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Abstract
The discovery of endogenous neural stem cells (eNSCs) in 
the adult mammalian brain with their ability to self-renew 
and differentiate into functional neurons, astrocytes and 
oligodendrocytes has raised the hope for novel therapies 
of neurological diseases. Experimentally, those eNSCs 
can be mobilized in vivo , enhancing regeneration and 
accelerating functional recovery after, e.g.,  focal cerebral 
ischemia, thus constituting a most promising approach 
in stem cell research. In order to translate those current 
experimental approaches into a clinical setting in the 
future, non-invasive imaging methods are required to 
monitor eNSC activation in a longitudinal and intra-
individual manner. As yet, imaging protocols to assess 

eNSC mobilization non-invasively in the live brain remain 
scarce, but considerable progress has been made in 
this field in recent years. This review summarizes and 
discusses the current imaging modalities suitable to 
monitor eNSCs in individual experimental animals over 
time, including optical imaging, magnetic resonance 
tomography and-spectroscopy, as well as positron 
emission tomography (PET). Special emphasis is put 
on the potential of each imaging method for a possible 
clinical translation, and on the specificity of the signal 
obtained. PET-imaging with the radiotracer 3’-deoxy-
3’-[18F]fluoro-L-thymidine in particular constitutes a 
modality with excellent potential for clinical translation 
but low specificity; however, concomitant imaging of 
neuroinflammation is feasible and increases its specificity. 
The non-invasive imaging strategies presented here allow 
for the exploitation of novel treatment strategies based 
upon the regenerative potential of eNSCs, and will help 
to facilitate a translation into the clinical setting.
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Core tip: Endogenous neural stem cells (eNSCs) in 
the adult mammalian brain can be mobilized by, e.g. , 
pharmacological methods to facilitate regeneration and 
enhance functional recovery in neurological disease. 
In order to translate experimental approaches into the 
clinical setting, non-invasive imaging of eNSCs is required 
to monitor their fate in vivo . This review summarizes 
current imaging modalities suitable to monitor eNSCs 
in individual experimental animals over time, including 
optical imaging, magnetic resonance tomography and-
spectroscopy, as well as Positron-Emission-Tomography, 
placing emphasis on the specificity of the signal obtained, 
as well as on their potential for clinical translation.
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NEURAL STEM CELLS IN THE ADULT 
MAMMALIAN BRAIN
The discovery of  neural stem cells (NSCs) in the adult 
brain and their ability to self-renew and differentiate into 
tissue-appropriate, functional cell types has raised intense 
scientific interest and the hope for radical new therapies 
of  neurological diseases. Altman et al[1] first detected the 
ability of  the adult mammalian brain to generate new 
neurons, and their work was followed up by Kaplan et 
al[2]. Using radioactive thymidine to label all dividing cells 
and histological examination of  postmortem brains, they 
found labeled neurons. This proved that new neurons in 
the adult brain can be generated following cell division. 
After those pioneer studies focusing on neurogenesis, 
later studies aimed to detect the immature precursor 
cells capable of  differentiating into all three cell fates of  
the central nervous system (CNS): neurons, astrocytes 
and oligodendrocytes. Several biomarkers have been 
suggested to identify those undifferentiated stem cells in 
the brain, the first one being the intermediate filament 
nestin (neuroepithelial stem cell intermediate filament[3]). 
Subsequently, NSCs were characterized in the developing 
and in the postnatal/adult mammalian brain[4-11]. More 
biomarkers were consecutively identified including Sox2, 
Shh pathway components, PDGF, EGFR, GFAP, Hes3, 
Hes5, Musashi, and CD133[5,12-22]. However, since no 
single marker has yet been identified to unambiguously 
distinguish NSCs from somatic cells, co-stainings are 
usually required to comprehensively characterize them. 
It is now well accepted that endogenous NSCs (eNSCs) 
persist in the adult mammalian brain in at least two 
distinct regions, the subventricular zone, lining the lateral 
ventricles, and the dentate gyrus of  the hippocampus[23,24].

