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Abstract
The degree to, and the mechanisms through, which 
stem cells are able to build, maintain, and heal the body 
have only recently begun to be understood. Much of the 
stem cell’s power resides in the release of a multitude 
of molecules, called stem cell released molecules (SRM). 
A fundamentally new type of therapeutic, namely 
“systems therapeutic”, can be realized by reverse 
engineering the mechanisms of the SRM processes. 
Recent data demonstrates that the composition of the 
SRM is different for each type of stem cell, as well as 
for different states of each cell type. Although systems 

biology has been successfully used to analyze multiple 
pathways, the approach is often used to develop a small 
molecule interacting at only one pathway in the system. 
A new model is emerging in biology where systems 
biology is used to develop a new technology acting 
at multiple pathways called “systems therapeutics”. A 
natural set of healing pathways in the human that uses 
SRM is instructive and of practical use in developing 
systems therapeutics. Endogenous SRM processes in 
the human body use a combination of SRM from two 
or more stem cell types, designated as S2RM, doing so 
under various state dependent conditions for each cell 
type. Here we describe our approach in using state-
dependent SRM from two or more stem cell types, 
S2RM technology, to develop a new class of therapeutics 
called “systems therapeutics.” Given the ubiquitous and 
powerful nature of innate S2RM-based healing in the 
human body, this “systems therapeutic” approach using 
S2RM technology will be important for the development 
of anti-cancer therapeutics, antimicrobials, wound 
care products and procedures, and a number of other 
therapeutics for many indications.
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Core tip: A fundamentally new type of therapeutic, 
namely “systems therapeutic,” can be realized by 
reverse engineering the mechanisms of the stem 
cell released molecules (SRM) processes. Recent 
data demonstrates that the composition of the SRM 
is different for each type of stem cell, as well as for 
different states of each cell type. Although systems 
biology has been successfully used to analyze multiple 
pathways, the approach is often used to develop a small 
molecule interacting at only one pathway in the system. 
A new model is emerging in biology where systems 
biology is used to develop a new technology acting at 
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INTRODUCTION
The initial few days following fertilization of the 
human egg, all stem cells in the developing egg are 
able to create any tissue in the human body, i.e., 
the stem cells are totipotent. However, about four 
days following the fertilization of a human egg, the 
stem cells in the blastocyst begin to differentiate and 
become pluripotent instead of totipotent, thus being 
able to differentiate into a more limited set of adult 
cell types[1]. At this point in time, many different stem 
cell types are beginning to form that will have unique 
function related to the development, maintenance, 
and healing of various tissues throughout the body. 
The degree to which stem cells differentiate into 
specific adult phenotypes is only recently beginning 
to be understood. For example, cell types, such as 
the progenitor cell preadipocyte and adipose-derived 
mesenchymal stem cells, each of which was previously 
classified as one cell type, have now been shown 
to have phenotypic differences depending on the 
location of the preadipocyte niches or mesenchymal 
stem cell niches[2,3]. The signaling factors controlling 
the development and function of the stem cell types, 
and indeed the signaling factors that each stem cell 
type releases, are relatively unknown, but progress is 
being made. For example, we know that adult stem 
cells release hundreds of types of proteins within 
the molecular pool[4], called the stem cell released 
molecules (SRM), and that each cell type will release 
a unique pool of molecules[5,6]. These molecules in 
the SRM will prove to be important for developing 
many types of therapeutics, including, for example, 
immunoregulators for organ transplantation[7].

The more differentiated the stem cell, the more 
specialized the SRM will become. Further, that unique 
pool of molecules from one stem cell type can change 
in composition, including the types of molecular species, 
depending on intrinsic and extrinsic regulatory factors.  
For example, intrinsic factors related to simple passage 
number of a stem cell will change the composition of 
the SRM[8,9] and mesenchymal stem cells (MSCs) in 
different parts of the body will secrete unique pools 
of SRM[10]. Telomere dysfunction, whether the cause 
is intrinsic or extrinsic, will change the nature of the 
SRM[11]. Likewise, when MSCs derived from fat tissue 
are conditioned with TNF-α, a significant effect on the 
SRM is observed with an increased release of factors 

such as Cathepsin L, interleukin (IL)-6, IL-8, monocyte 
chemotactic protein-1, matrix metalloproteinase 
(MMPs), and pentraxin-related protein 3[12]. Further, 
signaling conditions during the immune modulating 
responses of human MSCs through Toll-like receptors 
(TLRs) on the MSCs leads to two basic phenotypic 
changes of the cells (MSC1 and MSC2) and a 
consequent dramatic difference in their SRM[13]. 

