMSCs) 
into immature cardiomyocytes. TGF-β1 can increase the 
cellular expression of  myosin, troponins, connexin-43, 
GATA-4, and NKx-2.5 in CD117+ BMSCs, and after the 
intramyocardial implantation of  TGF-β-preprogrammed 
CD117+ cells in an acute myocardial infarction mouse 
model, injured myocardium was effectively regenerated 
and induced therapeutic angiogenesis, contributing to 
functional cardiac regeneration[40]. Although TGF-β treat-
ment increased the expression of  the cardiac transcription 
factors, GATA-4 and NKx-2.5, in BMSCs in 1-3 d, and 
cardiac myosin, troponins and ANP in 3-14 d, the Ca2+ 
transient was relatively weak, the connexin-43 expression 
was irregular, and spontaneous beating was not detected 
within 28 d of  observation. Furthermore, TGF-β stimu-
lation up-regulated most of  the TGF-β/BMP signaling 
pathway genes, including TGFBI, ACVR2B, and phos-
phorylated Smad2 and Smad3, within 24 h, which indi-
cated that the TGF-β /BMP signaling pathway might play 
an important role in cardiac differentiation[41]. 

However, TGF-β inhibits myoblast differentiation, 
apparently through two mechanisms acting in concert: 
a block in the expression of  myogenic differentiation 
genes, such as myogenin, and TGF-β-induced changes in 
cell adhesion[42]. Other studies showed that TGF-β intra-
cellular effector Smad3, but not Smad2, mediated the in-
hibition of  myogenic differentiation in MyoD-expressing 
C3H10T1/2 cells and C2C12 myoblasts, by interfering 
with the assembly of  myogenic bHLH transcription fac-
tor heterodimers on E-box sequences in the regulatory 
regions of  muscle-specific gene, MyoD, suppressing 
the transcription activity of  a second class of  essential 
myogenic factors, MEF2, and blocking the SRC family 
coactivator GRIP-1-induced redistribution of  MEF2C to 
discrete nuclear subdomains in C3H10T1/2 cells, and the 
recruitment of  GRIP-1 to the myogenin promoter in dif-
ferentiating myoblasts[43,44].
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TGF-β in osteogenic and chondrogenic differentiation
TGF-β is abundant in bone and plays a critical role in 
bone remodeling[45], which is a complex process and relies 
on the interplay between bone resorption and formation 
that involves osteoclasts, osteoblasts, and osteocytes[46]. 
In the early stages of  osteoblastic differentiation, TGF-β 
can provide competence, but at late stages of  osteoblas-
tic differentiation, TGF-β acts as an inhibitor[47]. This 
maturation stage-dependent effect of  TGF-β was also 
confirmed in highly pure CD14 osteoclast precursor 
cells. During the initial period (days 1-7), when exposed 
to TGF-β, TRAP activity and bone resorption were in-
creased by 40%, whereas with the continuous exposure 
of  TGF-β, TRAP activity, cathepsin K, and matrix metal-
loproteinase 9 expression as well as bone resorption were 
almost completely abrogated. The molecular mechanism 
may be that TGF-β promotes osteoclastogenesis through 
strongly stimulation of  the p38 mitogen-activated protein 
kinase (MAPK) in the early stage, whereas continuous 
exposure to TGF-β abrogates osteoclastogenesis through 
down-regulation of  RANK expression and therefore at-
tenuation of  RANK-RANK-L signaling[46]. Additionally, 
one study showed that TGF-β inhibited osteoblast dif-
ferentiation through inhibition of  both Runx2 (Cbfa1) 
transcription and transcriptional activation of  osteoblast 
differentiation genes by CBFA1, which was mainly medi-
ated by Smad3, but not Smad2, and the class Ⅱa histone 
deacetylases (HDAC) 4 and 5 acted as corepressors for 
TGF-β/Smad3-mediated transcriptional repression of  
Runx2 function in differentiating osteoblasts[48,49].

