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Abstract
Tissue engineering essentially refers to technology 
for growing new human tissue and is distinct from 
regenerative medicine. Currently, pieces of skin are 
already being fabricated for clinical use and many 
other tissue types may be fabricated in the future. 

Tissue engineering was first defined in 1987 by the 
United States National Science Foundation which 
critically discussed the future targets of bioengineering 
research and its consequences. The principles of 
tissue engineering are to initiate cell cultures in vitro , 
grow them on scaffolds in situ  and transplant the 
composite into a recipient in vivo . From the beginning, 
scaffolds have been necessary in tissue engineering 
applications. Regardless, the latest technology has 
redirected established approaches by omitting scaffolds. 
Currently, scientists from diverse research institutes 
are engineering skin without scaffolds. Due to their 
advantageous properties, stem cells have robustly 
transformed the tissue engineering field as part of an 
engineered bilayered skin substitute that will later be 
discussed in detail. Additionally, utilizing biomaterials 
or skin replacement products in skin tissue engineering 
as strategy to successfully direct cell proliferation and 
differentiation as well as to optimize the safety of 
handling during grafting is beneficial. This approach 
has also led to the cells’ application in developing the 
novel skin substitute that will be briefly explained in this 
review. 
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Core tip: Biomaterials and epithelial stem cells, and 
especially hair follicle stem cells  are vital components 
for successful skin tissue engineering. Ignoring one 
of these components will decrease the opportunity 
for skin tissue engineering to foster complete healing 
through skin repair and will increase the failure of skin 
grafting in the clinical setting. The latest technology, 
new raw biomaterials and information on the significant 
contribution of stem cells are likely to be of great benefit 
to skin tissue engineering. 
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INTRODUCTION 
In classical bioengineered skin, the engineered 
epidermis is reconstructed from a skin autograft or 
allograft serving as a cellular dressing. The limitations 
addressed by this technique are pain and scar 
formation at the donor site, impaired wound healing 
and non-healing wounds, insufficient material to 
cover a large defect area and autoimmune rejection 
in the case of an allograft. The emergence of skin 
tissue engineering has led to robust innovation in skin 
substitutes and skin replacement products for burn 
and wound management. Diseased or injured skin 
may rule out a particular treatment because of wound 
depth. Superficial, partial and full-thickness wounds 
require diverse skin substitutes that simultaneously 
function as a primary dressing. Although various 
commercial skin substitutes are available, novel 
findings on fabrication techniques for biomaterials 
and on regulators of wound healing have highly 
encouraged scientists to develop new engineered skin 
substitutes that offer an effective remedy for wound 
care and wound management. The combination of 
stem cells or other cells with a specifically designed 
novel biomaterial has resulted in different impacts on 
engineered skin after wounding. An ideal biomaterial 
with multiple combinations of cultured cells and 
a collectively established broad knowledge of the 
healing process are the main criteria for the future 
development of skin substitutes. Eventually, skin 
substitutes that can be kept frozen, that are ready 
for use, inexpensive in cost, less labor intensive, and 
permanently adherent to the wound bed, that yield an 
impressive cosmetic outcome and that do not contain 
animal or human serum will definitely be in increased 
demand for skin tissue engineering purposes.     

DEFINITION OF STEM CELLS
Stem cells have at least two advantageous properties. 
First, these cells are capable of dividing or renewing 
themselves for long periods of time with the identical 
morphology and phenotypic characteristics as their 
parent cells. This self-renewal mechanism is crucial for 
recovering degenerated and damaged cells, tissues 
or organs. Second, the differentiation of stem cells 
is a mechanism that can maintain the cellular and 
molecular integrity of adjacent or other cells. Stem cells 
differentiate into specialized cells to perform a specific 
function[1] after receiving internal or external signals, 
which are signs of signalling pathway changes in the 

cells’ microenvironment. Differentiation starts when 
the cells discontinue renewal. Differentiation abilities 
are used to rank stem cells’ potency (Figure 1). Stem 
cells that are able to differentiate into one cell type are 
known as unipotent stem cells, such as epidermal stem 
cells which regenerate differentiated epidermis[2]. Hair 
follicle stem cells (HFSC) are able to differentiate into 
multiple types of structures with specialized functions 
in the body including hair follicles[3], epidermis[4], 
sebaceous glands[5] and neurons[6]. These stem cells 
are known as multipotent stem cells. Pluripotent stem 
cells are stem cells that have the ability to differentiate 
into ectoderm, mesoderm and endoderm germ layers 
as demonstrated by embryonic stem cells and induced 
pluripotent stem cells[7]. Totipotent stem cells have the 
excellent ability to differentiate into whole tissues. This 
total potency can be observed in the fertilized eggs of 
humans or animals. 