Phenotypic changes in the MSC are consequent to: (1) 
low-level exposure of TLR4 agonists that drives hMSCs 
toward a pro-inflammatory MSC1 phenotype important 
for early injury responses; and (2) the TLR3 agonist 
exposure of hMSCs driving the phenotype to an 
immunosuppressive MSC2 phenotype that is important 
to later anti-inflammatory responses that help repair 
the wound. Culture conditions can also have dramatic 
effects on SRM. A significant increase in SRM [Vascular 
endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF), phosphatidylinositol-glycan 
biosynthesis class F protein, and TGF-β] was observed 
after subjecting hMSCs to 72 h hypoxia compared with 
normoxic conditions[14]. Serum deprivation is another 
model for ischemia, and was shown to increase the 
secretion of angiogenic factors released by hMSCs, 
although the results could have been attributed in 
full, or part, to differences in cell proliferation rates[15]. 
Glucose levels have been shown to differentially 
affect the phenotype of endothelial progenitor cells 
and mesenchymal progenitor cells[16]. Indeed, subtle 
variations in cell culture conditions can have significant 
consequences to the phenotype of stem cells[17].

The state of the extracellular matrix in the stem 
cell niche is also an important regulator of stem cell 
phenotype, where, for example, the absence of the 
SPARC protein in the extracellular matrix (ECM) 
can drive hematopoietic stem cells into a state of 
quiescence[18]. Antioxidants and FGF-2 were shown 
to cause rapid proliferation and a retention of stem 
cell properties in MSCs, and even enhanced their 
adipogenic and osteogenic potentials[19]. Interestingly, 
new studies suggest that adult stem cells, and 
even somatic cells, may exist in a state of dynamic 
transition between different levels of potency[20,21] that 
is dependent on many factors, including paracrine and 
autocrine factors in the SRM from surrounding stem 
cells in the same niche, and through the physical state 
of the surrounding stem cell niche[22]. The state of the 
oxidative stress in the stem cell may be a contributing 
factor in phenotype, including the state of pluripotency 
where the antioxidants curcumin and sesamin were 
shown to decrease oxidative stress and increase 
pluripotency[23]. Stem cell derived control factors for 
determining the fate of stem cells and the potency of 
cells, including the dedifferentiation of somatic cells, 
their proliferation, and subsequent differentiation, 
may include growth differentiation factor 11, a protein 
secreted by bone marrow mesenchymal stem cells[24] 
that has been shown to be involved in stem cell fate 
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and proliferation[25], and has recently been shown to 
induce a number of regenerative effects, including 
neurogenesis[26]. Recent studies also demonstrate 
that NANOG, a pluripotency transcription factor in 
embryonic stem cells, is also present in at least some 
adult tissues further raising the possibility that a 
dynamic state of pluripotency is a naturally occurring 
process in adults[27]. Again, these shifts in the state 
of pluripotency will have concomitant shifts in the 
composition of the SRM released from the stem cell.

Given the differentiation of stem cells into distinct 
phenotypes, each of which releases a distinct pool of 
molecules with each distinct pool of molecules inducing 
a specific set of functions, a knowledge base of the 
secreted factors (SRM) from each stem cell type and 
the resulting actions from each pool of molecules will 
be instructive in the development of therapeutics. The 
resulting therapeutics that can be developed using 
the combination of many types of molecules has 
been termed “systems therapeutics”[28]. The “systems 
therapeutic” approach, where multiple molecule 
types target multiple pathways, is in contradistinction 
to the more traditional approach of small molecule 
development for perturbation of one pathway.

Moreover, as the stem cell types are cultured ex 
vivo in the laboratory and driven to state-dependent 
specific phenotypes through genetic, epigenetic, and 
other state-dependent variables, the concentration 
and composition of the SRM as a result can be experi-
mentally manipulated for the purposes of therapeutic 
development. In addition, distinct pools of SRM 
from two or more stem cell types cultured in state-
dependent conditions can be combined into a collective 
pool of molecules called S2RM, mimicking the collective 
actions of multiple stem cell types in their native state 
in the human body.

