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Abstract
Mice have frequently been used to model human diseases 
involving immune dysregulation such as autoimmune 
and inflammatory diseases. These models help elucidate 

the mechanisms underlying the disease and in the 
development of novel therapies. However, if mice are 
deficient in certain cells and/or effectors associated with 
human diseases, how can their functions be investigated 
in this species? Mucosal-associated invariant T (MAIT) 
cells, a novel innate-like T cell family member, are a good 
example. MAIT cells are abundant in humans but scarce 
in laboratory mice. MAIT cells harbor an invariant T cell 
receptor and recognize nonpeptidic antigens vitamin B2 
metabolites from bacteria and yeasts. Recent studies 
have shown that MAIT cells play a pivotal role in human 
diseases such as bacterial infections and autoimmune and 
inflammatory diseases. MAIT cells possess granulysin, 
a human-specific effector molecule, but granulysin and 
its homologue are absent in mice. Furthermore, MAIT 
cells show poor proliferation in vitro . To overcome these 
problems and further our knowledge of MAIT cells, we 
have established a method to expand MAIT cells via 
induced pluripotent stem cells (iPSCs). In this review, we 
describe recent advances in the field of MAIT cell research 
and our approach for human disease modeling with iPSC-
derived MAIT cells.

Key words: Mucosal-associated invariant T cells; Induced 
pluripotent stem cells; Differentiation; Adoptive transfer; 
Inflammatory diseases; Autoimmune diseases; Disease 
modeling; Infectious diseases; Immunocompromised 
mouse

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Mucosal-associated invariant T (MAIT) cells, 
a novel innate-like T cell subset abundant in humans, 
play a pivotal role in immune-dysregulated diseases. 
However, MAIT cells are quite rare in laboratory mice and 
show poor proliferation in vitro . This makes it difficult 
to delineate their physiological functions in health and 
disease. Therefore, we developed a method to generate 
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human MAIT cells from induced pluripotent stem cells 
[redifferentiation of MAIT (reMAIT) cells]. Given that 
reMAIT cells harbor characteristics quasi-identical to those 
found in MAIT cells from human peripheral blood, they 
will be useful to model human diseases in animals.
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INTRODUCTION
T cells are distinguished from other lymphocytes, such 
as B cells and natural killer cells, by the expression of 
T cell receptors (TCRs) on the cell surface. T cells have 
been well-characterized as central players in adaptive 
immunity, so-called conventional T cells. The TCRs in 
conventional T cells consist of a heterodimer of α-chain 
and β-chain and are highly diverse owing to gene 
rearrangement together with insertion and/or deletion of 
nucleotides at the junctions between the gene segments, 
enabling them to recognize a wide variety of peptide 
antigens presented on major histocompatibility complex 
(MHC) molecules, which are also highly polymorphic[1]. 
In recent years, however, non-conventional type T cells 
termed “innate-like” T cells have received keen attention 
in immune homeostasis and diseases[2]. In contrast to 
conventional T cells, innate-like T cells express a limited 
set (semi-invariant) of TCRs and recognize nonpeptidic 
antigens presented on evolutionarily conserved non-
classical MHC molecules[3,4]. Innate-like T cells develop 
in the thymus, similar to conventional T cells[5]. There 
is a time lag between the initial antigen exposure 
and execution of the maximum effector function in 
conventional T cell responses. Given that conventional 
T cells transit from naïve to effector/memory stage 
through the recognition of peptidic antigens, these T cells 
are ready to be activated and to expand upon receiving 
secondary stimuli to exert effector functions. In marked 
contrast, innate-like T cells have already acquired such 
immune competence when leave the thymus. This may 
be relevant to the fact that innate-like T cells, but not 
conventional T cells, express the transcription factor 
promyelocytic leukemia zinc finger (PLZF), which directs 
effector differentiation of these cells during thymic 
development[5-7]. Thus far, it has been appreciated that 
the raison-d’etre of innate-like T cells consists in filling a 
gap between innate and adaptive immunity[8]. 