TGF-β is known to be a potent inducer of  stem 
cells chondrogenic differentiation, and continuous treat-
ment with TGF-β is necessary for effective chondro-
genesis[50-52]. Chondrogenic gene expression and protein 
synthesis directly correlates with the length of  stimula-
tion time and the concentration of  TGF-β. Pretreatment 
with TGF-β could prevent fully differentiated and MSCs 
encapsulated in alginate beads from transdifferentiating 
into osteoblasts[53]. Although BMP-2 induces osteogenic 
and chondrogenic phenotypes in alginate-encapsulated 
adipose-derived ASCs following 14 d of  stimulation, 
TGF-β1 can inhibit BMP-2-induced differentiation of  
the osteogenic lineage, and combined growth factor 
treatment shows a synergistic effect on the expression of  
cartilage-specific genes and elevated release of  cartilage-
specific ECM proteins[54]. Supplementation with TGF-β1 
could initiate and promote chondrogenesis of  synovium-
derived stem cell (SDSCs), but TGF-β1 alone was insuf-
ficient to fully differentiate SDSCs into chondrocytes. 
However, HDAC4 overexpression can promote TGF-
β1-induced SDSC chondrogenesis but inhibit chondro-
genically differentiated stem cell hypertrophy[55]. The 
mechanism underlying this process is still unknown. 
Recent investigation suggested that C-type natriuretic 
peptide/NPR-B signaling pathway was activated during 
TGF-β1 induced chondrogenic differentiation of  hu-
man trabecular bone-derived MSCs and may be involved 
in glycosaminoglycan synthesis during this process in a 

dose-dependent manner[56]. The chondrogenesis of  tra-
becular bone-derived MPCs was initiated and maintained 
by TGF-β1 through the differential chondro-stimulatory 
activities of  p38, ERK-1, and JNK. TGF-β1-mediated 
MAPK activation also controlled wnt-7a gene expression 
and WNT-mediated signaling through the intracellular 
β-catenin-TCF pathway, which probably regulated the 
expression of  cell adhesion protein, N-cadherin[57]. How-
ever, it is reported that TGF-β inhibited early chondro-
genic induction of  human ESCs but was required at the 
later stages of  the differentiation, and TGF-β can sustain 
an undifferentiated population of  ESCs within the dif-
ferentiation culture, suggesting that caution should be ex-
ercised to avoid possible teratoma formation in vivo when 
using TGF-β as a chondrogenic inducer of  ESCs[58]. 

TGF-β in adipogenic differentiation
Exogenous TGF-β is a potent inhibitor during the early 
stages of  adipogenic differentiation induction. However, 
once morphologic differentiation begin, TGF-β is inef-
fective in blocking adipogenic differentiation[59]. During 
the adipogenic differentiation of  murine preadipocyte cell 
line 3T3-F442A, the cell-surface availability of  TGF-β 
receptors, and mRNA levels for Smads 6 and 7 decreased 
strongly, but were unchanged for Smads 2, 3, and 4. 
Stably expressing a truncated type II TGF-β receptor en-
hanced differentiation and decreased growth. Stable over-
expression of  Smad2 or Smad3 inhibited differentiation. 
Inhibition of  Smad3 function, but not Smad2 function, 
enhanced adipogenesis. Increased Smad6 and Smad7 
levels blocked differentiation and enhanced TGF-β-
induced responses. All of  these indicated that in endog-
enous TGF-β signaling, Smad6 and Smad7 (even though 
known to inhibit TGF-β responses) were negative regu-
lators of  adipogenesis, and that Smad2 and Smad3 had 
distinct functions in the process of  adipocyte differentia-
tion[60]. Others have also reported that TGF-β inhibited 
adipocyte differentiation by Smad3, but not Smad2[61]. 
Smad3 and Smad4 can physically interact with adipogenic 
transcription factors, C/EBPβ and C/EBPδ, to repress 
the transcriptional activity of  C/EBPs. TGF-β/Smad3 
signaling inhibited adipogenic differentiation primarily 
through functional repression of  C/EBPs to decrease the 
expression of  adipocyte marker genes such as adipsin and 
peroxisome proliferator-activated receptor γ[47,61]. In addi-
tion, a recent study also showed that the TGF-β/Smad3 
signaling pathway played key roles in adipogenesis, and 
that TGF-β inhibited adipogenesis independent from the 
Wnt and β-catenin pathway[62].

