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Abstract 
Cancer stem cells (CSCs) are maintained by their 

somatic stem cells and are responsible for tumor 
initiation, chemoresistance, and metastasis. Evidence 
for the CSCs existence has been reported for a number 
of human cancers. The CSC mitochondria have been 
shown recently to be an important target for cancer 
treatment, but clinical significance of CSCs and their 
mitochondria properties remain unclear. Mitochondria-
targeted agents are considerably more effective 
compared to other agents in triggering apoptosis of 
CSCs, as well as general cancer cells, via  mitochondrial 
dysfunction. Mitochondrial metabolism is altered in 
cancer cells because of their reliance on glycolytic 
intermediates, which are normally destined for oxidative 
phosphorylation. Therefore, inhibiting cancer-specific 
modifications in mitochondrial metabolism, increasing 
reactive oxygen species production, or stimulating 
mitochondrial permeabilization transition could be 
promising new therapeutic strategies to activate cell 
death in CSCs as well, as in general cancer cells. This 
review analyzed mitochondrial function and its potential 
as a therapeutic target to induce cell death in CSCs. 
Furthermore, combined treatment with mitochondria-
targeted drugs will be a promising strategy for the 
treatment of relapsed and refractory cancer.       
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Core tip: This review is devoted to the analysis of 
mitochondrial function as a therapeutic target to induce 
cell death in cancer stem cells (CSCs). In particular, we 
focused on the differences in energy metabolism and 
features between CSC and non-CSC mitochondria, and 
between CSCs and normal stem cells. We described 
the roles of mitochondria that may make CSCs more 
susceptible to anti-cancer treatment and apoptosis, and 
how these may be useful to develop novel strategies for 
cancer treatment, such as through combined therapy 
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with specific mitochondrial-targeting drugs.
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INTRODUCTION
Over the last decade, cancer therapies have improved 
the quality of life of cancer patients. However, although 
almost all developed anti-cancer drugs are apparently 
successful following initial therapy, secondary tumors 
development and disease relapse is common. The 
limitation of classical anti-cancer therapies has been 
attributed recently to the existence of cancer stem 
cells (CSCs), which are quiescent, have relatively small 
population, and highly drug-resistant cells. CSCs act like 
stem cells (SCs) and are responsible for cancer growth 
and metastasis[1]. Through the continued effort of many 
researchers, CSCs features have been revealed, such 
as anti-cancer drug resistance, metastasis, proliferation, 
hypoxic tolerance, and the capacity for neovessel 
induction[2,3]. 

Mitochondria-targeted drugs may overcome 
potentially the drug-resistance mechanisms that have 
progressed toward conventional chemo-therapeutics 
in cancer[4-7]. Mitochondria produce ATP, but they also 
mediate cell death and produce reactive oxygen species 
(ROS). Although ROS are affected in the regulation of 
various cellular responses, excessive production may be 
harmful to the cell[8]. Cancer cells also exhibit extensive 
metabolic rearrangement that makes them more 
susceptible to alteration of mitochondria than normal 
cells[9,10]. However, mitochondrial properties of CSCs in 
tumors remain unknown.

This review analyzed the potential role of mito-
chondria as a therapeutic target for inducing cell death 
in CSCs. In particular, we focused on the differences 
in energy metabolism and mitochondrial features 
between CSCs and non-CSCs, as well as between 
CSCs and normal SCs, and how these unique features 
of CSCs may increase the susceptibility of CSCs to 
anti-cancer treatment and apoptosis induction. We 
described how CSC mitochondria may be useful 
targets for the development of novel cancer treatment 
strategies, such as targeting CSCs via combination 
therapy with specific mitochondrial-targeting drugs.

