
apoptosis that can yield variable outcomes in stem cell 
survival and be reliant upon proliferative pathways that 
include Wnt signaling, Wnt1 inducible signaling pathway 
protein 1 (WISP1), silent mating type information 
regulation 2 homolog 1 (Saccharomyces cerevisiae ) 
(SIRT1), and trophic factors. mTOR also is a necessary 
component for the early development and establishment 
of stem cells as well as having a significant impact in the 
regulation of the maturation of specific cell phenotypes. 
Yet, as a proliferative agent, mTOR can not only foster 
cancer stem cell development and tumorigenesis, but also 
mediate cell senescence under certain conditions to limit 
invasive cancer growth. mTOR offers an exciting target for 
the oversight of stem cell therapies but requires careful 
consideration of the diverse clinical outcomes that can be 
fueled by mTOR signaling pathways.
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Core tip: Mechanistic target of rapamycin, the mecha
nistic target of rapamycin, can directly impact stem cell 
maintenance, proliferation, and differentiation to offer 
new therapeutic strategies for multiple disease entities.
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Abstract
Stem cells offer great promise for the treatment of 
multiple disorders throughout the body. Critical to this 
premise is the ability to govern stem cell pluripotency, 
proliferation, and differentiation. The mechanistic target 
of rapamycin (mTOR), 289kDa serine/threonine protein 
kinase, that is a vital component of mTOR Complex 1 
and mTOR Complex 2 represents a critical pathway for 
the oversight of stem cell maintenance. mTOR can control 
the programmed cell death pathways of autophagy and 
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289-kDa serine/threonine protein kinase that is encod-
ed by a single gene FRAP1[1,2]. mTOR, also known as 
the mammalian target of rapamycin and the FK506-
binding protein 12-rapamycin complex-associated 
protein 1, oversees a complex array of cellular functions 
that involve gene transcription, cellular proliferation, 
senescence, metabolism, survival, and cellular death. 
The target of rapamycin (TOR) was initially identified 
in Saccharomyces cerevisiae with the genes TOR1 and 
TOR2 that encode two isoforms in yeast Tor1 and Tor2 
through the use of rapamycin-resistant TOR mutants[3]. 
Rapamycin is a macrolide antibiotic derived from 
Streptomyces hygroscopicus that that can inhibit TOR 
as well as mTOR activity.

mTOR is a vital component for the function of the 
protein complexes mTOR Complex 1 (mTORC1) and 
mTOR Complex 2 (mTORC2) (Figure 1)[4-7]. Rapamycin 
primarily inhibits mTORC1 by blocking mTOR phos-
phorylation[8]. However, mTORC2 activity can be limited 
during chronic administration of rapamycin. mTORC1 is 
composed of Raptor (Regulatory-Associated Protein of 
mTOR), the proline rich Akt substrate 40 kDa (PRAS40), 
Deptor (DEP domain-containing mTOR interacting 
protein), and mLST8/GbL (mammalian lethal with 
Sec13 protein 8, termed mLST8). Phosphorylation of 
Raptor through the protein Ras homologue enriched in 
brain (Rheb) leads to mTORC1 activation. PRAS40 is 
inhibitory to mTOR activity and can prevent the binding 
of mTORC1 to Raptor[9]. Phosphorylation of PRAS40 by 
protein kinase B (Akt) frees PRAS40 from Raptor and 
allows PRAS40 to be sequestered by the cytoplasmic 
docking protein 14-3-3 to activate mTORC1[4-7]. Similar 
to PRAS40, Deptor inhibits mTORC1 activity through the 
binding of the FAT domain of mTOR (for FKBP associated 
protein, Ataxia-telangiectasia, and Transactivation/
transformation domain-associated protein). In contrast 
to PRAS40 and Deptor, mLST8 fosters mTOR kinase 
activity through p70 ribosomal S6 kinase (p70S6K) 
and the eukaryotic initiation factor 4E (eIF4E)-binding 
protein 1 (4EBP1) that bind to Raptor[10]. PRAS40 can 
block mTORC1 activity by preventing p70S6K and 
4EBP1 to associate with Raptor[9,11].

