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Abstract
Cancer stem cells (CSC) are thought to be malignant 
cells that have the capacity to initiate and maintain tu-
mor growth and survival. Studies have described CSC 
in various gastrointestinal neoplasms such as colon, 
pancreas and liver and gastroesophageal tumors. The 
mechanism by which CSC develop remains unclear. 
Several studies have explored the role of dysregulation 
of the Wnt/β-catenin, transformation growth factor-be-
ta and hedhog pathways in generation of CSC. In this 
review, we discuss the various molecular abnormalities 
that may be related to formation of CSC in gastrointes-
tinal malignancies, strategies to identify CSC and thera-
peutic strategies that are based on these concepts. 
Identification and targeting CSC is an intriguing area 
and may provide a new therapeutic option for patients 
with cancer including gastrointestinal malignancies. 
Although great progress has been made, many issues 
need to be addressed. Precise targeting of CSC will 
require precise isolation and characterization of those 
cells. This field is also evolving but further research is 
needed to identify markers that are specific for CSC. 

Although the application of this field has not entered 
the clinic yet, there continues to be significant optimism 
about its potential utility in overcoming cancer resis-
tance and curing patients with cancer. 
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Key words: Cancer stem cells; CD133+; WNT/β-catenin; 
Transformation growth factor-beta; Hedgehog; Notch

Core tip: Cancer stem cells (CSC) are thought to be 
malignant cells that have the capacity to initiate and 
maintain tumor growth and survival. Several studies 
have explored the role of dysregulation of the Wnt/β- 
catenin, transformation growth factor-beta and hedhog 
pathways in generation of CSC. The exact machismo of 
their development, however, remains unknown. Several 
investigators have researched modalities to identify and 
target CSC. In this review, we summarize the recent 
evidence exploring the mechanisms of development, 
identification and targeting of CSC in gastrointestinal 
malignancies. 
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STEM CELLS IN GASTROINTESTINAL 
CANCERS: THE ROAD LESS TRAVELLED
Cancer is a disease of  adult stem cells (SC). Adult SC 
are the only cells that persist in the tissue for a sufficient 
length of  time to acquire the sufficient sequential genetic 
alterations for cancer development[1]. Adult SC have been 
traditionally relatively quiescent, a feature thought to 
protect them from the accumulation of  DNA errors that 
may lead to carcinogenesis[1]. In the gastrointestinal tract, 
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the immediate stem cell progeny, however, proliferate 
rapidly to allow for tissue repopulation[1]. Their limited 
life span restricts the impact of  any replication errors. 
It is worth noting that this concept has been challenged 
by recent studies that suggest that adult stem cells are in 
fact capable of  rapid self-renewal[2]. Similarly, cancer stem 
cells (CSC) have the capacity to initiate and maintain tu-
mor growth and survival[3]. Studies have described CSC 
in gastrointestinal neoplasms such as colon, pancreas and 
liver[4-6]. The mechanism by which CSC develop remains 
unclear[1]. Several studies have explored the role of  dys-
regulation of  the Wnt/β-catenin, transformation growth 
factor-beta (TGF-β) and hedhog pathways in generation 
of  CSC[7-9]. In this review, we discuss the various mo-
lecular abnormalities that may be related to formation of  
CSC in gastrointestinal malignancies, strategies to identify 
CSC and therapeutic strategies that are based on these 
concepts. 

MOLECULAR PATHWAYS ASSOCIATED 
WITH CSCS IN GASTROINTESTINAL 
MALIGNANCIES
Notch signaling pathway
The Notch signaling pathway plays an important role 
in embryogenesis, cellular homeostasis-, differentiation 
and apoptosis[10-12]. While Notch mediates a number of  
biological processes through the “canonical “Notch sig-
naling pathway, it also mediates a ligand- or transcription 
independent function known as the “non-canonical” 
pathway[12,13]. The canonical Notch pathway includes at 
least four Notch receptors (Notch 1-4) and five Notch 
ligands Delta-like 1,3 and 4 and Jagged 1 and 2[14]. When 
Notch ligand binds to a Notch receptor, Notch will 
be cleaved through a series of  proteolytic cleavages by 
multiple enzymes leading to release of  the active Notch 
fragment and activation of  Notch target genes[15]. Notch 
target genes include Akt, mTOR (mammalian target of  
rapamycin, NF-κB, c-Myc and VEGF (vascular endothe-
lial growth factor) and cyclin D1[16,17]. Activation of  the 
Notch pathway can have tumor suppressor function in 
HCC but may play on oncogenic role in colon and pan-
creatic cancers[14]. Notch signaling has been found to play 
a pivotal role in CSC. Overexpression of  Notch-1 and -2 
was observed in pancreatic CSC and was associated with 
increased expression of  CSC surface markers such as 
CD44 and EpCAM[15,17-19]. This observation suggests that 
Notch signaling may be involved in pancreatic CSC self-
renewal but will need further confirmation. 