SKIN STEM CELLS
The skin is known as cutaneous or integumentary 
and its appendages constitute the integumentary 
system. The skin is the largest organ, contributing 
15%-20% of body mass to form the external covering 
of the body. The skin has two main components: the 
epidermis and the dermis. The epidermis is derived 
from ectoderm, composed of a keratinized stratified 
squamous epithelium that grows continuously and 
simultaneously maintains its normal thickness by the 
process of desquamation[8]. The dermis is derived 
from mesoderm, composed of a connective tissue that 
provides mechanical support, strength and thickness 
to the skin. The hypodermis is not a part of the skin 
but lies beneath the dermis and is equivalent to the 
subcutaneous fascia. This layer contains adipose tissue 
arranged into lobules that are separated by connective 
tissue septa. The epithelial skin appendages are 
composed of the hair follicles and hairs, sweat glands, 
sebaceous glands, nails and mammary glands. The skin 
forms an effective barrier against pathogen invasion, 
chemicals and ultraviolet light[9]; participates in 
homeostasis[10] by regulating the body temperature and 
water loss; conveys sensory information; and function 
in pigmentation[11], physical appearance, wound repair 
and regeneration[12]. The skin is considered as a stem 
cell zoo, as it accommodates a variety of stem cell 
niches. A niche is the microenvironment in which stem 
cells remain quiescent. The dermal papilla is a stem cell 
niche for mesenchymal stem cells (MSC) which initiate 
hair follicle growth[13]. The superior bulge is a stem cell 
niche for HFSC[14] and melanocyte stem cells (MelSC)[15]. 
Multipotent HFSC not only function to maintain the 
hair growth cycle[16], but also give rise to sebaceous 
glands[17] and contribute to skin re-epithelialization[18], 
which form neo-epidermis by differentiating into 
keratinocytes within the wound. MelSC supply melanin 
for hair and skin pigmentation[19] and are concurrently 
involved in skin re-epithelialization[20]. The abundant fat 

Mohd Hilmi AB et al . Stem cells in skin tissue engineering

429 March 26, 2015|Volume 7|Issue 2|WJSC|www.wjgnet.com



in the subcutaneous layer contains adipose stem cells 
(ASC)[21] which are efficient in promoting skin repair[22]. 
Collectively, the evidence suggests that skin’s distinct 
resident stem cell pools have a crucial function in skin 
repair and regeneration. Therefore, it is very important 
for scientists to develop a good understanding of this 
idea before skin substitutes can be engineered in the 
future.   

SKIN TISSUE ENGINEERING
Skin tissue engineering is the first field within tissue 
engineering that successfully engineered tissue in the 
laboratory. As the largest organ, the skin has high 
potential risk of injuries and diseases. Skin damaged 
requires a skin replacement product from either 
a natural or an artificial source. Skin replacement 
products are in high demand for the treatment of 
burns and wounds, leading the industrial sector to 
highly invest in skin tissue engineering. Skin tissue 
engineering utilizes biomaterials, stem cells, connective 
tissues and an established broad knowledge of 
the mechanism of the acute and chronic healing 
processes. The main target of skin tissue engineering 
is to produce an excellent skin replacement product 
for application in wound repair, especially in the case 
of full-thickness skin loss, with the goal of less or 
no scar formation after wounding. However, skin 
replacement products are not able to replace damaged 
skin as completely as native skin can, leaving a scar. 
Consequently, the field of skin tissue engineering is 
challenging. 