Insults to the CNS such as cerebral ischemia or 
neurodegenerative disease result in a mobilization of  
eNSCs and their migration towards the compromised 
areas[25-29], constituting a physiological regenerative 
response of  the brain. However, in most cases the intrinsic 
regenerative response of  eNSCs is obviously not sufficient 
to lead to functional recovery. Experimentally, it has been 
shown that eNSCs can be mobilized pharmacologically for 
therapeutic purposes. Early studies showed that activating 
the tyrosine kinase receptors for fibroblast growth factor 
2 and epithelial growth factor on eNSCs by introducing 
those growth factors into the lateral cerebral ventricle of  
experimental animals stimulates the proliferation of  eNSCs 
in vivo[30,31]. Ligands for these receptors also show benefit in 
animal models of  cerebral ischemia, where growth factor-
induced eNSC mobilization is associated with enhanced 
functional recovery from motor deficits[32,33]. Recently, 

several other drugs have been identified to mobilize eNSCs 
in the naïve and in the injured rodent brain, including 
Notch-ligands[13], angiopoietin 2[14], the neural cell adhesion 
molecule mimetic peptide FG Loop[34], and aromatic-
turmerone[35]. Enhancing this (physiological) mobilization 
of  eNSCs by pharmacological intervention leads to an 
improvement of  neurological function after, e.g., cerebral 
ischemia[13,32,33]. To convey these regenerative effects, it 
seems that the differentiation of  eNSCs into mature 
neurons that functionally integrate into the damaged 
circuitry-previously thought to be required for regeneration-
only plays a minor role[36]. Rather, eNSCs secrete trophic 
factors supporting neuroprotection such as glial-derived 
neurotrophic factor, vascular endothelial growth factor, or 
Shh[13,37]. Other regenerative processes induced by NSCs 
include remyelination, angiogenesis, remodeling, and 
immunomodulation[38,39]. Since treatments based on the 
transplantation of  stem cells harbor several disadvantages 
including poor long-term cell survival, a lack of  integration 
into the host circuitry, immune reactions against the 
transplants, and limited availability of  appropriate cells[40], 
mobilizing the endogenous neural stem cell niche for 
therapeutic purposes constitutes a most promising 
approach in stem cell research.

IMAGING ENDOGENOUS NEURAL STEM 
CELLS IN VIVO
Developing strategies to mobilize the endogenous NSC 
niche in vivo, with the aim to later translate them into 
clinical applications, creates the need for in vivo imaging 
technology to monitor those interventions. Imaging 
techniques should be non-invasive, so they can be applied 
repetitively in the same individual in a longitudinal fashion, 
and thus track quantity and localization of  endogenous 
NSC over any period of  time. While considerable progress 
has been made in recent years to track transplanted, pre-
labeled cells[41-47], the detection of  endogenous NSCs in 
the living brain remains elusive. Current approaches to 
image eNSCs in vivo include (1) the use of  transgenic 
animals whose eNSCs exhibit certain imaging properties; 
(2) labeling eNSCs in vivo by injecting a labeling substance 
into the brain; or (3) imaging some intrinsic and putative 
unique property of  eNSCs with a tailored imaging assay. 

Transgenic animals expressing a fluorescent or 
bioluminescent protein under the control of  a stem cell-
characteristic promoter such as nestin or doublecortin 
render their eNSCs detectable by optical imaging 
techniques[48-52]. Under ideal conditions, optical imaging can 
specifically detect clusters of  about 10³ cells in vivo, but its 
sensitivity is limited by the relatively poor spatial resolution 
with shallow tissue penetration[53]. Moreover, the need for 
transgenic mice limits the potential applications of  optical 
imaging and prohibits its translation into a clinical setting. 

In the attempt to (specifically) label eNSCs in vivo, 
various methods have been suggested. Labels can be 
micro-injected directly into (or close to) the neurogenic 
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niches, or they can be coupled to a vector in order to 
specifically target certain cells. Direct injection of  a 
paramagnetic label such as small particles of  iron oxide 
allows for cell detection using magnetic resonance 
imaging (MRI) with excellent spatial resolution on the 
single cell level (Figure 1)[54-59]. However, this type of  
labeling is neither specific for a certain cell type, nor does 
it reflect cell viability, as only the particles themselves 
are visualized[53]. Moreover, directly injecting iron oxide 
in e.g., the lateral ventricles of  the brain results in image 
distortion in the region of  injection, allowing only for 
the detection of  cells migrating away from the injection 
site[54,57,58]. A more specific in vivo labeling approach 
is achieved by attaching an imaging label to a retro-
or lentiviral vector, thus targeting proliferating cells 
in particular. This has been shown to be effective for 
optical imaging techniques after introduction of  firefly 
luciferase[60,61] or channelrhodopsin-2[62]. Alternatively, 
ferritin can be introduced into proliferating (stem) cells 
using viral vectors, rendering them detectable for MR-
imaging[63,64]. Recent progress in this field has also been 
made by the development of  a monoclonal antibody 
binding to neural precursor cells, coupled to magnetic 
glyconanoparticles allowing for their detection by 
MRI[65].While these approaches are quite promising 
to track eNSCs in individual experimental animals, a 
major disadvantage of  those in vivo- labeling approaches 
is the lack of  applicability in human beings due to the 
invasiveness of  the labeling procedure. 