CURRENT STATUS OF CSCs
History
The concept of CSCs is many decades old[11]. In the 
middle of 1800s, the embryonal rest theory of cancer 
introduced the idea that cancer arises from SCs, but 

the existence of CSCs in tumors could not be verified 
due to a lack of techniques. Furth et al[12] first alluded 
to CSCs in 1937 when they showed that a single cell 
within a tumor initiates the generation of new tumor 
in a recipient mouse[12]. This finding was defined in the 
1960s and 1970s by the development of quantitative 
methods to measure the tumorigenic ability able to 
sustain tumor growth in vivo. In the middle of 1900s, 
Radiolabeling permitted the measurements of cellular 
phenotype such as cell proliferation, lifespan, and 
hierarchical organizations within normal tissues[13]. Al-
Hajj et al[14] and Singh et al[15] represented that a small 
subset of cells within breast and brain tumors can be 
isolated prospectively and can generate phenotypically 
heterogeneous tumor in vivo. Thus, these various 
evidences represent that diverse solid tumors are 
organized hierarchically and sustained by a distinct 
subpopulation of CSCs. 

Identification of CSCs 
CSCs are classified according to several properties 
such as the presence of cell surface markers and their 
occupancy in the Fluorescence Activated Cell Sorting 
(FACS) analysis. Flow cytometry with antibodies 
against cell surface antigens has been the preferred 
method for characterizing and sorting normal stem 
cells. However, differences between CSC and normal 
SC markers are not well defined, and CSCs and normal 
SCs share some surface markers.

Most of CSCs studies isolate CSCs marker or a 
combination of markers, which is expressed hetero-
geneously in a certain tumor type. Based on this marker 
heterogeneity, subpopulations including CSCs are 
isolated from original tumors and injected into immuno-
deficient mice, after which tumor growth is assessed 
several weeks or months later. Table 1 shows current 
CSC markers according to cancer types, as FACS 
markers allow for consistent sorting according to marker 
expression. For example, Al-Hajj et al[14] used a marker 
combination of the CD24 and CD44 as an indicator of 
breast CSC, and the CD133 marker has been shown to 
be both normal SC and CSC marker[16-20]. 

Stem cells and CSCs
The first embryonic SC lines were developed from 
the inner cell mass of early embryos in 1998[21]. 
In 1999 and 2000, it was discovered that it could 
produce different cell types through manipulating 
adult mouse tissues, indicating that stem cell 
differentiation and proliferation could be controlled 
externally. Both somatic SCs and CSCs generate 
numerous daughter cells, differentiate into a variety 
of cell types, actively express telomerase, activate 
anti-apoptotic pathways, increase active membrane 
transports, and metastasize[22]. Moreover, SCs are 
induced to differentiate by niche signaling and outer 
environmental stimuli. Niche signaling keeps the 
undifferentiation of SCs until they are stimulated to 
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generate new cells, suggesting a similarity with signaling 
pathways that govern normal SC proliferation. Local 
environment signaling can initiate CSC proliferation, 
and thus, trigger tumor initiation and growth[23]. 
Therefore, SC markers and features may not be 
effective therapeutic targets for inhibiting CSC growth.

MITOCHONDRIA AND CANCER
Roles of mitochondria
As the main energy producers, mitochondria produce 
ATP using the tricarboxylic acid (TCA) cycle and 
oxidative phosphorylation (OXPHOS). However, they 
also generate ROS during this process, which are 
harmful to the cell if produced excessively. In addition, 
mitochondria play a crucial role for the regulation of 
cell death pathways and intracellular Ca2+ homeostasis. 
Mitochondria activate apoptosis by regulating the 
releasement of proapoptotic proteins space to the 
cytosol from the mitochondrial intermembrane[7], 
and they also play a crucial role in non-apoptotic cell 
death[24]. 

Key regulators related to cell death and other 
cellular processes in the mitochondria are frequently 
altered in cancer cells[8], as cancer cell mitochondria 
differ functionally and structurally compare with 
that of normal cells[25]. Fast growing tumors result 
in hypoxia because of an inadequate amount of 
oxygen from the local vasculature. In addition, cancer 
cells include the DNA mutation of mitochondria and 
nucleus, which affect the OXPHOS components and 
result in ROS overproduction, wasteful ATP production, 
and mitochondrial oxidative damage[25]. Warburg[26] 
pioneered research on the cancer-related alterations in 
mitochondrial respiration and suggested a mechanism 
to explain how they progress during the tumorigenesis. 

