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Abstract
Intercellular communication via  gap junctions allows 
cells within multicellular organisms to share small mol-
ecules. The effect of such interactions has been eluci-
dated using mouse gene knockout strategies. Although 
several mutations in human gap junction-encoding con-
nexin  (Cx ) have been described, Cx  mutants in mice 
do not always recapitulate the human disease. Among 
the 20 mouse Cxs , Cx26 , Cx43 , and Cx45  play roles in 
early cardiac or placental development, and disruption 
of the genes results in lethality that hampers further 
analyses. Embryonic stem cells (ESCs) that lack Cx43  or 
Cx45  have made analysis feasible in both in vitro  differ-
entiated cell cultures and in  vivo  chimeric tissues. The 
success of mouse ESCs studies is leading to the use of 
induced pluripotent stem cells to learn more about the 
pathogenesis of human Cx  diseases. This review sum-
marizes the current status of mouse Cx  disruption mod-
els and ESC differentiation studies, and discusses their 
implication for understanding human Cx  diseases.
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Core tip: Numerous gap junction-encoding connexin 
(Cx) mutant mice have been established as models of 
human diseases. Although these analyses have facilitat-
ed current understanding of native Cx functions and the 
pathogenesis of related diseases, care must be taken 
when extrapolating findings from mice to humans, and 
vice versa, because there can be striking diversity in 
tissue organization and Cx expression patterns between 
these species. Recently, the use of human induced 
pluripotent stem cells (iPSCs) allowed further direct ap-
proaches for studying human diseases. According to 
the studies using mutant mouse embryonic stem cells, 
Cx mutant human iPSCs may become a useful model.

Nishii K, Shibata Y, Kobayashi Y. Connexin mutant embryonic 
stem cells and human diseases. World J Stem Cells 2014; 
6(5): 571-578  Available from: URL: http://www.wjgnet.
com/1948-0210/full/v6/i5/571.htm  DOI: http://dx.doi.org/10.4252/
wjsc.v6.i5.571

INTRODUCTION
Gap junctions consist of  arrays of  intercellular channels 
between adjacent cells. The channels are formed by the 
head-to-head docking of  hexameric hemichannels called 
connexons, whose subunit proteins are encoded by the 
connexin (Cx) gene family in mammals (Table 1)[1,2]. Most 
cell types communicate with each other via gap junctions, 
which require cell-cell contacts, to maintain their homeo-
stasis. This is likely a critical mode of  communication 
in multicellular animals because Cx expression is highly 
conserved. In contrast, intercellular communication is 
performed via membrane-lined channels called plasmo-
desmata in plants and fungi[3]. Unique combinations of  
Cx isoforms are expressed in each animal tissue, thereby 
regulating cell-type specific homeostasis[4]. A classical 
experiment revealed that trophoblasts in the blastocyst 
are linked by gap junctions to other trophoblasts, as well 
as to cells in the inner cell mass, in preimplantation em-



bryos; those cells that are linked by gap junctions to both 
trophoblasts and cells in the inner cell mass cells probably 
form the polar trophectoderm[5,6]. However, shortly after 
implantation the intercellular communication between 
trophoblasts and inner cell mass cells is lost[7]. Another 
typical example occurs in the cardiac conduction system. 
In ventricular cardiac myocytes (CM), Cx43 is the main 
gap junction protein, whereas Cx40 expression predomi-
nates within the core conduction system. Although Cx43 
and Cx40 both have high conductance, Cx45 forms low 
conductance and voltage-sensitive gap junctions between 
the ventricular CM and the core conduction system[1,8,9]. 
It is believed that this expression pattern effectively in-
sulates the conduction system while also maintaining 
proper contacts between the conductive and ventricular 
CM.