mTOR activity also is controlled by Akt and AMP 
activated protein kinase (AMPK) through the hamar-
tin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 
2) (TSC1/TSC2) complex (Figure 1)[12,13]. TSC2 is 
considered to be a principal site to govern the activity of 
the TSC1/TSC2 complex that is an inhibitor of mTORC1. 
As a GTPase-activating protein (GAP) that can convert 
Ras homologue enriched in brain (Rheb-GTP) to the 
inactive GDP-bound form (Rheb-GDP), TSC2 prevents 
the activity of Rheb-GTP and blocks mTORC1 activity 
by limiting binding of 4EBP1 to mTORC1. Akt can 
phosphorylate TSC2 to disrupt the TSC1/TSC2 complex, 
force TSC2 to be sequestered by the cytoplasmic protein 
14-3-3, and activate mTORC1[14]. It should be noted 
that under some cellular protection scenarios, a limited 
activity of TSC2 as well as AMPK appears necessary 
since complete knockdown of TSC2 can prevent cellular 

protection[15].
AMPK also provides a mechanism to control the 

activity of the TSC1/TSC2 complex, but in contrast to 
Akt serves to promote TSC2 activity and block mTORC1 
function. AMPK phosphorylates TSC2 to enhance GAP 
activity to process Rheb-GTP into Rheb-GDP that 
can then block mTORC1 activity. Interestingly, AMPK 
can influence sirtuin (silent mating type information 
regulation 2 homolog) 1 (S. cerevisiae) (SIRT1) acti-
vity that can be critical for stem cell survival and 
proliferation[16]. AMPK increases the cellular NAD+/NADH 
ratio that results in the deacetylation of the SIRT1 
targets peroxisome proliferator-activated receptor-
gamma coactivator 1 (PGC-1α) and forkhead transcri-
ption factors FoxO1[17] and FoxO3a[18]. AMPK also 
can increase nicotinamide phosphoribosyltransferase 
(NAMPT) activity that catalyzes the conversion of 
nicotinamide to nicotinamide mononucleotide[19], increa-
ses nicotinamide adenine dinucleotide (NAD+) levels, 
decreases levels of the SIRT1 inhibitor nicotinamide, and 
promotes SIRT1 transcription[20-22]. SIRT1 up-regulation 
in combination with AMPK activation promotes the 
induction of autophagy that can protect endothelial cells 
exposed to oxidized low-density lipoproteins[23]. Similar 
to AMPK that is an inhibitor of mTOR, SIRT1 appears 
to exert its effects over cellular proliferation through 
blockade of mTOR[24]. SIRT1 inhibits mTOR activity to 
preserve the integrity of embryonic stem cells during 
oxidant stress[25]. SIRT1 also inhibits mTOR signaling to 
foster neuronal growth[26] and assist with mesangial cell 
proliferation during high glucose exposure[27]. 

In relation to mTORC2, this complex consists of Rictor 
(Rapamycin-Insensitive Companion of mTOR), mLST8, 
Deptor, the mammalian stress-activated protein kinase 
interacting protein (mSIN1), and the protein observed 
with Rictor-1 (Protor-1)[28-33]. Rictor and mSIN1 through 
mTORC2 can activate Akt to promote cell survival[11,29,34]. 
Protor-1 is a Rictor-binding subunit of mTORC2 and is 
believed to activate serum and glucocorticoid induced 
protein kinase 1 (SGK1), since loss of Protor-1 reduces 
the hydrophobic motif phosphorylation of SGK1 and the 
substrate N-Myc down-regulated gene 1 in the kidney 
(NRDG1)[35]. mTORC2 is a member of the protein kinase 
A/protein kinase G/protein kinase C (AGC) family of 
protein kinases and is activated by growth factors to 
control ion transport. mTORC2 also controls cytoskeleton 
remodeling through protein kinase C-α (PKCα) and over-
sees cell migration through the Rac guanine nucleotide 
exchange factors P-Rex1 and P-Rex2 and through Rho 
signaling. In contrast to mTORC1, mTORC2 is activated by 
the TSC1/TSC2 complex through the N-terminal region of 
TSC2 and the C-terminal region of Rictor[36]. 

MECHANISTIC TARGET OF RAPAMYCIN 
AND STEM CELL PROGRAMMED CELL 
DEATH
mTOR is an important component in the control of 
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programmed cell death that involves autophagy and 
apoptosis for stem cell proliferation and survival (Figure 
2). The process of autophagy recycles cytoplasmic 
components to remove defective organelles that 
can no longer be used by the cell[37]. Autophagy has 
three categories of chaperone-mediated autophagy, 
microautophagy, and macroautophagy[38]. Chaperone-
mediated autophagy uses cytosolic chaperones that 
transport cytoplasmic components across lysosomal 
membranes[39]. Microautophagy sequesters components 
of the cytoplasm through invagination of the lysosomal 
membrane for digestion[40]. The most prevalent of 
the three categories is macroautophagy that seque-
sters cytoplasmic proteins and organelles into autoph-
agosomes. These autophagosomes then fuse with 
lysosomes for degradation and are recycled for future 
use[24,41].