Mucosal-associated invariant T (MAIT) cells and natural 
killer T (NKT) cells are representatives of innate-like T cells 
expressing semi-invariant αβTCR in mammals[2]. Because 
the discovery of NKT cell ligands has preceded that of MAIT 
cells, most of our knowledge on diseases has been made 
with NKT cells abundant in laboratory mice (but quite few 
in humans). NKT cells play a pivotal role in the suppression 

of tumor growth and/or metastasis, and in ameliorating or 
aggravating autoimmune diseases[9,10]. NKT cells produce 
a plethora of cytokines, including Th1-, Th2- and Th17-
cytokines, upon stimulation, and MAIT cells also have 
a similar potential[11,12]. Although they are different in 
many aspects such as antigens, restriction molecules for 
development and/or differentiation, and abundance, they 
are common in that they play a critical role in infectious 
diseases and autoimmune and inflammatory diseases. 
Regardless of the their importance, it was not until 
recently that some information on MAIT cells has become 
available. In the last couple of years, there has been 
exciting progress regarding the functions of MAIT cells in 
the immunology field and in clinical settings. There are, 
however, some difficulties in studying MAIT cells, in that 
the frequency of MAIT cells is much lower in laboratory 
mice than in humans, and that MAIT cells show extremely 
poor proliferation in vitro with any T cell stimulants tested 
to date. Here, we provide an overview of recent advances 
in the study on MAIT cells and introduce our approach 
with induced pluripotent stem cell (iPSC) technology to 
overcome the experimental difficulties in MAIT cell study.

PHENOTYPIC FEATURES OF MAIT CELLS
MAIT cells are probably one of the most abundant T cell 
subsets in humans[13]. However, until quite recently, MAIT 
cells had been hidden behind conventional T cells because 
they are indistinguishable from other T cell populations 
by standard T cell phenotyping using cell surface markers 
such as CD3, CD4 and CD8. MAIT cells are distinguished 
from conventional T cells and other T cell subsets such as 
NKT cells and γδ T cells by the expression of an invariant 
TCR α chain, Vα7.2-Jα33 in humans and Vα19-Jα33 in 
mice, paired with a limited repertoire of TCR β chains; 
Vβ13 and Vβ2 are preferentially used in humans and 
homologous Vβ8 and Vβ6 in mice (Figure 1)[13,14]. Together 
with invariant TCRα Vα7.2, human MAIT cells express a 
C-type lectin CD161 and interleukin (IL)-18 receptor α 
chain (IL-18Rα) as specific markers[15,16]. Primarily, MAIT 
cells are defined as CD3+, Vα7.2+, CD161+ and IL-18Rα+. 
MAIT cells can further be classified into CD8+ (most 
abundant), CD4−CD8− [double negative (DN)] and CD4+ 
phenotypes (very few) in healthy human subjects[13,17]. 
In addition, MAIT cells display CD45RA−, CD45RO+, 
CD95high, and CD62Llow as their effector/memory T cell 
phenotype, and α4β7 integrin+, CCR9int, CCR7−, CCR5high, 
CXCR6high, and CCR6high, suggesting MAIT cells home 
to the intestines and liver[11,18,19]. High expression levels 
of CD161 in MAIT cells are accompanied by RORγt, IL-
23R and IL-21R, markers associated with Th17/Tc17 
type T cells[11,19,20]. Furthermore, MAIT cells possess PLZF, 
indicating the capacity to promptly produce cytokines 
upon stimulation without priming[7,17] and CD26+, a serine 
exodipeptidase, which processes chemokines in the 
extracellular matrix[20,21]. Accordingly, MAIT cells have the 
potential to release a variety of cytokines under various 
conditions: Interferon (IFN)-γ, tumor necrosis factor 
(TNF)-α, IL-2, IL-4, IL-10, IL-17, IL-22, granzymes, and 
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others, which anticipates the multifaceted roles in health 
and diseases[11,12,22].

MAIT CELLS AND MR1
The TCR of MAIT cells recognizes derivatives of vitamin 
B2 presented on the monomorphic MHC class-related 
molecule 1, MR1[18,23] (Figure 1). MR1 mRNA is expressed 
ubiquitously in all types of cells, whereas the MR1 
protein are not always on the cell surface but mainly in 
the endoplasmic reticulum[24,25]. Although vitamin B2 
derivatives are exogenous ligands from the biosynthetic 
pathway that some bacteria and yeasts possess, they 
are indispensable for the development of MAIT cells, 
because MAIT cells are absent in germ-free mice[18]. 
TCRs for MAIT cells and MR1 are highly conserved during 
evolution, which suggests the functional and physiological 
importance of MAIT cells and MR1 in animals[26]. Indeed, 
mouse and human MR1 molecules crossover part of the 
antigen presentation and activation in MAIT cells[26].