Approximately 20 Cx isoforms have been reported in 
mice and humans[1]. They are expressed in most tissues 
at varying levels and stoichiometry. One gap junction is 
composed of  two hexameric connexons: 12 Cxs form a 
single channel. Many types of  Cxs can be assembled into 
one connexon[4]. Because a single cell usually expresses 
multiple Cx isoforms, theoretically there can be a pletho-
ra of  different gap junction channels between cells, each 
with unique properties. Recent in vivo studies elucidated 
how the expression of  a multitude of  Cxs results in spe-
cific biological functions using mouse mutagenesis, as 
well as the molecular cloning of  Cx mutations related to 
human diseases.

MOUSE GENETIC MODELS
Cx gene knockout (KO) strategies in mice were first ap-
plied to Cx43 by Reaume et al[10] in 1995. Subsequently, 
mouse mutants have been reported for all of  the Cxs, ex-
cept for Cx23 and Cx33 (Table 1). Some Cx-KO strains 
show specific abnormalities. For example, Cx37 forms 
a unique gap junction between oocytes and granulosa 
cells in mice. Accordingly, Cx37-KO mice show impaired 
oocyte development and female infertility[11]. Cx45 is 
thought to confer unique characteristics on peristaltic 
contractions in the early developing heart. Therefore, 
Cx45-KO embryos show lethality that is caused by a 
conduction block in early cardiogenesis[12,13]. The placenta 
is dependent on Cx26, Cx31, and Cx31.1, and each KO 
strain shows placental dysmorphogenesis[14-16]. Similarly, 
the lens epithelium co-expresses Cx46 and Cx50, and 
both Cx46-KO and Cx50-KO mice experience cata-
racts[17-19]. Cx46 and Cx50 have a redundant role in lens 
development, but individual roles in overall growth. 
Specifically, the targeted replacement of  Cx50 with Cx46 
prevented cataracts, but did not restore microphthalmia, 
which was apparent only in the Cx50-KO mice[20]. Thus, 
a specific individual Cx does not seem to possess one-
to-one association with a unique cell type in vivo. Instead, 
most cells express multiple Cxs to maintain intercellular 
communication. This might partly explain why the lack 
of  two Cxs results in phenotypes that were not present in 

each individual KO[21-29]. In the heart, CMs express Cx30, 
Cx30.2, Cx40, Cx43, Cx45, and Cx46, and their expres-
sion is regulated both temporally and regionally[30-33]. Each 
Cx-KO strain exhibits developmental and electrophysi-
ological abnormalities that are closely related to their ex-
pression patterns and channel properties (Table 1). As a 
result, three Cx-KO strains are shown to be lethal: Cx26-
KO mice with defective transplacental glucose uptake, 
Cx43-KO mice with cardiac malformation, and Cx45-
KO mice with blocked conduction in early cardiogenesis. 
Because these constitutive KO mice are embryonically 
lethal, other approaches are required to obtain insights 
into the role of  these Cxs in adult tissues.

HUMAN DISEASES
Mouse Cx mutants do not always exhibit the same phe-
notype as would be expected from human Cx diseases 
(Table 1). The most divergent one is probably that of  
the placenta, whose structure is highly variable among 
mammalian species. The mouse feto-maternal barrier 
consists of  three trophoblast layers (two syncytiotro-
phoblastic and one cytotrophoblastic layers), whereas 
that of  humans has two (one syncytiotrophoblastic and 
one cytotrophoblastic layer). Moreover, the Cx isoforms 
expressed in the placenta differ among species[34]. These 
structural and expression differences are probably a 
reason why placental defects are prevalent in Cx mutant 
mice. Accordingly, KO of  the human deafness and skin 
disease-associated genes Cx26 and Cx31, together with 
Cx31.1, which is not a known human disease-related 
gene, causes placental dysfunction. Because of  the strik-
ing diversity in Cx expression in placental structures, care 
must be taken when extrapolating findings from one 
species to another. The lethality of  Cx26-KO mice was 
overcome using Cre/loxP technology to create tissue-
specific Cx26-KO mice. For example, knocking out Cx26 
in the mouse inner ear epithelium caused cell death in the 
cochlear epithelial network and sensory hair cells, which 
greatly enhanced our understanding of  the pathogenesis 
of  deafness[35].