WNT/β -catenin pathway
Notch signaling also perform a “non-canonical role” 
through antagonizing Wnt/β-catenin signaling[12,13]. Dis-
rupted Wnt signaling is observed in a variety of  gastro-
intestinal cancers which underscores its importance in 
carcinogenesis[20]. The Wnt pathway plays a crucial role in 
embryogenesis with signaling effects that regulate prolif-

eration and apoptosis in developing cells[21]. Wnt pathway 
activation plays a fundamental role in maintenance of  
SC compartment and regulation of  cellular differentia-
tion[22]. The “canonical” Wnt pathway plays a crucial role 
in modulating the balance between self-renewal and dif-
ferentiation in several adult CSC[21]. The “canonical” Wnt 
pathway describes a sequence of  events beginning with 
the translocation of  β-catenin from the cell membrane 
into the nuclear, where β-catenin then acts as a co-activa-
tor of  the TCF/LEF family of  transcription factors[23,24]. 
The signaling cascade is typically initiated when Wnt 
ligand binds to Frizzled (FZD), a transmembrane recep-
tor[23]. The transcription factors activated by β-catenin 
subsequently regulate specific target genes including 
c-myc, cyclin D1 and survivin. FZD binding to Wnt 
ligand also promotes the escape of  β-catenin from its as-
sociation with E-cadherin[23,25]. The cytoplasmic elements 
of  the activated Wnt pathway prevent β-catenin from 
being phosphorylated by degradation complex composed 
of  a serine-threonine kinase, glycogen synthase kinase-
3β (GSK3β), protein scaffolds, AXIN and adenomatosis 
polyposis coli (APC)[25]. Mutations of  these proteins al-
low β-catenin to accumulate in the nucleus to enhance 
the transcription of  its target genes which are found in 
many cancers[9]. For example, in hepatocellular carcinoma 
(HCC), mutations of  β-catenin are located in exon 3 of  
CTNNB1 gene which is the phosphorylation site for 
GSK3B, AXIN1 and AXIN2 mutation[26]. It is worth not-
ing that 20%-40% of  human HCC exhibit abnormal cy-
toplasmic and nuclear accumulation of  β-catenin by im-
munohistochemistry (IHC)[27]. Β-Catenin can also undergo 
downregulation via the non-canonical Notch pathway. In this 
case, membrane-bound Notch forms a complex with active 
Β-Catenin in the presence of  Wnts. This action degrades 
active Β-Catenin and thus inhibits its pathway. This process 
allows for regulation of  SC and its dysfunction could lead to 
expansion of  CSC[13]. Markers for elevated expression of  
Wnt include CD133+ and EpCAM+[28]. The knockdown 
of  expression of  EpCAM, in HCC stem cells resulted 
in decreased proliferation, colony formation, migration 
and drug resistance which highlight the role and Wnt 
signaling in tumor survival[28,29]. Additionally, knockdown 
of  β-catenin resulted in inhibition of  CSC[30]. Similarly 
mutations in APC gene acts to suppress Wnt signaling 
and result in familial adenomatous polyposis (FAP) syn-
drome[31]. In the majority of  sporadic colorectal cancers, 
loss of  APC or β-catenin mutations seems to be early 
events in carcinogenesis[32]. Of  note, Apc 1638N has been 
shown to result in multiple intestinal tumors in mice[32]. 