TWO OR MORE TYPES OF STEM CELL 
INDUCE HEALING
There are two basic forms of cell replacement and 
regeneration: (1) a maintenance function where 
renewal of damaged cells during tissue homeostasis 
(homeostatic growth) are restored; and (2) a response 
to external injury, such as traumatic wounding, burn, 
ulceration, or surgery. A given healing response 
will require many processes acting through a well-
orchestrated concert of mechanisms and molecules 
in the given tissue, and the results of these processes 
depend on many factors, including the developmental 
age of the organism. Fundamental factors, such as 
caspases released from cells undergoing apoptosis, 
will activate both stem cells and progenitor cells in 
the wound healing process[29], where apoptosis may 
be a key factor in cell proliferation during tissue 
regeneration[30]. Wounds occurring in early to mid-
gestational fetal skin have been shown to heal through 
regeneration without the formation of a scar[31], 

whereas adult wounds heal by a fibroproliferative 
response that emphasizes repair over regeneration. 
The complexity of this process, where fetal wounds 
differ from adult wounds in inflammatory responses, 
ECM components, growth factor expression and 
responses, and profiles of gene expression is exem-
plified by the observation that adult skin in a fetal 
environment will still exhibit scar formation[32]. The 
state dependency of stem cells is so critical as shown 
in diabetes where the adipose stem cell niche in situ 
is altered, and the stem cells in the diabetic state are 
compromised in their ability to establish a vascular 
network both in vitro and in vivo[33] where glucose 
itself has profound direct effects on stem cells[34].

Following injury, wound healing begins rapidly 
and involves resident and migratory stem cell types, 
ECM, and soluble factors, including SRM. Stem 
cells and progenitor cells resident in the skin are 
certainly involved, but recruitment of stem cells from 
other sources, including bone marrow, is thought 
to be important[35]. The mechanisms underlying 
wound healing include: (1) a rapid release of pro-
inflammatory mediators; (2) cell to cell, and cell to 
extracellular matrix interactions that help mediate 
cell proliferation, migration, and differentiation; (3) a 
cascade of events including epithelialization, fibroplasia 
and angiogenesis[36]; (4) contraction of the wound; 
and (5) remodeling of the tissue. These events begin 
at the time of physical injury and proceed continuously 
throughout the process of tissue repair. Although the 
processes of repair begin immediately after an injury 
in all tissues, and all wounds proceed with a similar 
cascade of healing, some tissues, for example, liver, 
skeletal tissue, and the eye have different forms 
of regeneration and repair with variations on the 
underlying mechanisms[37]. Severe injury has been 
shown to increase the number of circulating stem 
cells[38,39] and that these stem cells will participate in 
the wound healing process[6].

At the onset of trauma bone marrow stem cells 
will sense histamine released from platelets at H1 
receptors and change their phenotype to one of 
releasing more IL-6 and more IL-8. The increased 
IL-8 will attract polymorphonuclear neutrophil cells, 
and the increased IL-6 will facilitate their survival 
through antiapoptotic functions[40]. When the trauma 
inducing the injury has stopped, and hemostasis is 
achieved with an immune response activated, the tissue 
repair phase will then begin[41]. On the third day after 
wounding the proliferative phase starts and continues 
for two or more weeks thereafter. Proliferation begins 
with fibroblast migration and deposition of newly 
synthesized ECM, elaborating the initial network 
of tissue built by fibrin and fibronectin. This phase 
of wound healing can be clinically observed as an 
abundant formation of granulation tissue. The complex 
nature of the proliferative phase is briefly described 
below[42].
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activity, or one of controlling inflammation[52].
Endogenous MSCs migrate to sites of injury in 

response to chemotactic signals where they can then 
modulate inflammation, repair damaged tissue, and 
facilitate tissue regeneration. Furthermore, bone 
marrow stem cells home to the injury where cells in 
the wounded area secrete a protease that interacts 
with collagen matrix to produce a homing agent[53]. 
Differentiation and paracrine signaling are two key 
mechanisms used by MSCs for tissue maintenance 
and repair. While differentiation of MSCs contributes 
by directly regenerating damaged tissue, the paracrine 
signaling by MSCs regulates the local cellular responses 
to injury, including the differentiation process itself. 
However, studies of exogenous MSCs show that the 
contribution of differentiation of these stem cells 
is limited due to poor engraftment and survival of 
MSCs at the site of injury, whereas the activation of 
endogenous stem cells by SRM may provide better 
results for the differentiation pathway[54], Paracrine 
signaling by MSCs appears to be the primary mech-
anism for the beneficial effects of MSCs in wound 
healing, including the reduction of inflammation, 
enhanced angiogenesis, and induction of cell migration 
and proliferation[55].