MAIT cell development is dependent on MR1. Lym-
phoid progenitors derived from CD34+ hematopoietic 
stem cells in the bone marrow migrate to the thymus, 
wherein they undergo random rearrangement at the TCR 
loci. MAIT cell progenitors harboring the TCR Vα7.2-Jα33 
are selected from CD4/CD8 double positive thymocytes 
that express MR1 loaded with unknown endogenous 
ligands[18,27]. MAIT cells then egress from the thymus 
as naïve cells and further differentiate into effector/
memory cells by recognizing commensal microflora-
derived vitamin B2 metabolites bound to MR1 at mucosal 
sites[18,19].

MAIT CELLS IN HEALTH AND DISEASES
MAIT cells consist of 1%-10% of T cells in the peripheral 
blood and of T cells in the intestinal lamina propria and 
20%-50% in T cells of the liver, but they are at least 10 
times less abundant in laboratory mice[11,28]. MAIT cells 
are already present in the tissues of second trimester 
fetuses. Fetal MAIT cells exhibit a naïve phenotype but 
have potential functions in the activation and secretion 
of cytokines upon antigen stimulation[29]. Although 
MAIT cells still showing a naïve phenotype and are low 
in frequency at birth, most of them have acquired a 
memory phenotype by 3 mo of age, and their frequency 
increases with age and reaches adult levels within 8-10 
years after birth[11]. This corresponds to the expansion 
and maturation of MAIT cells by commensal microflora 
colonizing after birth. The highest number of MAIT cells 
in PBMC is observed in adults aged 30-50 years, notably 
in females of reproductive age[30]. MAIT cells, especially 
CD8+ MAIT cells as the most abundant subset, decrease 
drastically with age, implying an association with waning 
immunity in the elderly[22,30].

The diseases in which a potential implication of MAIT 
cells has been reported are summarized in Table 1. A well-
defined function of MAIT cells in disease settings is the 
control of infections with bacteria and/or yeasts. MAIT cells 
are activated by bacteria-infected cells in a MR1-dependent 
manner, followed by release of proinflammatory cytokines 
and cytotoxic granules, and eventually killing the infected 
cells[16,31-33]. MAIT cells also express multidrug resistance 
transporter (ABCB1), which implies that MAIT cells are 
highly resistant to xenobiotics produced by bacteria[11]. 

Human: Vα7.2-Jα33
             Vβ2, 13
Mouse: Vα19-Jα33
             Vβ6, 8

MAIT

Invariant TCR 
nonpeptide

Mouse: Vα14-Jα18
             Vβ8.2, 7, 2
Human: Vα24-Jα18
             Vβ11

α-GalCer

CD161 NK1.1

Innate-like T cells Conventional T cells

Diverse TCR 

Vitamin B2
metabolites

NKT CD8+ T CD4+ T

MHC related 
protein 1 (MR1)

CD1d MHC-class Ⅰ MHC-class Ⅱ
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Figure 1  Comparison of the T cell receptors and the antigen presenting molecules among αβ T cell subsets. Invariant T cell subsets consist of mucosal-
associated invariant T (MAIT) cells and natural killer T (NKT) cells expressing invariant TCRs. MAIT cells and NKT cells recognize vitamin B2 metabolites on MR1, 
and α-galactosylceramide (α-GalCer) on CD1d, respectively. In contrast, conventional CD8+ and CD4+ T cells possess divergent TCRs and recognize a variety of 
peptides on major histocompatibility complex-class I and class II, respectively. TCRs: T cell receptors; MHC: Major histocompatibility complex.
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Table 1  Clinical relevance of mucosal-associated invariant T cells

Disease categories Diseases or status Features relevant to the diseases Ref.

Infectious diseases Pneumopathy Decrease in frequency and absolute number of MAIT cells in peripheral blood [16]
Tuberculosis (Mycobacterium 

tuberculosis)
Decrease in frequency and absolute number of MAIT cells in peripheral blood

Enriched in the lung
[16,37,92]

HIV/AIDS (opportunistic 
infection)

Decrease in frequency of MAIT cells in peripheral blood, guts, and lymph nodes
Failure of recovery of blood MAIT cells with successful cART

Long-term cART restore colonic but not blood MAIT cell levels
MAIT cells are depleted but retain functionality

[38-43,93,94]

Sepsis (severe bacterial infection) Decrease in frequency and absolute number of MAIT cells in peripheral blood of 
patients