BIOMATERIALS 
Collagen gel is the first biomaterial or skin replacement 
product that has been used in skin tissue engineering 
to replace the use of allografts and autografts. 
Essentially, to produce an excellent skin substitute, 
a biomaterial must be able to support cell growth 
and differentiation in a similar manner as in the 

cells’ original microenvironment. Most importantly, 
biomaterials with multiple graded pore sizes allow 
the acceleration of tissue reconstruction[23]. For 
example, microscopic pores improve cell attachment, 
proliferation and responses[24] and macroscopic pores 
that are at least 100 µm in diameter play a role in 
enhancing the ingrowth of cells and blood capillaries[25]. 
To allow three-dimensional (3-D) tissue reconstruction 
in vitro, a biomaterial should support uniform cell 
spreading into interconnected pores for the engineering 
specific tissue[26]. Biomaterials with a single pore size 
have certain limitations, only allowing one cell type to 
grow according to the pore size whereas, biomaterials 
with multiple graded pore sizes can reconstruct various 
types of tissues simultaneously[27]. A previous study 
has suggested that a pore size 20-120 µm in diameter 
is suitable for skin tissue engineering[28]. Biomaterials 
must have the ability to absorb the nutrients involved 
in wound healing and the exudate of the wound bed 
which are important factors in skin tissue engineering. 
The absorption ability is known as the water uptake 
ratio (WUR). Biomaterials with a high WUR are suitable 
for use in full-thickness wounds that contain excess 
exudates and inflammation that lead to impaired 
wound healing. Meanwhile, a lower WUR is suitable 
for partial thickness wounds[29]. An appropriate WUR 
enhances the biological activity of skin equivalents 
and contributes to hydrophilicity and the maintenance 
of 3-D structure. A moist wound bed is required to 
enhance dermal regeneration and wound closure which 
can be achieved if a scaffold has suitable water vapor 
permeability (WVP). The WVP depends on the scaffold 
thickness and the ratio of the scaffold area to the water 
surface area[30]. A suitable WVP is an important factor 
for wound dressing. If the WVP is too high, the wound 
bed will be dry and it may increase metabolic activity. 
In contrast, if the WVP is too low, the accumulation 
of exudates will trigger the onset of bacterial growth. 
Following the criteria mentioned above, a fabricated 
skin replacement product will retain the cell-cell and 
cell-biomaterial signaling, allowing the complete layer 
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Figure 1  The potency of stem cells. ESC: Embryonic stem cells; iPSC: Induced pluripotent stem cells; HFSC: Hair follicle stem cells; EpiSC: Epidermal stem cells. 
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approved by the FDA for use in diabetic foot ulcers.  
EpiDex is a permanent autologous epidermal skin 

replacement product that is isolated directly from 
epithelial stem cells of patients. The patient’s own hair 
was plucking using non-surgical procedure and then 
grafted onto a chronic wound.  

EpiFix is a dehydrated amniotic membrane allograft. 
It is provided in sheets form, does not require FDA 
approval as human amniotic membrane is considered 
not significantly changed from its original structure. 
EpiFix is used in the treatment of acute and chronic 
wounds.  

Integra is a bilayer engineered skin replacement 
product. It composed of porous matrix derived from 
bovine tendon collagen, glycosaminoglycan and a 
semi-permeable polysiloxane. Integra is used in the 
treatment of chronic and traumatic wounds.  

MyDerm is an autologous bilayer engineered skin 
replacement product. It contained the mixture of fibrin-
keratinocytes that seeded onto a piece of medical grade 
of silk. The mixture of fibrin-fibroblasts is then seeded 
onto fibrin-keratinocyte skin equivalent. MyDerm is 
used for the treatment of wounds and burns. 

OASIS is a xenogeneic porous collagen matrix 
which derived from porcine small intestinal submucosa. 
It was approved by the FDA for the management of 
pressure ulcers, venous ulcers, diabetic ulcers and 
chronic vascular ulcers.

OrCel is an allogeneic bilayered cellular based 
matrix. It is biodegradable, made of composite 
bovine collagen which contained skin cells. OrCel 
was approved by the FDA for use in patients with 
dystrophic epidermolysis bullosa.

PriMatrix is a xenogeneic acellular based dermal 
matrix. It is derived from fetal bovine dermis. PriMatrix 
is provided in meshed, fenestrated and solid form. It 
was approved by the FDA for pressure and venous 
stasis ulcers.