An analyses of the conditioned medium indicate 
that MSCs secrete many known SRM mediators of 
tissue repair including growth factors, cytokines, 
and chemokines, including VEGF, PDGF, bFGF, EGF, 
keratinocyte growth factor (KGF), and TGF-β. Stem 
cells are also known to release exosomes[56], and 
exosomes from mesenchymal stem cells have been 
shown to contain factors, including miRNA, that switch 
cancer stem cells into a dormant state[57]. Such a 
mechanism is important to dampen the cells in a 
wound from moving into a state of cancer[58]. Many 
cell types, including epithelial cells, endothelial cells, 
fibroblasts, and keratinocytes are responsive to MSC 
paracrine signaling, where a number of different 
cellular responses including cell survival, proliferation, 
migration, and gene expression are regulated. The 
SRM from MSCs acts as a chemoattractant for dermal 
fibroblasts, macrophages, endothelial cells, and 
epidermal keratinocytes, in vitro. The presence of 
either MSCs or the SRM from MSCs have been shown 
to promote wound closure through the activation 
of dermal fibroblasts. MSCs also secrete mitogens, 
leading to the proliferation of keratinocytes, dermal 
fibroblasts, and endothelial cells in vitro. Further, 
dermal fibroblasts secrete increased amounts of 
collagen type I and alter gene expression in response 
to either MSCs in co-culture or the SRM from MSCs. 
These data suggest that SRM from MSCs stimulate 
proliferation and migration of the key cell types in the 
wound. In addition, the SRM of MSCs imparts anti-
scarring properties to wound healing through the 
secretion of VEGF and hepatocyte growth factor (HGF), 
and through maintaining a normal balance between 

First, fibroblasts and myofibroblasts in the tissue 
surrounding the wound are stimulated to proliferate 
for 3 d[43]. The fibroblasts and myofibroblasts then 
migrate from the surrounding tissue into the wound, 
attracted by soluble factors TGF-β and platelet-derived 
growth factor (PDGF) that are released by platelets 
and inflammatory cells[44]. Appearing in the wound 
on the third day after injury, the accumulation of 
fibroblasts in the wound requires their phenotypic 
modulation. Within the wound, the fibroblasts greatly 
proliferate, producing and locally releasing the matrix 
proteins hyaluronan, fibronectin, proteoglycans, and 
type 1 and type 3 procollagen[45]. Abundant new ECM 
has accumulated at the end of the first week, further 
supporting cell migration that is essential for the repair 
process. Fibroblasts then change to a myofibroblast 
phenotype. The myofibroblast phenotype contains 
thick actin bundles that extend below the plasma 
membrane with pseudopodia attaching to fibronectin 
and collagen in the ECM. Wound contraction, critical to 
the reparative process by closing the wound margins, 
then takes place as the actin bundles begin to retract. 
Any overabundance of unneeded fibroblasts are then 
eliminated by apoptosis[44].

The three phases of wound healing involve MSCs 
to varying degrees, whereby, for example, they recruit 
macrophages to the wound site[46], induce the fibroblast 
response to injury[47], and remodel the wound site[48], 
including a preferential release of collagen type III 
at the site[35]. While the MSCs contribute directly to 
wound repair by releasing molecules such as collagen 
to the wound[35], the MSCs also act indirectly by 
releasing an instruction set to other cells thus initiating, 
for example, progenitor cell migration to the wound[49]. 
The MSCs are key to the wound’s ability to proceed 
beyond the inflammatory phase and not maintain a 
chronic wound state. A significant early component of 
the mechanism of action of MSCs is their attenuation 
of the inflammatory response. The addition of MSCs 
to an active immune response decreases secretion of 
the proinflammatory cytokines TNF-α and interferon-γ 
(IFN-γ) while simultaneously increasing the production 
of anti-inflammatory cytokines IL-10 and IL-4. These 
anti-inflammatory properties of MSCs impart a 
particular benefit to chronic wound treatment through 
SRM, given the SRM can restart healing in chronic 
wounds by advancing the wound past a chronic 
inflammatory state into the next stage of healing. 

Many studies have shown that MSCs possess 
antimicrobial activity, critical for clearance of infection 
in the wound. The antimicrobial activity of MSCs is 
mediated by two mechanisms: (1) direct secretion 
of antimicrobial factors such as LL-37[50]; and (2) 
indirect, by secreting immune-modulating SRM that 
will upregulate the bacterial killing and phagocytosis of 
immune cells[51]. Further, the phenotype of macrophages 
can be regulated by MSCs into various M1 and M2 
classes directed to either antimicrobial, phagocytic 
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TGF-β1 and TGF-β3. The pathways underlying MSC 
processes in wound healing are complex, and further 
details of these processes can be found in recent 
reviews. Stem cell niches in other regions of the body, 
including the hematopoietic stem cell niche, appear to 
be equally complicated as the skin stem cell niche with 
a rich interaction amongst many cell types, including a 
number of stem cell types and their respective SRM[59].