[95]

P. aeruginosa infection with cystic 
fibrosis

Decrease in frequency of MAIT cells in peripheral blood of cystic fibrosis patients 
with P. aeruginosa infection

[96]

Cholera (Vibrio cholera O1) Activation of MAIT cells in the acute phase
No change of blood MAIT cell frequency in adult patients, but persistently 

decreased in child patients

[97]

Autoimmune 
diseases

Multiple sclerosis Accumulation of MAIT cells in the central nervous system lesions
Decrease in frequency of MAIT cells in peripheral blood

[44-46,48]

Increased CD161high CD8+ T cells in peripheral blood [98]
Chronic inflammatory 

demyelinating polyneuropathy
Accumulation of MAIT cells in the peripheral nerves [44]

Psoriatic and rheumatoid arthritis
Rheumatoid arthritis

Enrichment of CD161high CD8+ T cells in the joints and secretion of IL-17 from 
those cells

[99]

Inflammatory bowel disease Decrease in frequency and absolute number of MAIT cells (in particularly, in 
CD8+ and DN subsets) in peripheral blood

Increased MAIT cell levels in the synovial fluid
Decrease in CD8+ MAIT cells in peripheral blood of CD and UC patients

Accumulation of MAIT cells in the inflamed ileon of patients with CD 
Reduced IFN-γ production in CD patients and increased IL-17 production in CD 

and UC patients
Fewer MAIT cells in in the inflamed ileon of patients with CD and UC

Increased apoptosis in MAIT cells

[53]

[49]

[100]

Psoriasis MAIT cells reside in not only the dermis of patients but also that of health 
donors. MAIT cells may contribute IL-17 production in the dermis of patients

[51]

Celiac disease Decrease in frequency of MAIT cells in peripheral blood and guts of adult and 
pediatric patients

[52]

Systemic lupus erythematosus Decrease in frequency and absolute number of MAIT cells (in particularly, in 
CD8+ and DN subsets) in peripheral blood

Reduced IFN-γ production
Elevated expression of PD-1 in MAIT cells

[53]

Inflammatory 
diseases

Asthma Decrease in frequency of MAIT cells in blood, sputum, and endobronchial biopsy [101]

Diabetes type 2/obesity Decrease in frequency of MAIT cells in peripheral blood
Circulating MAIT cells display an activate phenotype

MAIT cells are more abundant in adipose tissue

[55,56]

Acute cholecystitis Decrease in frequency and absolute number of MAIT cells in peripheral blood [102]
Fibromyalgia syndrome vs 

Spondyloarthritis vs Rheumatoid 
arthritis

Defined analysis of MAIT cell phenotype among three diseases that exhibit a 
similar clinical manifestation

Decrease in frequency of MAIT cells in three diseases
Three diseases are able to distinguish by surface marker expression

[57]

Tissue transplant Cutaneous acute graft-vs-host 
disease

Infiltration of CD8+ T cells, CD161+, CCR6+, RORγt+ in the epidermis and dermis 
of patients with GVHD

[103]

Hemodialyzed and kidney 
transplant

Decrease in frequency of MAIT cells in peripheral blood
Implication for the susceptibility to infections in the patients

[104]

Tumors Kidney and brain tumors Presence of MAIT cells in tumors [58]
Physiological 
change

Fetus Rare and immature in the thymus, spleen, mesenteric lymph nodes
Mature and enriched in the guts, liver, and lung

[29]

Neonate/infant Naïve phenotype at birth. Acquisition of effector/memory phenotype and 
increase in frequency and number with age

[11,30]

Adult Maximum levels in the third and fourth decenniums
Higher amounts in females with reproductive age than in males

[30]

Aging Decrease in CD8+ MAIT cells and increase in CD4+ MAIT cells with age
Th2 shift in cytokine profile in elderly

[22,30]