In yeast and mammalians, TOR and mTOR are 
associated with genes that control autophagy[4,6,42]. 
At least 33 autophagic related genes (Atg) have been 
identified in yeast that can affect multiple disorders 
including cancer, diabetes, vascular disease, and 
neurodegenerative disorders[37,38,40,43-48]. In this group, 
Atg1 and Atg13 (also known as Apg13) are associated 
with phosphoinositide 3-kinase (PI 3-K), Akt, and 
the TOR pathways. When Atg13 is dephosphorylated 
such as during starvation, Atg1 is active to promote 
autophagy. Phosphorylation of Atg13 through a TOR 
dependent pathway releases it from Atg1 and lessens 
Atg1 activity. In mammals, the homologues of Atg1 are 
UNC-51 like kinase 1 (ULK1) and ULK2[4]. Mammalian 
Atg13 binds to ULK1, ULK2, and FIP200 (focal adhesion 
kinase family interacting protein of 200 kDa) to activate 

ULKs, promote phosphorylation of FIP200 by ULKs, 
and lead to the induction of autophagy[49]. Activation 
of mTOR prevents the induction of autophagy by 
phosphorylating Atg13 and ULKs to inhibit the ULK-
Atg13-FIP200 complex. 

Autophagy can become a vital determinant for 
stem cell survival and proliferation. In some stem 
cell populations, activation of autophagy can lead to 
stem cell demise. Breast cancer stem cells have been 
shown to succumb to apoptosis during the activation 
of autophagy and the inhibition of Wnt signaling[46]. 
Wnt proteins are cysteine-rich glycosylated proteins 
that oversee stem cell proliferation and tumor cell 
growth[50-56]. Reduction in autophagy also may prevent 
the development of cellular senescence[57]. Endothelial 
progenitor cells that lead to the regeneration of vascular 
endothelium become dysfunctional during exposure to 
elevated glucose as a result of autophagy activity[58]. 

However, under other conditions, autophagy appears 
critical for stem cell survival. In endothelial progenitor 
cells, SIRT1 activity prevents apoptotic cell death during 
oxidative stress through the induction of autophagy[59]. 
In human embryonic stem cells challenged with 
oxidative stress, autophagy was found to be protective 
and required SIRT1 activity with the down-regulation of 
mTOR[25]. Furthermore, activation of SIRT1 is necessary 
to promote autophagy to maintain proteostasis, produce 
energy during nutrient deprivation, and maintain muscle 
stem cell activation[60]. In such cases, SIRT1 may have 
an inverse relationship with mTOR to foster stem cell 
survival[16,20].

The programmed cell death pathway of apoptosis 
also has an important role with mTOR signaling and 
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Figure 1  The components of the mechanistic target of rapamycin regulatory pathways. The mechanistic target of rapamycin (mTOR) is an important component 
of mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2). The function and activity of mTOR is controlled by multiple pathways that include protein kinase 
B (Akt), AMP activated protein kinase (AMPK), and the hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex. mTORC1 is consists 
of Raptor (Regulatory-Associated Protein of mTOR), the proline rich Akt substrate 40 kDa (PRAS40), Deptor (DEP domain-containing mTOR interacting protein), 
and mLST8/GbL (mammalian lethal with Sec13 protein 8, termed mLST8). mTORC2 is composed of Rictor (Rapamycin-Insensitive Companion of mTOR), mLST8, 
Deptor, the mammalian stress-activated protein kinase interacting protein (mSIN1), and the protein observed with Rictor-1 (Protor-1).
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integrity (Figure 2). In murine experimental models, 
mTOR is used by the growth factors epidermal growth 
factor (EGF) and fibroblast growth factor (FGF) that are 
protective of stem cells and neurons[85-89] to maintain 
the proliferation of neural stem and progenitor cells[90]. 
EGF also uses the PI 3-K, Akt, and mTOR pathways to 
block cell injury such as during metabolic stress[91] and 
prevent memory impairment[92]. The growth factor brain 
derived neurotrophic factor (BDNF) relies upon mTOR 
activation for memory consolidation[93]. However, in 
some experimental models with growth factors, mTOR 
blockade with the induction of autophagy may take 
precedent over the inhibition of apoptosis to prevent 
cellular injury. During oxygen deprivation, cortical 
neurons are protected by BDNF through the induction 
of autophagy and the inhibition of mTOR[94].