NATURALLY INDUCED PLURIPOTENT 
STEM CELL WITHIN THE STATE 
DEPENDENT STEM CELL NICHE
Natually occurring endogenous iPSs, or naturally 
induced pluripotent stem cells (NiPSs) occur within the 
state dependent stem cell niche. While induction to a 
totipotent state has not been realized, dedifferentiation 
seems to be an important adaptive mechanism in 
both the animal[60] and plant kingdoms[61] where cells 
can be induced to become pluripotent. In addition 
to the therapeutic development of embryonic stem 
cells and iPSs, the use of adult stem cells and the 
molecules that they release have been intensively 
investigated and have current therapeutic applications. 
Further, SRM from stem cells or other molecules from 
neighboring cells, such as ciliary neurotrophic factor 
(CNTF), have been shown to dedifferentiate myoblasts 
into multipotent progenitor cells. The dedifferentiated 
myoblasts were then able to differentiate into several 
new phenotypes[62].

The endogenous mechanisms of adult stem cells, 
and possibly somatic cells in the stem cell niche, seem 
to include the ability to reprogram themselves into 
more primordial states that are pluripotent. That is, 
the adult stem cell, and even somatic cells, may exist 
in a state of dynamic transition between different 
levels of potency that is dependent on many factors, 
including paracrine and autocrine factors in the SRM 
from surrounding cells in the stem cell niche, and by 
the physical, chemical, and electrical state of the stem 
cell niche[63-65]. Recently, treatment with reversine, a 
type of purine, transformed 3T3-L1 preadipocytes into 
MSC-like cells, as evidenced by the expression of MSCs 
marker genes. The transform allowed differentiation of 
lineage-committed 3T3-L1 preadipocytes to osteoblasts 
under the osteogenic condition in vitro[66]. Beyond 
transcription factors contained in the SRM, physical 
manipulation through the cytoskeleton is known to 
transmit signals to the chromatin[67] and reprogram 
cells[68], and may represent an additional biophysical, 
in addition to biochemical means, for driving cells to 
varying levels of potency. Reprogramming of differen-
tiated cells to stem-like cells has been described in 
several tissues and is well studied in the epithelial-
mesenchymal transition where a differentiated epithelial 
cell transforms to a mesenchymal cell with a stem cell-
like phenotype. Thus, by understanding adult stem cell 

function, we may develop the means to use these cells 
in many ways to maintain and heal the body, including 
a means of controlling naturally occurring iPSs (NiPSs).

The physical, chemical, and electrical state of the 
stem cell niche will have profound influences on stem 
cell function. Alterations of the stem cell niche in 
diseases such as diabetes will decrease the ability of 
endogenous stem cells, or autologous administered 
stem cells, to increase neovascularization and promote 
wound healing[33].

In Figure 1, we see levels of interactions that may 
control the natural iPSC state. Considering wound 
healing as described in the aforementioned section, 
many factors, such as histamine, an important regulator 
of cell fate, including neurons[69,70] are released at the 
site of injury. As an example of the actions of these 
factors, histamine will activate TRPM4 calcium channels 
in the mesenchymal stem cells and bias the dynamic 
transition of the stem cells toward differentiation into 
the needed mature cells types at the injury site[71], 
including osteoclastogenesis[72]. Similarly, exposure to 
sunlight will stimulate vitamin D3 levels and induce 
differentiation of stem cells, doing so through a down-
stream pathway that includes histamine[73]. 

Reprogramming of cells to push the dynamic tran-
sition towards more potency has been specifically 
shown in mammalian cells whereby muscle cells[74] 
and pancreas cells[75] will dedifferentiate into a more 
pluripotent state following injury, and where fibroblasts 
were incubated in the SRM of adipose-derived stem 
cells. The fibroblasts displayed gene expression that 
was indicative of pluripotency in which repressive 
histone modifications were reduced, and increased 
global demethylation was present. The Col1a1 and 
Col1a2 genes, typically found in differentiated cells 
only, demonstrated reduced expression, and also 
demonstrated increased methylation in the 5′-flanking 
regulatory regions[76]. Of the many factors released 
by mesenchymal stem cells, microRNA is one of the 
factors that have been shown to induce pluripotency in 
mouse and human somatic cells[77]. In general, stress 
is a key factor that can naturally induce pluripotency. 
For example, simple isolation of mammalian cells 
from contact with other cells and their normal niche, 
originally exhibiting a limited differentiation potential, 
may become multipotent[78]. Pluripotent cells can 
reside in the naïve state or the primed state where the 
naïve state is more potent than the primed state[79]. 
Dedifferentiation under hypoxic conditions can drive 
committed cells beyond the primed state fully back to 
the naive state of potency where the pluripotent cells 
are then capable of forming teratomas[80].