The proposed mechanism differs from that in non-
malignant cells utilizing OXPHOS. Although aerobic 
glycolysis has been corroborated in cancer cells, the 
function of mitochondria has been controversial[27]. In 
cancer cells, the aerobic glycolysis generate glycolytic 
intermediates to the pentose phosphate pathway. 
Moreover, the glycolytic ATP generation is important 
for survival in hypoxic conditions[28]. In OXPHOS, the 
ATP synthesis requires much oxygen, which leads to 
continuous the ROS production such as superoxide 
anion, organic peroxide, and hydrogen peroxide[29]. 
If the generated ROS are not eliminated by redox 
regulating system, they may cause cellular damage.

Mitochondrial antioxidant system
Mitochondria have a multi-level network of redox-
defense systems for the elimination of hydrogen 
peroxide (Figure 1). Glutathione and glutathione 
peroxidases require nicotinamide adenine dinucleotide 
phosphate (NADPH) for the reduction of H2O2 and 
other peroxides generated in the mitochondria. 
Mitochondrial redox balances are also regulated by 
the mitochondrial inner membrane electrochemical 
gradient, which mitochondrial Complex V (ATP 
synthase) uses to produce ATP from ADP and inorganic 
phosphate (Pi). 

Moreover, the physiological significance of mitochondrial 
redox balance has been highlighted by the antioxidant 
genes-deletion and over-expression. As antioxidant 
defense system, Peroxiredoxin (Prx) 3, Prx5, superoxide 
dismutase 2, and thioredoxin 2 eliminates ROS 
produced in mitochondria[30,31]. Knockout (KO) of Prx3 
mice result in induction of oxidative damage[32], KO 
of thioredoxin 2 mice showed an embryonic lethal 
phenotype[33] and KO of superoxide dismutase 2 mice 
die within 3 wk of birth because of mitochondrial 
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Table 1  Markers used to identify stem cells and cancer stem cells

Marker Cancer origin Marker properties Ref.

ALDH1 Breast Catalyzes the oxidation of aliphatic and aromatic aldehydes [81]
Converts retinol to retinoic acid
AdSC

ABC135 Melanomas ATP binding cassette family [82]
Involved in transport of sterol and other lipids

Bmi-1 Breast, prostate, leukemias, neuroblastomas HSC, NSC, and AdSC marker [83,84]
CD20 Metastatic melanomas Hematopoietic marker [85]
CD29 Breast, colon AdSC marker [86,87]
CD34 Leukemias, sarcomas HSC, MSC marker [88-91]
CD44 Breast, pancreas, colon, head and neck, prostate Adhesion molecule related to metastasis [91-96]

HSC and pluripotent stem cell  marker
Normal prostate epithelial stem cell marker 

CD49f Prostate Adhesion to extracellular matrix [97]
CD90 Liver, breast, glioblastomas Glycoprotein, role in stem cell differentiation [98-100]

MSC marker
CD113 Lung, pancreas, colon, glioblastoma, melanomas, etc. HSC, NSC AdSC (colon) marker [16-18,101-104]
CD117 Breast, ovarian, lung, glioblastoma Progenitor cell marker [105,106]
Oct4 Many carcinomas Embryonic stem cell and induced pluripotent stem cell marker [107,108]
Sca-1 Lung Skin epithelial stem cell and HSC marker [109]

AdSC: Adult stem cell marker; HSC: Hematopoietic stem cell; NSC: Neuronal stem cell; MSC: Mesenchymal stem cell.
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into the matrix of mitochondria. This mitochondrial 
permeability transition (MPT) leads to osmotic swelling 
of the mitochondrial matrix and dissipation of the ∆
Ψm[38,39], and eventually cell death occurs due to 
mitochondrial outer membrane permeabilization[40]. The 
MPT is triggered by reagents increasing ROS generation, 
cytosolic Ca2+ concentrations, or acting on the PTPC. 
Therefore, the induction of mitochondrial membrane 
permeabilization are attractive targets to develop drug 
for cancer therapy.