Cx37-KO mice show complete female infertility[11]. 
Although this finding provides an important insight into 
oogenesis, no human diseases that cause female infertil-
ity have been linked to Cx37. Cx32 is the causative gene 
of  human X-linked Charcot-Marie-Tooth disease[36,37]. 
Although Cx32-KO mice exhibit peripheral neuropa-
thy similar to that observed with the abovementioned 
disease, they also show liver dysfunction, which has not 
been described in humans[38-40]. Generally, interspecies dif-
ferences in Cx expression and organogenesis make loss-
of-function phenotypes somewhat divergent. In addition, 
minor phenotypes in Cx-KO mice might not yet have 
been described as symptoms of  human diseases.

In contrast, the major spatio-temporal expression 
patterns of  Cxs in the heart appear to be relatively con-
served among mammalian species[9]. A detailed com-
parison of  the expression of  Cx40, Cx43, and Cx45 in 
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developing mouse and human hearts indicated that their 
expression paralleled one another[41]. Although no null 
mutations have been reported in human Cx40, Cx43, and 
Cx45, the loss of  Cx40 blocked atrioventricular conduc-
tion and caused a high incidence of  cardiac malforma-
tions in mice. Cx43-KO mice exhibited neonatal lethality 
due to cardiac malformation; Cx45-KO mice experienced 
a lethal conduction block in early cardiogenesis[10,12,23,42-45]. 
It is possible that null mutations in human Cx40, Cx43, 
and Cx45 exist, but that the development of  the fetus 
could be aborted. However, several missense mutations 
in Cx40 and Cx43 have been described in human heart 
diseases, and attempts have been made to create mice 
with the Cx43 missense mutations related to oculodento-
digital dysplasia in humans (Table 1)[46,47]. In addition to 
CM with missense mutations, adult mice with Cx-KOs 
are required to understand why or how Cx30, Cx30.2, 
Cx40, Cx43, Cx45, and Cx46 are expressed differentially 
in the heart and also to extrapolate human Cx functions 
from mouse studies. Adult CM cannot be obtained from 
lethal Cx43-KO and Cx45-KO mice. Therefore, attempts 
have been made to mutate a unique Cx isoform in a 
tissue-specific manner.

EMBRYONIC STEM CELLS LACKING 
Cx43 OR Cx45
A widely accepted approach to circumvent the lethality 
of  constitutive KOs is the tissue-specific deletion of  a 
gene using Cre/loxP technology (Figure 1). In this meth-
od, the target gene is flanked by loxP sequences, and the 
tissue-specific expression of  Cre recombinase deletes the 
gene of  interest. The embryonic lethal genes Cx26, Cx43, 
and Cx45 have all been analyzed using this method. They 
were all deleted specifically in adult tissues, for example 
in the inner ear epithelium, CM, and neurons[13,35,48-51].

The use of  ESCs lacking Cx43 or Cx45 has advantag-
es in addition to those afforded by Cre/loxP technology 
(Figure 1)[52,53]. The CM-specific deletion of  Cx43 slowed 
conduction and caused sudden arrhythmic death[49]. Simi-
larly, the CM-specific deletion of  Cx45 was embryonic 
lethal, similar to constitutive Cx45-KO mice[13]. In both 
these examples, Cre recombinase was used to delete the 
genes in most of  the CM. Because Cx is a gap junction 
protein, understanding what happens at the borders be-
tween Cx-positive and -negative cells has been of  great 
interest. Chimeric mice, which are formed from mutant 
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Table 1  Connexin  knockout studies and human diseases

Mouse gene[1] Mouse KO phenotypes Human disease Ref.