Cancer cells and pluripotent stem cells follow 
certain common rules. Both cell types, when placed 
in a dysregulated extracellular matrix, will exhibit 
an increased state of potency. Cancer cells, when 
returned to a regulated ECM, will revert to a normal 
phenotype[58,81]. Likewise, dedifferentiation of cells into 
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a pluripotent state can occur when the cell is isolated 
and loses connections with other cells and the ECM[78], 

and stem cells that have differentiated can revert to a 
more pluripotent state by changes in the concentration 
of the ECM associated protein, L-proline[82]. Thus, 
induction of pluripotent stem cells is a naturally 
occurring phenomenon that can be controlled in vivo 
for therapeutic effect by manipulating the state of the 
stem cell niche.

CONCEPTS OF A SYSTEMS 

THERAPEUTIC
An abnormality in one pathway, or even at one level 
of the organism, such as at the level of genes, does 
not explain a disease. Rather, disease reflects the 
perturbations of the complex system of biological 
pathways acted on by a complex set of environmental 
regulators. Most previous work to understand disease 
and drug response traits have focused on single 
dimensions, and even single pathways, of the system. 
Achieving a more comprehensive and predictive 
understanding of disease and drug response requires 
examining living systems in multiple dimensions and 

at multiple scales. Although biological engineering 
principles are necessary, with the requirement to 
remove superfluous complexity for the development 
of a particular therapeutic, the individual components 
of complex systems are highly coupled such that 
the individual components cannot be analyzed in 
isolation. This predicament in biology, such as the 
desire to place the sequencing of the genome as the 
singular predictor of disease, is similar to that dictum 
in physics where electrodynamics was broken down 
into the misbegotten particles and fields theorem by 
Bohr and his Copenhagen interpretation[83]. Biological 
complexity is an extreme example of complexity, 
arising from a biological system that includes active, 
plastic components, nested feedback loops, flexible 
design principles, component multi-functionality, 
and multiple layers of system dynamics developed 
through evolutionary processes that are, at least 
partially, driven through the downward causation of 
environmental regulators. The power of the dynamic 
biological system has been recognized in engineering 
where, for example, neuromorphic engineering[84] has 
become an important player in the development of 
new computer chip technologies such as TrueNorth[85].

Despite the use of systems analysis in the fields 
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Figure 1  General model of wound healing. The wounded state sends a homing signal to bone marrow stem cells and disrupts the ECM. Disruption of the ECM will shift 
the dynamic transition of potency towards dedifferentiation and the more pluripotent state. The more pluripotent state will cause the cells to proliferate. After proliferation, 
the migration of bone marrow stem cells to the wound site will release stem cell released molecules, including GDF-11, that stops proliferation and induces differentiation 
allowing newly differentiated somatic cells to repair the tissue. Thus, in our model, GDF11 is released from BMSCs and is a master regulator of stem cell transcription that 
inhibits cell proliferation and migration by down-regulating the expression of numerous genes involved in both these processes[93]. ECM-D: Extracellular matrix disruption; 
SC: Somatic cell; PPSC: Pluripotent stem cell; BMSC: Bone marrow stem cell; PSC: Potent stem cell.
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of biology and therapeutic development, therapeutic 
development has often remained as one using systems 
biology techniques for finding the one pathway, or 
the one target, that is best perturbed to develop the 
therapeutic. “Finding the magic bullet” is a common 
phrase that describes this common problem. A shift in 
mindset to one of finding the minimum set of pathways, 
or the minimum set of targets, using the “minimum 
molecule set” to perturb these targets in order to best 
develop a therapeutic is now needed. Thus, biological 
function results from a system, and a particular disease 
state is the result of multiple perturbations in that 
system, not just one perturbation. Therefore, through 
an understanding of complex pathways in normal and 
disease states, and using computationally intensive 
biological design-build-test-analyze cycles, with 
therapeutic molecule production batches based on this 
process, we can hope to develop safe and efficacious 
therapeutics. This will occur through a multi-targeted, 
“systems therapeutic” approach. The approach then is 
to use a system of molecules, the minimum molecule 
set, that is not overly reductionist so as to be ineffective, 
but instead use the optimal number of molecule species 
that are sufficient to realize a safe and efficacious 
therapeutic. Recognizing that diseases are the result 
of complex interactions among many networks has 
significant implications for drug discovery, leading to 
the design of combinations of molecular species that 
impact entire network states, rather than designing 
reductionist drugs that target specific genes that are 
associated, often weakly, with disease. 