Mitochondria-targeted cancer therapy
As mentioned above, mitochondria play important 
role in apoptosis, but also trigger cell death through 
various mechanisms[41-43]. Various mitochondria-
targeted strategies for cancer treatment have been 
developed over the last decade[6,44] that focused on 
the development of agents that regulate the MPT, 

oxidative damage and severe neurodegeneration[34,35]. 
Therefore, the inhibition of antioxidant systems may 
provide a targeted therapy that leads to mitochondrial 
dysfunction and cell death.

Mitochondrial membrane potential
Mitochondria harbor a robust mitochondrial trans-
membrane potential (∆Ψm), and the exchange of 
small metabolites between the mitochondrial matrix 
and the cytosol is induced by the low conductance 
of permeability transition pore complex (PTPC)[36]. 
The rupture of mitochondrial membranes leading to 
functional impairment result in the release of toxic 
mitochondrial intermembrane space proteins, such as 
apoptosis-inducing factor and cytochrome c, into the 
cytosol[37]. Under apoptotic conditions, including ROS and 
Ca2+ overload, the PTPC presumes a high conductance 
state allowing uncontrolled influx of small solutes 
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Bcl-2 family proteins, and ROS production in cancer[6]. 
Numerous molecules, acting on mitochondria, are 
currently used or being tested in clinical trials[45]. 
Several experimental anti-cancer drugs, such as 
ceramide[46], CD437[47], and MKT077[48], and clinically 
approved anti-cancer drugs, such as etoposide[49], 
paclitaxel[50], and vinorelbine[51], induce apoptosis via 
mitochondria dysfunction. Furthermore, determining 
of pathophysiological differences of mitochondria 
between cancer cells and normal cells, will improve 
the selectivity of mitochondria-targeted anti-cancer 
agents.

MITOCHONDRIA OF CSCs
Because mitochondria play a key role in the alteration 
of oxidative stress, energy status, and apoptotic 
stimuli, scientists have assumed that they are 
also involved in the regulation of stemness and 
differentiation in SCs. Researchers have attempted 
to employ mitochondrial properties in the selection of 
SCs[52]. Lonergan et al[53] and Bavister[54] suggested 
that functional mitochondrial characteristics, such 
as subcellular localization and metabolic activity 
could verify stemness, SC stability, and pluripotency. 
Mitochondria are localized in perinuclear sites in 
embryonic stem cells (ESCs) and have a more 
scattered distribution throughout the cytoplasm after 
differentiation and senescence[55]. 

Mitochondrial metabolic activity is also related 
to cell differentiation, as early passages of an adult 
primate stromal cell line have a higher oxygen 
consumption rate (OCR) and a low ATP/ mitochondrial 
DNA content compared with long-term cultured cells[53]. 
In CD34+ hematopoietic SCs, a low mitochondrial OCR 
and mitochondrial mass result in a predominantly 
perinuclear mitochondrial arrangement[56]. 

Antioxidant enzyme expression also shows a 
dramatic change during differentiation[57]. Moreover, 
ROS play an agonistic role in the differentiation of 
ESCs. Enhanced intracellular ROS as the differentiation 
stimulus may act on transplanted SCs into the 
cardiovascular lineage[58], indicating that mitochondrial 
redox metabolism act as a crucial regulator in cardiac 
differentiation of SCs. Furthermore, Plotnikov et al[59] 
suggest a correlation of the mitochondrial function and 
the status of neural SCs. 

SC mitochondria play important roles in maintaining 
stemness and differentiation. However, whether 
the roles of CSC mitochondria are similar to SC 
mitochondria or cancer cells in general is uncertain. 
Two hypotheses on the origin of CSCs, both of which 
contribute to acute myeloid leukemia[1,60], have been 
proposed. One hypothesis of the origin of CSCs is 
that they are derivatives of SCs residing in various 
organs. Genetic mutations and epigenetic changes, 
which are crucial for initiation and progression of tumor 
growth, accumulate in long-lived stem cells, and the 
transformation of SCs into CSCs initiates carcinogenesis. 