Truly non-invasive imaging techniques, utilizing 
methods that could be translated from the bench to the 
bedside, are rare. Manganas and colleagues investigated 
the spectrum of  electromagnetic energy from established 
neurogenic niches using proton magnetic resonance 
spectroscopy (1H-MRS). They observed a prominent 
peak in the spectrum at the frequency of  1.28 parts 
per million (ppm) in the hippocampus of  the adult 
mammalian brain in vivo, which was not observed in 
other regions of  the brain[66]. Later studies investigating 
this phenomenon have shown that it is not specific to 
eNSCs or neurogenesis, but closely related to apoptosis 
and quiescence[67,68]. Since apoptosis is a major selection 

process during neurogenesis, 1H-MRS may be used as an 
indirect method to detect neurogenesis within the known 
neurogenic niches and under physiological conditions. 
Disorders of  the CNS associated with increased apoptosis 
of  neural- or other non-neural cells, however, cannot be 
studied with this approach. Besides, MRS offers quite a 
low spatial resolution, failing to notice small clusters of  
cells and leading to the low sensitivity of  this method.

We took advantage of  the proliferative activity of  
eNSCs to develop an imaging assay using positron 
emission tomography (PET). Extensive studies in 
neurooncology have established the radiotracer 3’-deoxy-
3’-[18F]fluoro-L-thymidine ([18F]FLT) to label proliferating 
cells in the adult rodent and human brain, allowing 
for non-invasive imaging of  tumor cell proliferation 
with PET[69-72]. [18F]FLT is a thymidine analogue that is 
incorporated into the DNA of  dividing cells-similar to 
bromodeoxyuridine (BrdU) well established for their 
immunohistochemical detection- where it is irreversibly 
trapped, its positron-emitting properties allowing for 
its non-invasive detection[73]. No evidence of  toxicity 
or other complications have been reported following 
intravenous injection of  [18F]FLT[74]. [18F]FLT-PET 
detects ceasing glioma cell proliferation as soon as 3 
d after initiation of  an anti-proliferative treatment, as 
we have previously shown in mice and humans[69,72]. 
Besides tumor cells, proliferating NSCs incorporate 
[18F]FLT both in vitro as well as in vivo after its systemic 
(intravenous) injection into adult rats[75]. Thus, [18F]FLT 
labels proliferating eNSCs in the neurogenic niches of  
the healthy rodent brain with high sensitivity (Figure 
2A), corresponding to BrdU-accumulation (Figure 2B). 
Moreover, [18F]FLT-PET quantifies eNSC mobilization 
mediated by pharmacological stimulation (Figure 2C). 
The resulting PET-signal can be quantified to reflect the 
extent of  eNSC mobilization[75]. Using a high-resolution 
PET-scanner and optimizing image reconstruction, the 
detection level can be as low as -104 cells. However, the 
PET-signal is not specific to endogenous NSC, since 
other proliferating cells are labeled as well. To increase 
specificity of  this imaging assay, multi-modal imaging 
protocols can be applied as detailed below.
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Figure 1  Monitoring the migration of endogenous neural stem cell labeled with iron oxide particles in the rat brain in vivo, using magnetic resonance imaging. 
Migrating cells were imaged 1 d (A), 3 d (B), and 8 d (C) after labeling, migrating from the subventricular zone (left in the sagittal images) to the olfactory bulb (on the right). 
White circles surround migrating cells. Granot et al[54], with permission. MRI: Magnetic resonance imaging.



tissue by the excessive production of  reactive oxygen 
species and pro-inflammatory cytokines secreted by 
the immune cells, it also has beneficial effects on the 
prevention of  secondary tissue damage[83]. Besides the 
containment of  necrotic tissue, another most relevant 
beneficial aspect of  stroke-induced neuroinflammation is 
the induction of  a strong regenerative response, leading 
to a robust expansion of  eNSCs[84]. Quality, extent and 
timing of  neuroinflammatory processes determine whether 
manipulating that particular response after stroke will be 
deleterious or therapeutically beneficial. The activation 
of  resident microglia can under some circumstances be 
neurotoxic[85], under others neuroprotective[86], depending 
on the specific activating conditions[87]. Interestingly, 
differentially activated microglia also have opposing effects 
on NSC[88]. eNSC are attracted to the site of  the lesion by 
various inflammation-associated cytokines such as stromal 
cell-derived factor-1[89-91], tumor necrosis factor-alpha, and 
interferon-γ[84,92].This mobilization of  eNSCs has been 
shown for various ischemia models in experimental animals, 
including transient global ischemia[28], transient focal 
ischemia[26,36], or permanent focal ischemia[93]. However, 
without any further pharmacological mobilization, the 
vast majority of  newly generated neuroblasts in ischemic 
stroke models die by the time they have reached the 
peri-infarct area[36]. Moreover, neurogenesis after stroke 
seems to play even less a role in humans than it does in 
rodent models[94]. Those recent findings highlight the 