DEVELOPMENT OF SYSTEMS 
ANTIMICROBIALS
The attempt to develop animal-derived antimicrobials 
is not new. For example, in the 1990s great hope, and 
many dollars spent, was placed on the development of 
a small peptide from frog (Xenopus laevis) skin as an 
antibiotic[86]. The observation that frog skin heals itself, 
despite the frog living in a very septic environment, led 
to the formation of Magainin Pharmaceuticals. After 
years, and millions of dollars, spent on development 
and Phase II clinical trials, today Magainin’s assets 
are the auction block (Magainin changed names to 
Genera and then liquidated: http://www.fiercebiotech.
com/press-releases/genaera-corporation-announces-
approval-plan-liquidation-and-dissolution-board-
direc-0). Why? Because the frog’s skin does not heal 
itself through a reductionist approach with only one 
molecule (a peptide), and Magainin didn’t fully learn the 
frog’s lesson. The lesson not learned was that Magainin 
developed their antibiotic based on one peptide, a 
reductionist approach, instead of a mix of antimicrobial 
factors, a systems antimicrobial approach.

Lipids were first demonstrated by Koch[87] to 
have antibiotic activity, and exists in human skin, for 
example, as a wide range of molecule types comprising 

a significant part of the innate immune system[88]. 
Like Magainin, a similar reductionist approach was 
used in the development of squalamine, a lipid 
compound (aminosterol) derived from the dogfish 
shark (Squalus acanthias). Squalamine was initially 
discovered on the basis of its anti-bacterial activity, 
and has broad spectrum antimicrobial activity against 
fungi, protozoa, and many viruses[89]. Sadly, isolated 
squalamine was never approved for antimicrobial 
use and is now sold as a nutritional product by a 
number of companies in capsule form. Once again, the 
“Copenhagen reductionist” approach to therapeutic 
development has failed us. Here again, instead, an 
approach to developing antimicrobials using a collection 
of molecules, including peptides and lipids, is in 
development.

DEVELOPMENT OF CANCER SYSTEMS 
THERAPEUTIC
Cancer is strongly associated with a deregulated 
ECM[58,90]. While cancer and stem cells are regulated 
by many factors, both cancer cells and pluripotent stem 
cells follow certain common rules such as regulation by 
the ECM. Both cell types, when placed in a dysregulated 
extracellular matrix, will exhibit an increased state of 
potency. Cancer cells, when returned to a regulated 
ECM, will revert to a normal phenotype[58,81]. As 
beautifully explained by Mina Bissell at University 
of California Berkeley, during development, cells 
can spatially arrange themselves, differentiate, and 
change their SRM composition in response to a 
variety of signals in the microenvironment, including 
morphogens, biophysical manipulation, juxtacrine 
signals, and the ECM. All of these components 
in the microenvironment are sensitive to signals 
from other tissues and organs of the developing 
embryo as well as through downward causation from 
the macroenvironment. However, following organ 
formation, the microenvironment/ECM integrates 
and constrains the organ architecture and function, 
thus ensuring structural and functional homeostasis 
and therefore, a normal organ phenotype. However, 
when the organ architecture in adults is insulted by 
mutations and/or changes in the microenvironment 
such as ECM dysregulation and/or inflammation, that 
organ is transformed by the initiation of developmental 
and embryonic circuits. However, in the adult, the 
microenvironment is no longer embryonic in nature, 
and the ECM dysregulation and inflammation leads 
to a pluripotent state, i.e., the cancerous state. 
Bissell argues that tumors become new evolutionary 
organs searching for homeostasis[58]. Recent work 
fits the paradigm of Bissell, such as that of Liou et 
al[91] who describes the detailed steps that Kras-
mutated acinar cells follow as they change into duct-
like cells with a more potent state. They observed 
that Kras proteins in the acinar cells switched on 
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intercellular adhesion molecule-1. This in turn attracts 
macrophages. The macrophages then release a 
variety of proteins, including MMPs that degrade ECM. 
Following dysregulation of ECM, the acinar cells then 
transform into the stem cell-like phenotype. Thus, the 
direct link between Kras mutations, the inflammatory 
environment, and dysregulated ECM that drive the 
initiation of pancreatic cancer is demonstrated.