Cx231

Cx26 Embryonic lethality due to defective transplacental 
glucose uptake

Deafness; Skin disease [14,68-70]

Cx29 No phenotype [71]
Cx30 Hearing impairment; accelerated heart rate Deafness; Skin disease [31,68,72]
Cx30.2 Accelerated atrioventricular nodal conduction [73]
Cx30.3 Difference in behavioral reactivity to vanilla scent Skin disease [69,74]
Cx312 Partial embryonic lethality due to a defect in early 

placental development
Deafness; Skin disease [15,68,69,75]

Cx31.12 Partial embryonic lethality due to impaired placental 
development; Changed gene expression in the central 
nervous system

[16,76]

Cx32 Liver dysfunction; High incidence of liver tumors; 
Peripheral neuropathy

Charcot-Marie-Tooth disease [36-38,40,77,78]

Cx331

Cx36 Loss of electrical coupling in interneurons of the 
neocortex; Disrupted rod pathways; Altered spontaneous 
firing patterns in the retina; Alterations in insulin 
secretion

Juvenile myoclonic epilepsy [25,79-84]

Cx37 Female infertility; High bone mass [11,85]
Cx39 Accelerated myogenesis and regeneration of skeletal 

muscle
[86]

Cx40 Cardiac conduction abnormalities; High incidence of 
cardiac malformations

Atrial standstill; Atrial fibrillation [23,42,43,45,87,88]

Cx43 Early postnatal lethality due to cardiac malformation; 
Osteoblast dysfunction

Oculodentodigital dysplasia; Visceroatrial heterotaxia; 
Hypoplastic left heart syndrome; Atrial fibrillation

[10,52,55,67,89-94]

Cx45 Embryonic lethality due to cardiovascular defects; 
Altered spontaneous firing patterns in the retina

[12,25,44,53]

Cx46 Cataracts; Reduced heart rate and aberrant conduction 
along the His bundle branches

Cataract [17,33,69]

Cx47 Myelin abnormalities Pelizaeus–Merzbacher-like disease [24,95-98]
Cx50 Microphthalmia and cataract Cataract [18,19,69]
Cx57 Reduction in horizontal cell receptive fields [99,100]

1No knockout (KO) studies have been reported for connexin (Cx) 23 and Cx33. Notably, however, the mouse small-eye mutant Aey12 has a point mutation 
in the Cx23 locus[101]. For Cx33, there is no orthologous gene in the human genome[1]; 2About 60% (Cx31) and 30% (Cx31.1) of the embryos were lost in utero; 
the surviving adult mice were observed to have no morphological defects.
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Cx45-KO mice were reported initially by two laboratories 
independently[12,44]. One group reported heart abnormali-
ties, whereas the other focused on vascular abnormalities. 
Later, as described above, the CM-specific Cx45-KO 
mice were shown to be similar to the constitutive Cx45-
KO mice[13]. Taken together, the heart abnormalities are 
expected to be the primary defect associated with the loss 
of  Cx45 in developing embryos.

INDUCED PLURIPOTENT STEM CELLS 
AND BEYOND
Induced pluripotent stem cells (iPSCs) have similar 
potential to ESCs, and can differentiate into many cell 
types including germ cells[56,57]. Importantly, iPSCs can be 
derived from adult somatic cells, including from individu-
als with genetic diseases[58]. Human iPSCs from patients 
might provide unlimited supplies of  specific tissues, and 
the use of  human cells is more important than creating 
mouse genetic models for the understanding of  human 
diseases[59]. Theoretically, chimeric human tissue formed 
from diseased and normal iPSCs could be generated in 
vitro. As studies performed using mouse ESCs indicate, 
this approach might be particularly useful for studying 
human junction proteins including Cxs. Even minor 
tissues such as endocrine cells can be supplied in unlim-
ited amounts in rare diseases, and biological specimens 
of  uniform quality will improve reproducibility greatly, 
which is often problematic in human studies. The future 
of  iPSC technology also seems very promising in mouse 
studies because iPSCs can be derived from many mouse 
genetic models. For example, attempts have been made to 
improve disease conditions by the transplantation of  tis-
sues differentiated in vitro. The transplanted tissues were 
derived from autologous iPSCs in which the specific ge-
netic disorder had been corrected[60]. Although establish-
ing iPSCs with multiple targeted mutations might require 
breeding different mutant mice, this is likely far easier 
than performing multiple gene targeting using ESCs. 
Therefore, the use of  iPSCs might allow the unique and 
redundant contributions of  Cxs in intercellular commu-
nication to be elucidated further.