Transcyte is an allogeneic bilayer skin replacement 
product for the treatment of burn. It made of human 
fibroblasts grown on nylon mesh and then combined 
with a synthetic epidermal layer. Transcyte has been 

of skin to be engineered. Subsequently, the engineered 
skin substitute can be used for grafting purposes, 
this is how skin tissue engineering works. Most 
importantly, the engineered skin must be tolerated 
by the host, be retained permanently and later be 
able to degrade slowly over time. A permanent skin 
replacement product is a primary dressing that is ideal 
for application in great skin loss because it is used only 
once during treatment, until healing is completed. In 
contrast, a temporary skin replacement product must 
be changed many times during treatment which may 
increase the cost of wound management and wound 
care. Commercial skin replacement products are 
collagen, chitosan or fibrin-based and these products 
have been broadly used in clinical applications as 
shown in Table 1. 

Apligraf is a permanent cellular based skin replacement 
product for the treatment of non-healing wounds including 
diabetic foot ulcer and venous leg ulcer. It was approved 
by the United States Food and Drug Administration’s 
guidelines (FDA) for use in non-infected, partial and full-
thickness skin ulcers. 

Biobrane is a temporary acellular based skin 
replacement product. It originated from porcine dermal 
collagen which is bonded to a nylon mesh and nylon 
membrane to form a biosynthetic skin dressing for use 
in superficial wound, partial-thickness wound and donor 
site wound dressing.  

CellerateRX is a patented form of Type Ⅰ bovine 
collagen for the treatment of diabetic or other impaired 
healing wounds. It is provided in a powder and a gel form 
which can be used as alone or a powder-gel combination. 

Cryoskin is a cell spray-based skin replacement 
product and is prepared upon request by clinicians. It 
is made from allogeneic donor cells which are originally 
isolated from a newborn foreskin biopsy. Cryoskin spray 
is suitable for the treatment of chronic wounds and 
burns. 

Dermagraft is a permanent cryopreserved cellular 
based skin replacement product. It composed of 
collagen which is isolated from neonatal foreskin biopsy 
and cultured on biodegradable mesh. Dermagraft was 
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Table 1  Current skin replacement products

Brand Cell and biomaterial Wound type

Apligraf®, United States Human keratinocytes and fibroblasts cultured on collagen Full thickness
Biobrane®, United Kingdom Silicone membrane attached to a nylon mesh Partial thickness
CellerateRX®, United States Gel containing 65% collagen Superficial
Cryoskin®, United Kingdom Keratinocytes cultured on silicone Superficial
Dermagraft®, United States Cryopreserved human fibroblasts from foreskin cultured on a polyglactin mesh scaffold Full thickness
EpiDex®, Switzerland HFSC cultured on silicone Full thickness
EpiFix®, United States Human amniotic membrane Full thickness
Integra®, United States Semi-permeable silicone membrane composed of bovine tendon collagen  Full thickness
MyDerm™, Malaysia Human fibroblasts and keratinocytes cultured on fibrin-silk Full thickness
OASIS™, United States Porcine small intestinal submucosa  Full thickness
OrCel™, United States Human keratinocytes and fibroblasts cultured on bovine collagen Full thickness
PriMatrix, United States Collagen from fetal bovine dermis Full thickness
Transcyte™, United States Human newborn fibroblasts cultured on nylon mesh Full thickness
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approved by the FDA for temporary covering over burn 
wounds. 

Collagen 
Collagen is the main protein component in connective 
tissue and its most abundant sources are found in 
mammals and marine animals. Collagen is easily 
obtained from porcine and bovine sources which 
provide bone, skin, tendon and many other parts of 
the body as raw materials. Unfortunately, prion disease 
that may transfer to humans after these materials’ 
use[31] has led scientists to have seek an alternative 
source. Currently, fish skin, seaweed, jellyfish and 
other marine sources are in high demand for isolating 
collagen and are the ideal sources for skin tissue 
engineering because prion disease transmission to 
humans is eliminated if marine-based sources are used 
compared with mammalian-based sources. Collagen-
based biomaterials encode antimicrobial activity[32] 
and do not support colonization by bacteria in a full-
thickness wound. The prevention of infection in wounds 
leads to minimized scar formation and promote 
wound healing[33]. Due to their biocompatibility and 
biodegradability, collagen biomaterials have been 
established for use in skin repair in the clinical setting 
since last decade with various forms such as a gel[34], 
sponge[35], film[36] and paste[37].   