MECHANISTIC TARGET OF 
RAPAMYCIN CONTROL OF STEM CELL 
PROLIFERATION AND MAINTENANCE
mTOR governs the proliferation and maintenance of 
stem cell in multiple systems of the body (Figure 2)[4]. 
The loss of the mTOR gene leads to limited trophoblast 
growth, faulty implantation, and inability to establish 
embryonic stem cells[95]. A decrease in proliferation of 
embryonic stem cells occurs during the deletion of the 
C-terminal six amino acids of mTOR that blocks the 
kinase activity of mTOR[96]. mTOR can maintain long-
term undifferentiated growth of human embryonic 

stem cell survival[61]. During the early stages of apop-
totic cell injury, the loss of plasma membrane lipid 
phosphatidylserine (PS) asymmetry occurs[62-64]. If 
membrane PS externalization is not reversed and 
allowed to remain, inflammatory cells are activated 
that seek out membrane PS positive cells to engulf and 
remove these cells. Under such circumstances, these 
membrane PS positive cells may remain functional 
but their ultimate loss leads to tissue injury[65-71]. 
During the later phase of apoptotic cell injury, cellular 
DNA is destroyed which is usually not considered 
a reversible process[72-75]. During most conditions, 
activation of mTOR and its related pathways of PI 3-K 
and Akt can block apoptotic cell death in stem cells. 
Inhibition of mTOR, such as with rapamycin, leads to 
endothelial progenitor cell apoptotic death that may 
be related to inhibition of growth factor signaling[76]. 
Growth factors that include erythropoietin (EPO)[77,78] 
are cytoprotective against apoptosis through mTOR 
activity against sepsis-associated encephalopathy[79], 
oxidative stress[80], cerebral microglial injury[81], and 
beta-amyloid (Ab) toxicity[82]. EPO has been shown 
to protect retinal progenitor cells from apoptotic cell 
death during oxidative stress through activation of 
the PI 3-K, Akt, and mTOR pathways (Figure 2)[83]. 
Interestingly, protection with EPO and mTOR may be 
lost with high exogenous EPO concentrations, since 
elevated concentrations of EPO result in decreased 
phosphorylation and activity of mTOR with subsequent 
increased apoptotic cell death[84]. Similar to EPO, other 
growth factors rely upon mTOR to maintain stem cell 
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Figure 2  Mechanistic target of rapamycin governs stem cell development, pluripotency, survival, and differentiation. The mechanistic target of rapamycin 
(mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), protein kinase B (Akt), AMP activated protein kinase (AMPK), and the hamartin (tuberous 
sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex each play a role in stem cell development and proliferation with downstream pathways. Stem cell 
maintenance and survival is reliant upon mTOR signaling pathways that work in concert with Wnt signaling, Wnt1 inducible signaling pathway protein 1 (WISP1), 
silent mating type information regulation 2 homolog) 1 (S. cerevisiae) (SIRT1), and trophic factors such as erythropoietin (EPO). Stem cell development is under 
the regulation of Wnt and WISP1. Regulation of mTOR can control stem cell differentiation and stem cell pluripotency. As a result, mTOR signaling pathways have 
oversight of stem cell development, pluripotency, survival, and differentiation.
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mTOR can prevent the conversion of astrocytoma cells 
to oligodendroglioma cells that can lead to glioblastoma 
multiforme[113]. Inhibition of mTOR signaling may reduce 
the population of cancer stem cells that can lead to 
disease recurrence and therapeutic resistance[114].