CD: Crohn’s disease; UC: Ulcerative colitis; MAIT: Mucosal-associated invariant T; HIV: Human immunodeficiency virus; AIDS: Acquired 
immunodeficiency syndrome; P. aeruginosa: Pseudomonas aeruginosa.
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Although MAIT cells are extremely rare in laboratory mice, 
Francisella tularensis-infected mice revealed a massive 
expansion of MAIT cells in infected tissues earlier than 
the migration of conventional CD4+ and CD8+ T cells[34], 
which suggests their unique function in host defense 
against bacterial infection. Vα19 iTCR (invariant TCR) 
transgenic mice (a MAIT-cell-enriched mouse model) and 
MR1 knockout mice (a MAIT-cell-deficient model), MAIT 
cells seemed to prevent the growth of bacterial such as 
Mycobacterium abscessus, M. bovis (BCG), Escherichia 
coli and Klebsiella pneumoniae[16,35-37]. Accordingly, 
patients with bacterial infections such as tuberculosis 
and pneumopathies showed a decrease in MAIT cells in 
circulating blood, which might reflect their infiltration into 
the diseased sites[16,37]. In HIV-infected patients, MAIT cells 
were also depleted from the circulating blood irrespective 
of the disease stage (acute or chronic infection), and 
even with combinatorial anti-retroviral therapy[38-43]. 
Although it is believed that CD4+ T cell depletion causes 
immunodeficiency in HIV-infected patients, innate 
immune cells such as MAIT cells could play a crucial role in 
prevention of opportunistic infections with bacteria and/or 
fungi, which is a manifestation of AIDS.

Multiple sclerosis (MS) is a demyelinating disease of 
the central nervous system caused by autoreactive T 
cells. Although it is suggested that myelin-specific CD4+ T 
cells might play a central role in MS pathogenesis, recent 
studies have indicated that MAIT cells accumulate in 
brain lesions concomitantly with a decrease in peripheral 
blood in MS patients[44-48]. This evidence indicates that 
MAIT cells may play a pivotal role in MS pathology, but 
the underlying mechanisms are yet to be elucidated. 
An increase in IL-18 in the serum of MS patients could 
signify that MAIT cells tend to migrate into the brain[46]. 
In conjunction with the high levels of IL-17 and IFN-γ 
secretion from MAIT cells in MS patients, one study 
has demonstrated that MAIT cells in MS exhibited 
proinflammatory profiles[45], but another interpreted 
that these MAIT cells exhibited a regulatory function to 
suppress the pathogenic Th1 response[48]. Accordingly, a 
novel animal model will be required to examine the direct 
contribution of MAIT cells in MS pathogenesis, as will be 
described later in this review.

Inflammatory bowel diseases (IBDs), such as Crohn’
s disease and ulcerative colitis (UC), are autoimmune 
diseases in which the potential contribution of MAIT cells is 
suggested owing to their anti-microbial activity, intestinal 
homing, and capacity to promptly induce both Th1- and 
Th17-cytokines. Similar to MS patients, a decrease in MAIT 
cells in the peripheral blood concomitant with an increase 
in MAIT cells in the injured ileal regions of IBD patients has 
been reported[49]. In addition, peripheral blood MAIT cells 
from IBD patients showed more activated and proliferative 
state compared with that in healthy controls, suggesting 
that such alterations impinge on their functions. In fact, 
MAIT cells from the IBD patients produced significantly 
more IL-17 than from healthy donors, whereas there was 
no difference in IL-2 and TNF-α production[49]. MAIT cells 
from UC patients produced more IL-22, a Th17-cytokine, 

than controls. Upon binding to its cognate receptors 
on respiratory and gut epithelial cells, IL-22 evoked the 
expression of mucin and antimicrobacterial peptides, both 
of which play a critical role in the protection of epithelial 
cells from bacteria and/or fungal invasion[50]. Expression 
of these proteins may in turns enhance the protection and 
accelerate healing of cellular damage, implying the tissue 
protective functions of MAIT cells[49].

Numerous studies have reported possible implications 
of MAIT cells in psoriasis[51], celiac disease[52], systemic 
lupus erythematosus[53], diabetes[54,55] and obesity[55,56]. 
In our recent study, MAIT cells were shown to be useful 
to distinguish diseases that manifest similar symptoms 
such as fibromyalgia syndrome, rheumatoid arthritis, 
and spondyloarthritis by measuring the expression of 
cell surface antigens, in particular, chemokine receptors 
associated with homing[57]. MAIT cells tend to migrate 
toward peripheral tissues, particularly in inflammatory 
conditions, because they express a variety of chemokine 
and cytokine receptors. Most of these studies have implied 
that immune-mediated tissue damage is induced by the 
pathogenic proinflammatory features of MAIT cells. In 
contrast, MAIT cells may protect against the damage 
caused by inflammation, as described above for UC. 
Furthermore, a subset of MAIT cells (CD56−) accumulated 
in kidney and brain tumors and may operate in tumor 
immune responses[58]. 