Chitosan 
Chitosan is a biopolymer obtained from deacetylated 
chitin and the second most abundant biopolymer 
sources after collagen. Crude chitin can be found 
in shellfish. Chitosan is naturally insoluble unless in 
acidic solutions, and possesses a positive charge and 
low cytotoxicity which broadly imply excellence as a 
DNA carrier[38], protein nanocarrier[39], drug delivery 
system[40], siRNA nanovector[41] and growth factor 
carrier[42]. Based on its composition, the structure 
of chitosan is similar to that of glycosaminoglycans. 
Glycosaminoglycans are a component of the extracellular 
matrix and are an important substrate for tissue 
constructs[43]. Chitosan arrests bleeding in major 
hepatic injuries and is effective for use in patients 
who suffer major injury with clotting dysfunction[44]. 
Therefore, chitosan is preferable for tissue engineering 
and especially for engineered skin applications. The 
used of a novel technique to develop a chitosan 
sponge by electrospinning has produced a chitosan 
nanofiber that provides excellent substrate-cell 
adhesion, proliferation and differentiation[45]. During 
skin repair and regeneration, nanofibers contribute 
to increased vascularization, re-epithelialization and 
enhanced granulation tissue formation. The major skin 
cells, particularly epithelial and epidermal cells and also 
fibroblasts grow well on this type of biomaterial.

Fibrin 
Fibrin-based biomaterials are well-established biological 

sealants for skin tissue engineering. However, the use 
of raw blood to isolate the fibrin has limited fibrin’s 
use as a novel skin substitute. Commercial fibrin in kit 
form can successfully heal a wound but is relatively 
expensive for the majority of patients. Fibrin gel is 
continuously in demand in plastics and reconstructive 
surgery as it minimizes subcutaneous seroma formation 
and decreases wound morbidity[46]. The combination of 
fibrin with bone marrow mesenchymal stem cells can 
improve the condition of scalded skin, providing strong 
self-repair capability and promising an acceptable 
cosmetic appearance with hair follicle formation. 
This application is more suitable for the treatment 
of patients with burns in emergency cases[47]. Long-
lasting fibrin biomaterials ensure stable and functional 
angiogenesis by highly tunable and sustained delivery 
of growth factors[48].   

MESENCHYMAL STEM CELLS 
Mesenchymal stem cells also known as mesenchymal 
stromal cells, have broadly contributed to cellular 
therapy and skin tissue engineering. MSC are spindle-
shaped, or similar to morphology to but phenotypically 
different from fibroblasts. Bone marrow derived-MSC 
were first isolated in 1981[49] before MSC from other 
tissues were explored. Skin derived-MSC were first 
isolated from mice in 2001, and were initially named 
skin-derived precursors[50]. In the skin, MSC are 
predominantly found in the dermal papilla, functioning 
in secreting diverse growth factors after wounding to 
promote fibroblast proliferation and collagen formation 
and to elicit intrinsic stem cell differentiation[51], 
serving as a modulator to activate macrophages[52], 
and directly affecting hair follicle morphogenesis[53] 
and neo-dermis reconstruction[54]. MSC elicit leukocyte 
migration for skin homeostasis and produce hepatocyte 
growth factor and basic fibroblast growth factor to 
inhibit scar formation at the wound site[55]. The MSC-
based skin substitute constructs have increased 
paracrine factor levels in promoting skin repair[56]. 

FIBROBLASTS 
Apart from stem cells, other components of the 
dermis such as fibroblasts are important in skin tissue 
engineering[57]. Fibroblasts synthesize and deposit 
extracellular protein after wounding, producing growth 
and angiogenic factors that accelerate cell proliferation 
and angiogenesis[58]. Fibroblasts are also transformed 
into myofibroblasts that express contractile fibers. As 
a myofibroblast contracts, forces are applied to the 
collagen fibers, thus reducing the size of the wound[59]. 
Cultured fibroblasts in biomaterials have been reported to 
improve regeneration of the dermis[60] and epidermis[61] 
especially by re-epithelialization[57]. This specific role of 
fibroblasts, especially in improving scarring and the 
contraction of skin wounds has encouraged researchers 
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Figure 2  The rapid proliferating of hair follicle stem cells. At hour 0, cells were separated (A) and then closely adhered to a plate (B) until one of the cells doubled (arrow 
head) at 12.59 h post-culture (C). Magnification 400 ×.