Under some conditions, mTOR may be protective 
against tumor cell growth by inhibiting proliferative 
pathways of Wnt. Wnt signaling can lead to rapid cell 
proliferation and cancerous growth, but in epithelial stem 
cells this process is blocked by mTOR that maintains 
cell senescence and prevents tumor growth[115]. Wnt 
may result in malignant melanoma[116], metastatic 
disease[117-120], and glioma proliferation[121,122]. It should 
be recognized that Wnt signaling also leads to beneficial 
and cytoprotective effects[52,54,123-125]. Loss of Wnt can 
result in human monocyte injury[126], impairment in bone 
repair[127], spinal cord injury[125], loss of neurogenesis[128], 
inhibition of wound healing[129], loss of stem cell 
differentiation[130], programmed cell death[38,66,131], and 
defects in placental development[132]. Wnt signaling 
activation can block inflammatory cell loss during 
neurodegenerative disorders[66,70,82,133], prevent cerebral 
ischemia[134,135], and protect cells during experimental 
diabetes[136-138]. Furthermore, trophic factors employ 
cytoprotective pathways of Wnt to prevent cerebral 
endothelial cell injury[137], preserve mesenchymal stem 
cells[139], block apoptosis during forkhead transcription 
factor activation[136,140], promote the maintenance of 
immune cells in the nervous system[81], and prevent 
Ab toxicity in cerebral microglia[82]. However, prolonged 
exposure of growth factors such as EPO that rely upon 
Wnt signaling can have ill effects with the proliferation 
of cancer[141-143], inflammation, and blood-brain barrier 
injury[144].

In the Wnt signaling pathway, Wnt1 inducible 
signaling pathway protein 1 (WISP1), also known as 
CCN4, is a member of the six secreted extracellular 
matrix associated CCN family of proteins that are 
involved in cellular survival and stem cell proliferation[145]. 
WISP1 can activate the components of the mTOR 
pathway that determine stem cell survival (Figure 2)[21]. 
WISP1 increases mTOR activity by blocking the inhibitory 
actions of the mTOR component PRAS40[146]. WISP1 
controls the post-translational phosphorylation of AMP 
activated protein kinase (AMPK), a pathway involved 
in stem cell proliferation and cellular metabolism[12,147]. 
WISP1 differentially decreases phosphorylation of 
TSC2 at Ser1387, a target of AMPK, and increases 
phosphorylation of TSC2 at Thr1462, a target of Akt[15]. 

As a tightly linked pathway to mTOR, WISP1 can 
significantly influence stem cell survival and proliferation. 
During stem cell migration, WISP1 expression is 
increased[148]. WISP1 is differentially regulated during 
human embryonic stem cell and adipose-derived stem 
cell differentiation. WISP1 expression is increased 
during human adipocyte differentiation[149] and is re-
pressed in adipose-derived stem cells during hepatic 
differentiation[51]. WISP1 can modulate induced pluri-
potent stem cell reprogramming[150,151]. WISP1 is 

stem cells. Inhibition of mTOR promotes pluripotency, 
cell proliferation, and blocks mesoderm and endoderm 
activities in embryonic stem cells[97]. mTOR activity 
also leads to mesenchymal stem cell senescence[98]. 
Yet, under some conditions, activation of mTOR sig-
naling components can lead to cell differentiation. In 
embryonic stem cells, mTOR signaling with p70S6K is 
limited, but once this signaling is increased, differen-
tiation ensues[99]. 

In the nervous system, loss of mTORC1 activity in 
neural stem cells leads to reduced lineage expansion, 
prevention of differentiation, and blocked neuronal 
production[100]. Loss of mTOR activity during aging may 
influence decreased neurogenesis. In the aged brain, 
mTOR signaling is reduced which leads to a reduction 
in the proliferation of active neural stem cells[101]. mTOR 
activity appears important for the timing and control of 
neurogenesis. Inhibition of mTOR through the RTP801/
REDD1 pathway delays neuronal differentiation. 
However, in newborn and mature neurons, levels of 
RTP801/REDD1 are diminished with increased mTOR 
activity to allow for the maturation of neurons[102]. 
Expression of mTOR is necessary for the neuronal 
phenotype of post mortem neuronal precursors[103]. Yet, 
the degree of mTOR activity may independently affect 
different populations of stem cells since in this model 
inhibition of mTOR activity leads to cell differentiation 
into astrocytic cells[90]. Akt and mTORC1 inhibition also 
has been shown to result in reduced neuronal stem 
cell self-renewal and earlier neuronal and astroglial 
differentiation[104]. Neighboring cells also may influence 
the growth of neuronal stem cells. Endothelial cells can 
promote mTOR activity and lead to the expansion of 
long-term glioblastoma stem-like cells[105].