CSCs may also have a greater differentiation potential 
than other SCs. (SCs can be divided into the following 
groups based on differentiation potential: the totipotent, 
pluripotent, multipotent, and unipotent group). Another 
hypothesis assumes the existence of ESC-like cells that 
convert into CSCs when they are exposed to damaging 
environmental factors. Additional differentiation 
and mutation of these cells may also contribute to 
development of CSCs[61]. Based on these reports, the 
CSCs may be more differentiated than normal SCs 
and likewise, the mitochondrial properties of CSCs are 
different from those of SCs or general cancer cells.

Recently, Ye et al[62] determined the mitochondrial 
features between lung CSCs and non-CSCs. As a 
results, it is showed a lower mtDNA contents, lower 
OCR, glucose consumption, intracellular ATP and 
ROS level in the lung CSCs compared to non-CSCs. 
Leukemia CSCs showed a low ROS level and reduced 
OXPHOS compared with that of non-CSCs[63]. However, 
Pastò et al[64] reported that CSCs exhibited over-
expressed genes related to glucose uptake, oxidative 
phosphorylation, and fatty acid β-oxidation, indicating 
higher ability to direct pyruvate towards the TCA cycle. 
As reported, ovarian CSCs showed higher mitochondrial 
ROS production and ∆Ψm than non-CSCs. In addition, 
targeting mitochondrial biogenetics induced caspase-
independent cell death in ovarian CSCs[65]. In glioma 
CSCs, a higher mitochondrial reserve capacity was 
measured as compared to the differentiated cells[66]. 
Glioblastoma CSCs also depend on OXPHOS for their 
energy production and survival[67]. Besides, breast 
CSCs have higher ATP content compared to their 
differentiated progeny[68]. Based on these studies, 
CSCs mitochondria showed the different roles and 
features according to the cancer type. A summary of 
the mitochondrial features between CSCs and non-
CSCs according to cancer origin is highlighted in Table 2. 
Although the mitochondrial features of CSCs in several 
cancers are not identical, CSCs mitochondria obviously 
differ from those of non-CSCs. Moreover, mitochondrial 
features of CSCs have not been clearly defined in other 
cancer types. Most importantly, little has been known 
about the mitochondrial features related to energy 
metabolism and the ROS/antioxidant enzyme system of 
CSCs in colon, stomach, liver, bone, and prostate cancer. 
Therefore, defining these features will be essential for 
developing a mitochondria-targeted therapeutic drug 
that induces death of CSCs, and therefore, reduces the 
risk of relapsed or refractory cancer. 

CLINICAL IMPLICATION AND 
THERAPEUTIC TARGETS OF CSCs
Despite the recent surge of published studies on 
CSCs, the clinical significance of this population 
remains unclear and has been slow in progression 
of the development of clinical agents to eliminate 
CSCs. However, most experts agree that effective 
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anti-cancer drugs should be targeted toward CSCs 
in addition to non-CSCs. Current cancer treatments 
such as conventional chemotherapy and radiotherapy 
target rapidly proliferating cells that make up the 
bulk of the tumor, but do not specifically target CSCs. 
Thus, the hypotheses on the origin of CSCs may 
explain the development of relapsed and metastatic 
cancer. In cancer therapy, the new paradigm requires 
development of novel anti-cancer drug molecules and 
drug targets to assess drug responses of CSCs. 

Altered expression of genes involved in apoptosis, 
survival, and DNA repair machinery are among the 
multiple mechanisms responsible for the chemo-
resistance of leukemic[69], brain[70], pancreatic[71], 
breast[72], melanoma[73,74], and colon cancer[75] CSCs. 
Liu et al[23] reports that CD133+ glioblastoma cells 
isolated from patients have a high expression of genes 
in the Bcl-2 and inhibitor of apoptosis (IAP) families. 
Moreover, several types of CSCs have upregulated 
ATP binding cassette (ABC) pumps that make 
them resistant to various chemotherapeutics[73,74]. 
Therefore, finding targets that efficiently promote 
CSC cell death is important and a focus of intensive 
research. Dong and colleagues demonstrate that loss 
of fructose-1,6-biphosphatase in breast CSCs induces 
glycolysis, as well as inhibiting oxygen consumption 
and ROS generation, through the suppression of 
mitochondrial Complex Ⅰ activity[76]. The report implies 