As detailed above, there is no doubt about the 
importance of understanding the functions of MAIT cells 
in health and disease. However, the following questions 
still remain to be answered: What are the underlying 
mechanisms in immune regulation, particularly in innate 
immunity? And what are the molecules that control the 
functions of MAIT cells other than vitamin B2 metabolites? 
Although laboratory mice are useful to model human 
diseases, the study of MAIT cells is quite limited owing to 
their paucity in mice[18]. Furthermore, MAIT cells hardly 
propagate in vitro[11]. A recent paper, however, has showed 
the potential for MAIT cells to proliferate in response to 
E. coli and to anti-CD3/CD28/CD2 antibodies[33]. The 
expansion most likely depends on an precise balance 
between proliferation and activation-induced cell death, 
because MAIT cells are highly sensitive to activation-
induced cell death[33,38,59]. To overcome these difficulties, 
we attempted to produce human MAIT cells through iPSC 
technology.

GENERATION OF MAIT CELLS USING 
MAIT CELL-DERIVED iPSCS
iPSCs may be established from a variety of somatic 
cells[60-62] and be differentiated into T cells, as can 
embryonic stem cells (ESCs)[63-65]. Nonetheless, it is near-
impossible to obtain a monoclonal T cell with an antigenic 
specificity. This is primarily due to the fact that iPSCs 
and ESCs carry the germline configuration of TCRα and 
TCRβ, which are subject to random gene rearrangement 
during T cell differentiation, resulting in the generation of 
polyclonal T cells (Figure 2)[65]. Although iPSCs have been 

Sugimoto C et al . MAIT cells from iPSCs
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established with terminally differentiated T cells in PBMC, 
the authors did not address whether or not differentiation 
of these iPSCs into T cells culminated in regeneration of 
an antigen-specific T cell clone[66-68]. Recently, however, 
iPSCs have been established from tumor antigen-specific 
or HIV-specific CD8+ T cells with intention to rejuvenate 
T cells harboring the original epitopes, although the 
efficiency of such redifferentiation into the original clone 
remains unclear[69,70]. Well before these reports, we have 
shown that the progeny of a cloned mouse from NKT 
cells possessed an in-frame rearranged TCRα (Vα14-
Jα18) specific for NKT cells in the genome, and an 
increased number of NKT cells[71]. This indicated that 
in-frame rearranged TCRα (Vα14-Jα18) had a strong 
impact on the destiny of T cells in the thymus. Such a 
notion has been explored further in vitro. ESCs prepared 
through nuclear transfer with hepatic NKT cells (ntESCs), 
harboring in-frame rearranged TCRα (Vα14-Jα18), gave 
raise to T lymphocytes exclusively comprising NKT cells 
(> 94%) when ntESCs were subjected to the OP9/OP9-
DL system, which is well-known to promote T cell lineage 
differentiation from pluripotent stem cells[64,65,72,73]. We 
have exploited a corollary that iPSCs derived from MAIT 
cells would efficiently redifferentiate into MAIT cells under 
the same conditions, because MAIT cells are innate-
like T cells, and these iPSCs possess a rearranged TCRα 
(Vα7.2-Jα33), specific for MAIT cells[21]. This turned out 
to be the case.

MAIT cells purified from umbilical cord blood (CB-
MAIT) as TCR Vα7.2+ cells were reprogrammed with 
Sendai virus (SeV) vector harboring four reprogramming 
factors (Oct4, Sox2, Klf4 and c-Myc) (MAIT-iPSCs) 
without any proliferative stimulation as used in repro-
gramming of antigen-specific CD8+ T cells[69,70]. SeV is 
superior to other viruses, such as lentivirus, in that SeV 

does not integrate into the host genome, thus leaving 
the genomic DNA free from interruptions[21,67,69,74]. As 
expected, MAIT-iPSCs successfully redifferentiated into 
MAIT cell-like cells expressing Vα7.2, CD3, CD161, and 
IL-18Rα (reMAIT cells) with high efficiency (> 98%) in 
T-cell-permissive conditions (Figure 2)[21]. reMAIT cells 
generally display a naïve phenotype, but express a 
high level of CCR6 (a receptor directing mucosal tissue 
homing and IL-17 expression), recapitulating that CB-
MAIT cells that are still in an immature stage prior to 
exposure to commensal flora[16,17,21,75,76]. Furthermore, 
reMAIT cells produce an array of cytokines, chemokines, 
and cytotoxic granules, such as granulysin, perforin and 
granzyme A, in an MR1-dependent manner. reMAIT 
cells also protect mice from Mycobacterial infection 
upon adoptive transfer, holding a promise to realize cell 
therapy with these cells[21]. Taken together, reMAIT cells 
should function as innate-like T cells, although they are 
still immature[16,17,21].