TGF-β pathway
TGF-β signaling is crucial for self-renewal and main-
tenance of  SC and in the formation of  gastrointestinal 
cancers[8,33]. TGF-β forms a complex with the serine-
threonine kinase receptor type Ⅰ and Ⅱ[34]. The receptors 
are activated sequentially and subsequently phosphorylate 
one of  the receptor-activated R-mads[35]. The activated 
R-mad will heterodimerize with Smad4 and then trans-
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locate to the nuclear to regulate gene transcription[36]. 
Disruption of  TGF-β signaling results in dysregulated 
gene expression and hence gastrointestinal malignancies 
are associated with suppressed activity of  different mem-
bers of  TGF-β pathway[37,38]. For example, inactivation 
of  Smad4 is seen in approximately 50% of  patients with 
pancreatic cancer[39]. Similarly, reduced Smad4 expression 
and loss of  ELF, a modulator of  activity of  Smad3, are 
observed in human colon and gastric cancer tissue[40,41].  
Additionally, inactivating mutation of  TGF-β Ⅱ receptor 
was described in colon cancer[37]. 

Hedgehog pathway
The Hedgehog signaling pathway consists of  a complex 
of  molecules which regulate cell differentiation, regen-
eration and stem cell biology[9]. The pathway plays a 
central role in the development and homeostasis of  the 
gut tissue[9]. The Hedgehog pathway is deregulated in 
gastrointestinal cancers[42]. Up to 60% of  HCC samples 
express Sonic, the predominant ligand of  the hedgehog 
pathway[42]. Additionally, genes involved in the hedgehog 
pathway are highly expressed in CD133+ liver cancer 
SC[43]. It is worth noting that suppression of  Hedgehog 
pathway decreased HCC cell proliferation and sensitized 
HCC cells to treatment with 5-fluorouracil[44]. Hedgehog 
signaling has been shown to be essential for proliferation 
and survival of  human colon cancers[45]. It is thought to 
affect both tumor growth and CD133+ CSC[45]. Similarly, 
HH signaling has been associated with pancreas cancer 
invasion and metastasis. Conversely inhibition of  HH 
signaling inhibited pancreatic metastatic spread[46]. 

PTEN pathway
PTEN is a phosphatase that antagonizes PI3 kinase ac-
tivity[47]. PTEN helps control the proliferative rate and 
the number of  intestinal stem cells and its loss is associ-
ated with an increase in intestinal SC[47]. It is also thought 
that PTEN pathway controls SC activation via interaction 
with the Wnt pathway[48]. It is also proposed that PTEN 
pathway interacts with the TGF-β pathway described 

above[48]. Mutations in PTEN, result in a cancer syndrome 
(Cowden’s syndrome) characterized by hamartomas in 
the gastrointestinal tract, central nervous system and skin 
in addition to tumors in the breast and thyroid gland[49]. 
PTEN deficient mice exhibit increase in intestinal SC 
which results in excess crypt formation[47]. 

Identification of CSCs
Eradication of  CSC stems is an intriguing concept that 
provides hope in the possibility of  finding a cure for 
cancer. Any therapeutic modality that targets CSC will 
require accurate identification and characterization of  the 
CSC and differentiating them from normal SC. Isolation 
of  cancer cells through the identification of  pathogno-
monic surface markers has recently gained popularity and 
is an area of  active investigation[50,51]. CD133+ emerged as 
a promising surface marker for CSC[50]. Singh et al[51] used 
flow cytometry to successfully isolate CD133+ CSC in 
human brain tumors and implanted them into forebrain 
of  immunodeficient mice. Transplantation of  as few 
as 100 cells produced tumors that were phenotypically 
similar to original tumors. Similar findings were reported 
in colorectal cancer. Several groups isolated subpopula-
tions of  cells, accounting for approximately 1% of  total 
number of  cells within a tumor, that were CD133+ and 
we capable initiating cancer when transplanted in immu-
nodeficient mice[5,52,53]. Other studies have identified new 
CSC markers (Table 1) that may be promising in isola-
tion of  CSC such as Lgr5, CD44, CD24 and epithelial 
specific antigen[54-57]. These markers were isolated in HCC 
and pancreatic cancer. This field is currently in evolution. 
Efforts have been made to identify surface marker “sig-
natures “ that are specific for each type of  cancer (Table 
2) It is worth noting that isolation of  cancer cells is far 
from perfect and remains an area of  controversy. Not all 
CSC express SC markers and some tumor cells that are 
not SC may also express those markers[1]. Great progress 
has been already made in this area but this more works 
remains to be done. 