STEM CELL-MEDIATED REGENERATION 
AFTER FOCAL CEREBRAL ISCHEMIA
Stroke is the third leading cause of  death and the 
leading cause of  adult disability in the Western world[76]. 
Since rescue of  affected neurons can only be achieved 
by re-perfusion within a very narrow time window, 
treatment is mainly confined to the amelioration of  
neurological deficits and the prevention of  further events. 
Especially in the subacute and chronic phase, i.e. days to 
months after stroke, therapeutic options are limited to 
physiotherapy, ergotherapy and logopedia to rehabilitate 
impaired neurological functions. However, from the 
pathophysiological point of  view, evolution of  ischemic 
damage is not limited to the minutes after vessel occlusion. 
After the disruption of  blood flow below a threshold has 
led to rapid necrotic cell death within a localized region, 
the surrounding tissue that has been spared in this initial 
phase consecutively also undergoes relevant, but less 
rapid changes which aim at encapsulating the necrotic 
tissue, clearing of  debris, and facilitating regeneration. 
These processes - often referred to as neuroinflammation- 
involve the rapid activation of  glial cells (microglia, 
astrocytes) as well as recruitment of  hematogenous cells 
(granulocytes, T-cells, monocytes/macrophages) from the 
blood stream[77-82].

While neuroinflammation on the one hand contributes 
to the evolution of  secondary damage to the surrounding 
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Figure 2  [18F]FLT labels proliferating endogenous neural stem cell in the neurogenic niches of the healthy rodent brain. A, A’: eNSC proliferation in the 
subventricular zone of adult rats as assessed by [18F]FLT-PET; B: The signal corresponds to BrdU-positive cells in the region; C: Activation of eNSC by pharmacological 
stimulation with fibroblast growth factor 2, delta-like 4, and insulin is visualized with [18F]FLT-PET. eNSC: Endogenous neural stem cell; [18F]FLT-PET: 3’-deoxy-3’-[18F]fluoro-
L-thymidine-positron emission tomography; i.c.v.: Intracerebroventricular application. Adapted from Rueger et al[75], with permission.



importance of  developing novel therapeutic approaches 
to additionally mobilize and invigorate eNSCs after stroke, 
either by pharmacological[34,35] or by non-pharmacological 
treatments[95]. 

In order to advance those experimental therapeutic 
approaches into the clinical setting, non-invasive imaging 
assays have to be established that reliably monitor eNSC 
activation in the rodent and human brain under the 
pathophysiological condition of  stroke. In this context, the 
post-ischemic neuroinflammatory processes introduced 
above resemble a major impediment, since immune 
cells proliferate in the ischemic brain just as eNSCs do, 
and [18F]FLT-PET does not differentiate between stem 
cell- and immune cell-derived proliferation. An elegant 
way to circumvent this problem consists of  an imaging 
assay specific to (neuro-)inflammatory cells that does not 
visualize eNSCs. The radiotracer [11C]PK11195 fulfils 
this requirement by selectively binding to the translocator 
protein-18 kDa expressed on inflammatory cells, specifically 
visualizing post-ischemic cellular neuroinflammatory 
processes[96]. Since [11C]PK11195 is radiolabeled with the 
isotope 11-C with a half-life of  -20 min, sequential PET-
imaging with [18F]FLT is possible by waiting for -5 half-lives 
or 100 min between scans. During this time, the animal 
remains anesthetized within the PET-scanner, avoiding 
any movement, and enabling an exact co-registration of  
the imaging data[97]. This co-registered imaging data on 
[11C]PK11195- and [18F]FLT-accumulation allows for a 
conclusive differentiation between cell proliferation from 
eNSCs and immune cells (Figure 3). 

Therefore, PET is a promising tool to image eNSCs 
in a non-invasive fashion in neurological disorders that 
can be translated from bench to bedside. However, to 
further advance the imaging technology in this direction, 
complementary verification of  imaging parameters 

with immunohistochemical analyses are still needed, 
and the actual translation of  such strategies to a clinical 
environment has yet a long way to go. However, the non-
invasive imaging strategies presented here will help to 
facilitate translation into the clinical setting, and allow for 
the exploitation of  novel treatment strategies based upon 
the regenerative potential of  eNSCs.
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