Similar to the cancer state, dedifferentiation of 
cells into a pluripotent state can occur when the cell 
is isolated and loses connections with other cells and 
the ECM[78], and stem cells that have differentiated 
can revert to a more pluripotent state by changes 
in the concentration of the ECM associated protein, 
L-proline[82]. Given that that the ECM can act through 
mechanical and biochemical mechanisms to regulate 
the cancer phenotype, one important means to revert 
the cancer phenotype to the normal somatic cell 
phenotype is to use S2RM technology to reestablish 
a normal ECM microenvironment for the cancer cell. 
That is, using one progenitor cell type to release the 
building blocks of the ECM, such as collagen, and using 
another stem cell type to release other building blocks 
and the instruction sets to build the architecture of 
the ECM, the normal state of the ECM can be rebuilt 
and lead to the reversion of the cancer cell phenotype 
to a more normal somatic cell phenotype as depicted 
in Figure 2. Thus building on the model developed 
by Mina Bissell, our model suggests that that the 
microenvironment/ECM, which is largely comprised 
of, and developed by S2RM, is key to the regulation 
of the initiation and degree of pluripotency of cells, 
controls the “stop” signals for driving potency and then 

initiates differentiation of the pluripotent stem cells. 
The S2RM thus controls homeostasis whereby the 
state of dynamic transition between different levels of 
potency[92] is set to a proper level in which to produce 
enough new cells to maintain and heal tissue, but 
not too much so as to allow uncontrolled, cancerous 
growth of the tissue. 

In summary, the S2RM technology provides a 
natural means for mimicking and stimulating the 
healing properties of the human body. Instead of using 
foreign molecules, natural molecules are used that 
will induce the initiation of natural processes with little 
or no side-effects. Further, instead of using a small 
molecule approach where one molecule interacts at 
one pathway underlying a multi-pathway disease is 
used, here the S2RM approach uses multiple molecules 
to perturb multiple pathways underlying the disease, 
thus yielding a more efficacious result than the one 
molecule-one pathway reductionist approach. 

The S2RM approach will introduce all of the needed 
molecules to the tissue to induce a full wound healing 
cascade of events, unlike an approach using the 
molecules from one stem cell type that will introduce 
only a portion of the needed molecules and thus provide 
a fraction of the efficacy that the S2RM provides. And, 
S2RM uses the particular molecules from the particular 
stem cells types relevant to the particular tissue to 
be healed. This is distinct from the “one size fits all” 
approach where one stem cell type is used to develop 
therapeutics for the whole body. Therefore, S2RM 
provides all of the building blocks, such as the different 
collagen types, to rebuild the tissue, and also provides 
the instruction set molecules, such as microRNA, that 
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Figure 2  Regulation of the cancer/pluripotent phenotype by stem cells and extracellular matrix. The cancer/pluripotent cell phenotype can be regulated by the 
extracellular matrix (ECM) and stem cells, where cancer cells can be removed from a dysregulated ECM and placed into a normal ECM and the cancer/pluripotent 
phenotype will revert to a normal, somatic cell phenotype. Likewise, if a dysregulated ECM is reconstructed into a normal state, the cancer/pluripotent phenotype will revert 
to the normal somatic cell phenotype. Further regulation of the cancer/pluripotent phenotype can be regulated by a number of factors, including microRNA contained within 
exosomes that were released from mesenchymal stem cells serving to change the state of the cancer cell into one of quiescence. MBSC: BM-stroma cell.
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will deliver the needed architectural commands that 
will lay the building blocks in their proper places for 
that particular tissue. During this rebuilding process, 
the immune response will also be modulated by S2RM, 
so that inflammation is quelled, allowing the rebuilding 
to proceed within a normalized framework that is 
not swollen. The S2RM rebuilding process institutes 
two fundamental stem cell healing processes: (1) 
Mimicking the actions of multiple stem cell types and 
the molecules that they release in the relevant tissue, 
and (2) reconditioning the endogenous stem cell 
niche itself and driving the niche to a more primordial, 
potent state, allowing endogenous stem cell processes 
to better induce a healing response. Thus, a systems 
therapeutic approach using multiple molecules from 
multiple stem cell types called S2RM is used to develop 
a safer, more natural, and more efficacious therapeutic 
that both mimics and facilitates the natural adult stem 
cell healing processes of our body.
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