Resistance of CSCs to anticancer therapy
Several studies demonstrated that CSC exhibit resistance 
to chemotherapy agent[2,58]. One of  the widely accepted 
theories is that the elevated levels of  ATP-binding cas-
sette (ABC) transporters mediate resistance to chemo-
therapy[2,3,58,59]. ATP transporters are membrane transport-
ers that can pump small molecules including cytotoxic 
drugs out of  cells in exchange for ATP hydrolysis[59]. CSC 
as well as normal SC appear to express high levels of  
ABC transporters[60]. This characteristic can lead to mul-
tidrug resistance and enhanced tumorigenesis. Evolving 
evidence suggests that numerous cell lines and tumors 
contain CSC, referred to as side population (SP) cells that 
possess a differentially greater capacity to resist chemo-
therapeutic agents and invade surrounding tissues[2,61-63]. 
This phenomenon, however, may allow for development 
of  therapies that could target ATP transporters in CSC. 
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Table 1  Markers used in gastrointestinal cancer stem cell 
identification

Markers Ref.

CD133+ [34]
CD44+ [55]
CD24+ [84]
Lgr5 [53]
mTert [85]
Olfm4 [86]
Ascl2 [87]
ALDH [79]
Sox9 [88]
Msi 1 [89]
Dcamkl1 [90]
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CD: Cluster of differentiation; Ascl2: Achaete Scute-like 2; ALDH: Alde-
hyde dehydrogenase; Msi 1: Musashi1; Dcamkl1: Doublecortin and CaM 
kinase-like-1.



nize Notch signaling through blocking of  Notch receptor 
cleavage[69]. Evaluation of  the effect of  GSI in two gastric 
cancer cell lines did not result in any appreciable anti-
tumor effects[70]. These results were surprising since GSI 
have shown promising antitumor potential in leukemia, 
breast and glioblastoma multiformes models[71-73]. 

Evolving evidence suggests that targeting the Hedge-
hog pathway may be a feasible strategy to inhibit CSC. 
Cyclopamine, a naturally occurring hedgehog inhibitor 
has shown promising potential[46]. As a single agent cy-
clopamine suppressed the invasion of  pancreatic cancer 
cells[4]. Cyclopamine reduced the percentage of  cells ex-
pressing the pancreatic CSC markers such as ALDH[74]. 
In combination with gemcitabine, cyclopamine resulted 
in reduction of  metastasis in an orthotopic xenograft 
model[74]. To further clarify this observation, Yao et al[74] 
demonstrated that cyclopamine dowregulated the ex-
pression of  CD44 and CD133+ in gemcitabine-resistant 
pancreatic cancer cells indicating that it may be an effec-
tive modality for reversing gemcitabine resistance in pan-
creatic CSC. A similar observation was made in gastric 
CSC where blocking of  Hedgehog pathway with cyclo-
pamine decreased self-renewing properties and enhanced 
sensitivity of  gastric cancer cells to chemotherapeutic 
agents[75]. Additionally, Feldmann et al[76] demonstrated 
that IPI-269609, a novel Hedgehog inhibitor, inhib-
ited growth and metastasis of  pancreatic cancer mostly 
through targeting of  the CSC. 

Since the Wnt pathway is also deregulated in CSC, 
it represents an intriguing target for cancer treatment. 
Anti-Wnt therapy is in early stages of  clinical develop-
ment[77]. He et al[77] demonstrated that a monoclonal anti-
body against Wnt-1 induced apoptosis in human cancer 
cells. Also, Salinomycin, an antibiotic commonly used 
in poultry firmly, is thought to suppress Wnt/β-catenin 
signal transduction[78]. In gastric cancer, salinomycin, 
selectively inhibited gastric CSC in vitro[79]. Wnt inhibi-
tors also are being investigated in phase Ⅰ clinical trials. 
Oral LGK974[80] is a potent and specific inhibitor of  
O-acyltransferase Porcupine (Porcn) that acetylates Wnt 
proteins required for their biological activities is being in-
vestigated in a phase Ⅰ clinical trial in patients with malig-
nancies dependent on Wnt ligands. This trial is enrolling 
patients with pancreatic and colon adenocarcinoma. 