100 µm
50 µm

A B

Co-culture onto chitosan

HFSC
CD200 surface marker for HFSC
DAPI stained nucleus

Fibroblasts
Vimentin surface marker for fibroblasts
DAPI stained nucleus

D
100 µm

Production 

Skin substitute
Green: epidermis and dermis
Red: chitosan

Chitosan pores

C

1 cm

20 µm

3 wk post-wounding

E F
Transplantation

Irradiated wound Skin repair
K15 surface marker for keratinocytes
DAPI stained nucleus

Dermis

Epidermis

Figure 3  The vital role of 
hair follicle stem cells in skin 
tissue engineering. HFSC: 
Hair follicle stem cells; DAPI: 4', 
6-diamidino-2-phenylindole.
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to highly prioritize facilitating these cells’ use in skin 
replacement therapies[62]. Additionally, a previous study 
has demonstrated that fibroblasts from the dermis are 
the best source for skin tissue engineering applications 
compared with fibroblasts from other sources based 
on yields and reduced contraction of wounds[63]. 

ADIPOSE STEM CELLS 
Fat accommodates adipose tissue-derived stem 
cells usually known as adipose stem cells[21]. ASC 
are actually MSC therefore, ASC express the same 
surface markers and highly contribute to skin repair as 
well. ASC improve neo epidermis formation and skin 
aging[64] by accelerating angiogenesis[65] and fibroblast 
proliferation[66]. The use of ASC in skin repair increases 
the deposition of extra cellular matrix components such 
as collagen type-Ⅵ which has the potential to improve 
the protein deficiency[67]. A mixture of fibroblasts 
and ASC can improve the epidermal morphogenesis 
of tissue-engineered skin[68]. The ability of ASC to 
grow on porous biomaterial and to differentiate into 
fibrovascular, endothelial and epithelial tissues for skin 
repair[69] has proven these cells’ excellent capability as a 
cellular source for skin tissue engineering.  

HFSCs 
HFSC and their progenitors are directly involved in hair 
and skin regeneration during skin homeostasis[70]. Based 
on their anatomical classification and function, HFSC 
have mainly been called epithelial stem cells[71,72] and 
have been broadly known as epidermal stem cells[73,74] 

as well as bulge stem cells[75,76] in diverse studies. The 
critical role of HFSC in epidermal homeostasis[77] has 
led to their application in fabricating neo epidermis in 
skin tissue engineering. Due to their vital characteristic, 
HFSC are capable of proliferating rapidly and this 
phenomenon is shown in Figure 2. 

The use of HFSC in skin tissue engineering was 
successfully performed in chronic wounding in 2002, 
when Limat and Hunziker demonstrated that their 
HFSC-silicone constructs contributed to accelerated 
the healing of patients’ leg ulcers[78]. To date, the 
contribution of HFSC to ameliorating impaired healing 
due to radiation has stimulated the interest of tissue 
engineers in using epithelial stem cells for other tissue 
reconstruction. In Figure 3 shows that the chitosan 
based skin substitute which composed of HFSC-
fibroblasts is an ideal source for skin tissue engineering. 
The chitosan composite was then used for transplanting 
into irradiated wound. Full-thickness wounds 1 cm by 1 
cm in size were excised and treated using the novel skin 
substitute. As a result, a complete re-epithelialization 
occurred during skin repair after 3 wk post-wounding.  

CONCLUSION 
This review has summarized the fundamentals of 

stem cells and especially the terminology for stem cell 
potency which has occasionally created confusion in 
certain experiments. Stem cell potency provides the 
necessary guideline for skin engineering experiments. 
The importance of fibroblast, HFSC, MSC, ASC, 
chitosan, collagen and fibrin in skin tissue engineering 
highlights their critical role in the repair process. 
The use of stem cells and biomaterials is especially 
important in the case of impaired wound healing and 
in cases involving major excisional skin defects.   
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