CONCLUSION
Cx mutant mouse strategies have revealed detailed in vivo 
functions of  intercellular communication carried out by 
individual Cx species. The use of  Cx mutant ESCs and 
iPSCs has additional advantages. Especially, iPSCs can be 
obtained from individuals with genetic diseases. Analysis 
of  chimeric and in vitro differentiated tissues is useful for 
understanding the molecular target in human Cx diseases. 
To date, some reagents are known to modulate gap junc-
tional intercellular communication and are used in clinical 
trials for the treatment of  wound, arrhythmia, migraine, 
and cancer[61-66]. Reproducibility in the stem cell-based 
experimental systems will be a great advantage for the 

ESCs and recipient blastocysts, allow these experiments 
to be performed. Mouse ESCs express Cx31, Cx43, and 
Cx45 proteins[54]. Cx43-KO ESCs were used to form chi-
meric tissues with wild-type cells, and the chimeric heart 
showed conduction defects and diminished cardiac per-
formance[52]. This study supports the concept that tissue 
mosaicism in different Cx isoforms might be responsible 
for reentrant arrhythmias. Indeed, in humans, atrial tissue 
genetic mosaicism in a loss-of-function Cx43 mutation 
was reported to be associated with sporadic lone atrial 
fibrillation[55]. Cx43 chimeric mice form a model of  atrial 
fibrillation, which might facilitate the development of  
therapeutic approaches for modifying the function of  
cardiac gap junctions.

Research using ESCs that lack Cx45 developed very 
differently from those lacking Cx43. Cx45-KO ESCs can-
not be integrated into chimeras, because they never mix 
with the inner cell mass of  the recipient[53]. Innate Cx45 
is expressed abundantly in early embryos, suggesting that 
it might play a role in cell adhesiveness during early de-
velopment. Irrespective of  their incompatibility with chi-
mera production, Cx45-KO ESCs differentiate into the 
three germ layers in vitro. CMs induced from Cx45-KO 
ESCs showed conduction abnormalities[53]. Constitutive 

57� November 26, 2014|Volume 6|Issue 5|WJSC|www.wjgnet.com

Mouse with Cx  flanked by loxPs

Mouse with CM-specific Cre  expression

Cre/loxP recombination
CM-specific Cx-KO

Blastocyst injection with Cx-KO ESCs

In vitro differentiation of ESCs Electrophysiological analysis

Chimeric mice showing multiple 
conduction pathways

A

B

C

Figure 1  Cre/loxP-mediated tissue-specific knockout mouse models and 
analysis of embryonic stem cell differentiation. Mutant cells and regions are 
shown in green. Mouse and heart drawings, respectively, constitute the middle 
and right pictures in (A) and (B). A: In the Cre/loxP model shown here, the con-
nexin (Cx) gene, which when lost causes lethality, is deleted specifically in the 
CM. This results in relatively consistent delay or block in conduction[13,49]; B: 
Chimeric mice containing embryonic stem cell (ESCs) lacking the Cx43 gene. 
The example shown here reveals multiple conduction pathways in the heart[52]; C: 
ESCs can be differentiated in vitro. In this example, the induced CMs are sub-
jected to planar multielectrode array analyses (middle); a typical extracellular 
recording data is shown in the right graph[53,67]. KO: Knockout 
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development of  such therapeutic drugs.
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