TGF-β in endothelial differentiation
TGF-β signaling is a negative correlation factor in en-
dothelial differentiation of  stem cells. TGF-β inhibition 
can maintain the proliferation and vascular identity of  
purified endothelial cells derived from hESCs. The mo-
lecular mechanism is that TGF-β inhibition sustains Id1 
expression in hESC-derived endothelial cells and that 
Id1 is required for increased proliferation and preser-
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vation of  endothelial cell commitment[63]. It has been 
demonstrated that shear stress can induce endothelial dif-
ferentiation from C3H10T1/2 cells. In this case, the mo-
lecular mechanism is that fluid shear stress significantly 
suppresses TGF-β1 functions through down-regulation 
of  TGF-β1, TGF-β R1, TGF-β R2, positive signaling 
molecules Smad2, Smad3, Smad4, and up-regulation of  
negative signaling molecule Smad7, suggesting that the 
negative regulation of  the TGF-β1 system may be in-
volved in shear-induced endothelial cell differentiation in 
C3H10T1/2 cells[64,65]. 

TGF-β in other differentiations
Of  course, TGF-β also regulates other kinds of  cell 
differentiation. For instance, coculturing human MSCs 
(hMSCs) with rat neural stem cells (rNSCs) was found to 
stimulate astrocyte and oligodendrocyte differentiation 
of  the rNSCs, driven by increased secretion of  soluble 
factors such as TGF-β1 by the hMSCs and probably 
through the Notch pathway[66]. In addition, when using 
a mouse midbrain embryonic day (E) 12 neurospheres 
culture as an experimental model, TGF-β can cooperate 
with persephin for dopaminergic phenotype induction 
through receptor-mediated differentiation signaling, in-
volving p38 kinase and PI3K/AKT pathways[67]. Further-
more, after exposure of  rat hepatic oval cells, progenitor 
cells in the liver, to TGF-β1, expression of  ECM genes 
were increased, and TGF-β1 treatment induced an up-
regulation of  marker genes for hepatic stellate cells, such 
as desmin and glial fibrillary acidic protein, through an 
epithelial-mesenchymal transition process[68]. Differentia-
tion of  T cells both in vitro and in vivo demonstrated that 
TGF-β1 was highly expressed by Th17 cells and that T 
cell-produced TGF-β1 acted on T cells to promote Th17 
cell differentiation in a predominantly autocrine manner, 
with deletion of  the TGF-β1 gene from activated T cells 
abrogating Th17 cell differentiation[69]. Induction of  the 
nuclear receptor RORgammat may have a central func-
tion in the differentiation of  human Th-17 cells from 
naive CD4+ T cells which requires TGF-β[70]. TGF-β1 
accelerated dendritic cell differentiation from common 
dendritic cell progenitors and directed subset specifica-
tion toward conventional dendritic cells (cDCs) by induc-
ing both cDC instructive factors such as IFN regulatory 
factor-4 and RelB, and the transcription factor inhibi-
tor of  differentiation/DNA binding 2 that suppressed 
plasmacytoid dendritic cells development[71]. However, 
TGF-β repressed development of  natural killer (NK) 
cells from CD34(+) progenitors, inhibited differentiation 
of  CD16(+) NK cells, and also resulted in conversion 
of  a minor fraction of  CD56(bright)CD16(+) NK cells 
found in peripheral blood into CD56(bright)CD16(-) NK 
cells. This highlighted a possible role of  the former as a 
developmental intermediate and of  TGF-β in influencing 
the genesis of  NK subsets found in blood[72]. The three 
mammalian isoforms (TGF-β1, 2 and 3) have distinct 
but overlapping effects on hematopoiesis. In addition, 
paracrine and autocrine actions of  TGF-β also have re-

dundant but distinct regulatory effects on hematopoietic 
stem/progenitor cells. TGF-β can be pro- or anti-differ-
entiative and can inhibit or increase terminally differenti-
ated cell function depending on the differentiation stage, 
the local environment and the concentration and isoform 
of  TGF-β, in vivo or in vitro[73]. Further studies are needed 
to investigate how TGF-β regulates hematopoietic cell 
differentiation.

CONCLUSION
In summary, there are still lots of  unsolved problems 
concerning TGF-β signaling, stem cells and especially 
their relationship, a current hot spot in life sciences. Al-
though the Smad pathway is the core of  TGF-β signaling 
in regulating stem cell multi-differentiation, the cross-
talk of  the canonical Smad pathway and non-Smad path-
ways should not be neglected. Further elucidation on the 
molecular mechanisms of  TGF-β signaling in stem cell 
multi-lineage differentiation will be of  great value in both 
basic research and the clinical application of  stem cells. 
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