that overproduction of ROS and reduction in glucose 
metabolism may be effective against breast CSCs. 
Hirsch et al[77] showed that metformin, an AMPK 
activator and Complex Ⅰ inhibitor often used as the 
first-line drug for treating diabetes, and selectively kills 
CSCs in breast cancer cell lines. The novel isoflavone 
derivative NV-128 significantly decreased mitochondrial 
function, as shown by a decreases in ATP, Complex Ⅰ, 
and Complex Ⅳ levels, and induced cell death in 
ovarian CSCs[65]. These results demonstrate that specific 
mitochondrial targeted compounds can induce cell 
death in chemoresistant CSCs and may be a new venue 
for treating ovarian cancer patients with relapsed or 
metastatic cancer. The new-generation taxoid SB-T-1214 
significantly inhibited stemness gene expression profiles 
and induced cell death in both CSCs and general cancer 
cells, indicating its promise in overcoming relapsed and 
refractory cancer due to CSCs[78]. Finally, mitochondria-
targeted vitamin E succinate (MitoVES), which includes 
the positively charged triphenylphosphonium group, 
may be the most well-characterized toxic agent in its 
ability to induce apoptosis in breast CSCs[79]. Meanwhile, 
it was reported that a drug which inhibits the self-
renewal of CSCs by targeting of Notch and Hedgehog 
pathway has been developed[80]. It was also reported 
that has been developed a drugs, which can eliminate 
CSCs by targeting cell surface markers such as CD133 
and EpCAM. However, the use of these drugs increases 

423 March 26, 2015|Volume 7|Issue 2|WJSC|www.wjgnet.com

Table 2  Mitochondrial features of cancer stem cells according to cancer origin

Cancer origin Mitochondria features Energy metabolism of CSC Target/drug for CSCs Ref.

Feature CSC Non-CSC

Breast Glucose uptake High Low OXPHOS [68]
ATP contents High Low

OCR High Low
Lactate production Low High

Membrane potential High Low
Glioma Glucose consumption Low High OXPHOS [66]

ATP contents High Low
Lactate production Low High

OCR High Low OXPHOS IMP-2 [67]
ATP contents High Low

Leukemia ROS Low High Low glycolysis Bcl-2/ [63]
Proliferation rate Slow Fast Low OXPHOS ABT263

OCR Low High
Lactate production Low High

ATP contents Low High
Lung Glucose consumption Low High [62]

OCR Low High
ROS level Low High

ATP contents Low High
Membrane potential High Low
Mitochondrial DNA Low High

Ovarian NV-128 [65]
ROS High Low OXPHOS [64]

Membrane potential High Low
ATP contents High Low

Glucose deprivation Resist Sensitive

CSC: Cancer stem cell; OCR: Oxygen consumption rate; ROS: Reactive oxygen species; OXPHOS: Oxidative phosphorylation; ABT263: Bcl-2 inhibitor; NV-128: 
Isoflavone derivative (play a role as inhibitor of mitochondrial function); IMP-2: Insulin-like growth factor 2 mRNA-binding protein 2.
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the exposure to side effects due to the sharing of 
signaling pathway and cell surface marker with normal 
SCs. Thus, it is important to understand how CSCs differ 
from normal SCs and differentiated cells. Moreover, a full 
understanding of the mitochondrial function and energy 
metabolism in CSCs contributes to the development 
of the agents targeting mitochondrial functions (such 
as ROS overproduction, energy metabolism inhibition, 
and antioxidant protein inhibition), and presents a need 
to develop new strategies to target CSCs in the clinical 
field[80]. 

CONCLUSION
In summary, the mitochondria are an important tool 
to investigate CSCs properties and to develop anti-
cancer drugs. However, the properties and clinical 
significance of mitochondria in CSCs have not been 
verified. Because mitochondria-targeted therapy may 
open new strategies for the treatment of relapsed and 
refractory cancer, mitochondrial properties unique 
to CSCs need to be defined. Furthermore, combined 
treatment with mitochondrial-targeted and anti-cancer 
drugs may specifically induce the death of both CSCs 
and general cancer cells and promises to be a novel 
cancer therapy.
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