In the cardiovascular system, mTOR is one of 
several components necessary for the proliferation of 
human embryonic stem cell-derived cardiomyocytes[106]. 
The activity of mTOR also controls the proliferation 
of hematopoietic stem and progenitor cells[107]. Main-
tenance of hematopoietic stem cells and inhibiting 
differentiation is tied to mTOR signaling and the 
reduction in phosphorylation of p70S6K[108]. Failure 
of endothelial progenitor cell development may be 
the result of decreased growth factor signaling and 
loss of mTOR activity[76]. Growth factors such as EPO 
have been shown to require mTOR activation to 
regulate bone homeostasis with osteoblastogenesis 
and osteoclastogenesis[109]. Differentiation of neural 
precursor cells that may be used for neurodegenerative 
disorders also is dependent upon EPO and mTOR[103]. 
mTOR may be necessary to increase angiogenesis 
from endothelial progenitor cells that may provide 
neuroprotection during cerebral ischemia[110]. The ability 
of human amniotic fluid stem cells to influence the 
differentiation of embryonic kidney cells is dependent 
upon mTOR activity[111].

During tumorigenesis, mTOR activation may affect 
neural precursor and oligodendroglial precursor cells to 
promote high-grade glioma proliferation[112]. Blockade of 
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reduction of the proliferation of active neural stem 
cells. Yet, mTOR signaling that can involve p70S6K also 
affects the modulation of stem cell genesis and cellular 
differentiation. The activation of mTOR rather that its 
inhibition can be necessary for stem cell differentiation 
as well as the ability to selectively promote the 
maturation of specific cell phenotypes. The control of 
stem cell development, migration, and proliferation by 
mTOR can be dependent upon both Wnt and WISP1 
signaling. 

Ultimately, consideration also must be given for the 
role mTOR plays to block tumorigenesis and the ability 
of mTOR signaling to at times accelerate tumor cell 
growth. Given its proliferative role, mTOR can foster 
cancer stem cell development and the conversion of 
differentiated cells into cells that have invasive growth. 
The degree of mTOR activity may be critical during 
tumorigenesis, since mTOR in some cell populations 
can either maintain cell senescence and prevent 
tumor growth or conversely promote cancer stem 
cell development that can lead to disease recurrence 
and therapeutic resistance. By clearly addressing 
the challenges that lie ahead, targeting mTOR and 
its signaling pathways offer an exciting approach to 
translate the development and utilization of stem cells 
into new therapeutic strategies for multiple disease 
entities.
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FUTURE CONSIDERATIONS
Stem cells represent an important strategy as well 
as a vital experimental tool for the treatment of 
multiple disorders that can affect diverse systems 
of the body that include the brain, cardiovascular 
system, metabolism, and tumor cell growth. mTOR, a 
289-kDa serine/threonine protein kinase and a critical 
component for the protein complexes of mTORC1 and 
mTORC2, oversees cellular development, proliferation, 
and senescence that can directly impact stem cell 
maintenance, proliferation, and differentiation. 

Although mTOR is a highly attractive target to 
control stem cell maintenance and differentiation, the 
complexity of this system raises a number of considera-
tions. How does mTOR interface with programmed 
cell death pathways that can directly affect stem cell 
populations? mTOR regulates the programmed cell 
death pathways of autophagy and apoptosis that have 
a complex outcome in stem cell survival. Through the 
modulation of Wnt signaling, activation of autophagy 
that necessitates inhibition of mTOR can block breast 
cancer stem cell growth. Yet, activation of autophagy 
that may work in concert with SIRT1 has been shown 
to play a vital role to maintain muscle stem cell 
activation and the protection of endothelial progenitor 
cells. Apoptosis that consists of both an early stage 
with membrane PS externalization and a late stage 
involving the destruction of genomic DNA usually relies 
upon activation of mTOR and its related pathways of 
PI 3-K, Akt, and growth factors such as EPO, EGF, FGF, 
and BDNF to block apoptotic cell death in stem cells. 
However, during some toxic environments, stem cells 
that become differentiated may require the induction of 
autophagy with mTOR inhibition to prevent apoptotic 
cell death. 

Another consideration for mTOR is its variable role 
in the maintenance of stem cell populations and the 
eventual differentiation of cells into specific phenotypes. 
mTOR is necessary for trophoblast growth, implantation, 
the establishment of embryonic stem cells, and the 
maintenance of pluripotency. Loss of mTOR, such as 
in the aged brain, may be a factor that results in the 
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