Targeting ATP-driven efflux transporters has been 
explored in preclinical and early phase clinical trials. The 
first drug efflux pump inhibitor is verapamil. Simultaneous 
treatment with verapamil and chemotherapy resulted in 
promising antitumor activity. Other agents such as Dofequi-
dar Fumarate (MS-209), Biricolar (VX-710), and tariquidar 
are in various stages of  clinical development[81-83]. Most of  
the experience with these agents is derived from lung and 
breast cancer trials but these agents, to our knowledge, have 
not been investigated in gastrointestinal cancers. 

CONCLUSION
Identification and targeting CSC is an intriguing area and 

Targeting CSCs
Targeting CSC is an intriguing concept that may offer 
several therapeutic advantages. Targeting the inherently 
resistant CSC may overcome resistant to chemotherapeu-
tic agents. Most patients with metastatic gastrointestinal 
cancers tend to experience treatment failure and resis-
tance to palliative chemotherapy[64-66]. Additionally, target-
ing CSC may, not only improve efficacy of  treatment but 
may also reduce therapy-related toxicity through develop-
ing treatment that are selective for CSC and not toxic to 
healthy tissues. Novel treatment strategies are, therefore, 
being developed that target surface markers on CSC, 
ATP-binding cassettes, key signaling pathways or their 
tumor microenvironment[1]. 

Targeting surface markers: Since CD133+ is expressed in 
CSC in gastrointestinal cancer, it represents an interesting 
target to selectively inhibit CSC. A recent study demonstrat-
ed that carbon nanotubes conjugated with CD133+ mono-
clonal antibodies caused photothermolysis of  CD133+ 
glioblastoma cells when affixed to an anti-CD133 antibody 
that selectively targeted those cells[67]. This study represents 
an encouraging proof  of  concept that gastrointestinal CSC 
can be possibly targeted with similar strategies.

Targeting cancer stem cell pathways: Targeting signal-
ing pathways that are thought to be active in CSC is an 
ongoing area of  active research. Lin et al demonstrated 
that a curcumin analogue, GO Y030, may have clinical 
activity against colorectal cancer SC in vitro and vivo[68]. 
They identified aldehydehehydrogenase (ALDH) positive 
and CD133+ colorectal CSC using flow cytometry. The 
demonstrated that isolated CSC exhibited STAT-3 (signal 
transducers and activators of  transcription-3) activation 
and treated them with GO-Y030. GO-Y030 inhibited 
STAT3 phosphorylation and reduced STAT3 downstream 
target gene expression resulting in induction of  apoptosis 
in colon CSC. Additionally, GO-Y030 suppressed tumor 
and CSC growth of  SW480 and HCT-116 colon cancer 
cell lines in vivo in mouse models. Interestingly, Curcumin 
has been shown to also inhibit cell growth and apoptosis 
in pancreatic cancer cells. Its effect was associated with 
down-regulation of  Notch-1 expression, which suggests 
that Curcumin may be associated with potential advanta-
geous activity against pathways that are upregulated in 
CSC[18]. Other attempts to target Notch signaling in gas-
trointestinal CSC have, however, not been very successful. 
Gamma-secretase inhibitors (GSI) are thought to antago-
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Table 2  Surface markers of gastrointestinal cancer stem cell

Tumor type Phenotype of CSC markers Ref.

Liver CD133+, CD49f+, CD90+ [1,6,91]
Colon CD133+, CD44+, CD166+, EpCAM+, 

CD24+
[5,45,52]

Pancreatic CD133+, CD44+, EpCAM+, CD24+ [57]
Stomach CD44+, CD133+, NESTIN, CD90+, 

CD54+, ALDH1
[79]

CSC: Cancer stem cell.
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may provide a new therapeutic option for patients with 
cancer including gastrointestinal malignancies. It is a rap-
idly evolving area in the treatment of  gastrointestinal and 
other tumors. Although great progress has been made, 
many issues need to be addressed. The CSC model does 
not fully explain the observed genetic heterogeneity of  
many tumors. This criticism may however be explained 
by the fact that even CSC may evolve over time and 
give rise to cells that are both genetically and function-
ally heterogeneous[1]. Furthermore, accurate targeting of  
CSC will require precise isolation and characterization of  
those cells. This field is also evolving but further research 
is needed to identify markers that are specific for CSC. 
Nevertheless, there continues to be significant excitement 
about this field and hope that it may represent a new 
treatment modality in patients with cancer. 
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