FUTURE PERSPECTIVES – DISEASE 
MODELING USING MAIT CELLS 
DIFFERENTIATED FROM iPSCS 
reMAIT cells generated from iPSCs will be useful not only 
for deciphering their immunological functions in vivo but 
also for creating novel disease models in animals. Two 
types of genetically engineered mice, MR1-knockout 
mice and TCR transgenic mice, have been widely used 
to delineate the roles of MAIT cells in vivo (Tables 2 
and 3). Originally, MR1-knockout mice (MR1-/-) were 
generated to assess the roles of MR1 in the selection 
and expansion of MAIT cells in vivo[18]. MR1-knockout 
mice possessed severely decreased TCR Vα19-Jα33 
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expression compared with their littermate controls[18]. 
Thus far, MR1-knockout mice have been used as a model 
devoid of MAIT cells. MR1-knockout mice may have 
shed light on the roles of MAIT cells in vivo. However, the 
findings from the mice were too complicated to interpret, 
maybe because in part of the insufficient number of 
MAIT cells in the control, and the lack of an appropriate 
reagent to detect mouse MAIT cells. An MR1 tetramer 
that has been created recently is useful to detect MAIT 
cells in mice and humans[77], but tetramer-positive cells 
may not always be functional cells. Three groups have 
independently reported Vα19 iTCR transgenic mice as a 
MAIT cell-enriched model[17,78-80]. Two reports indicated 
that MAIT cells in Vα19 iTCR transgenic mice harbored an 
effector/memory phenotype; CD44highCD69+CD25+ICOS+ 
and NK1.1[78-80]. With the ligand-loaded MR1 tetramer, it 
was found that approximately 40%-50% of MAIT cells 
were CD4+, and the rest being comprised of DN cells 
and fewer CD8+ MAIT cells[77], whereas in humans few 
CD4+ MAIT cells are present. Such a difference in CD4 
or CD8 usage between mouse and human may reflect 
their physiological roles. In contrast, Martin et al[17] 
showed that MAIT cells from their Vα19iTCR transgenic 
mice were DN and CD8+ with few CD4+ . Furthermore, 
NK1.1, CD25, CD69, and ICOS were not present in MAIT 
cells. Such inconsistency demonstrated that MAIT cells 

are different in nature from those in transgenic mice. 
It is plausible that such an alteration stems from the 
differences in transgenes or commensal flora utilized. 
Should it be the case, the transgenic mouse may not 
be adequate to delineate the functions of MAIT cells[17]. 
Therefore, it is indispensable to create a novel animal 
model to address the physiological roles of MAIT cells 
in health and diseases, and harnessing the results of 
animals for clinical applications.

In this context, use of humanized mice can be en-
visaged, because the human cells in question can be 
engrafted and their functions and development may be 
examined in vivo[81]. To study the physiological roles in 
vivo, reMAIT cells were adoptively transferred to NOD/
SCID or NOG (NOD/Shi-scid IL2Rγnull) mice, both of which 
are devoid of mature B, T cells, and the later deficient in 
NK cells, functional macrophages, and dendritic cells[21]. 
reMAIT cells migrated and engrafted in tissues such as the 
intestines, bone marrow, liver, and spleen, which probably 
mirrors the distribution of MAIT cells in humans[18,71]. In 
addition, reMAIT cells dramatically changed the phenotype 
from naïve to mature concomitant with the expression of 
the chemokine receptors required for the tissue-specific 
homing. Moreover, reMAIT cells appeared to proliferate in 
mice, whereas they did not in vitro. These results indicated 
that reMAIT cells from iPSCs responded to external 

Table 2  Mice used in study for mucosal-associated invariant T cells

Genotype Characteristics Ref.

Knockout mice MR1-/- Impaired development of MAIT cells [79]
Transgenic mice Vα19 iTCR Tg Enriched MAIT cells [17,78-80]

Vβ6 Vβ8 Tg Increase of MAIT cells [17]

MAIT: Mucosal-associated invariant T; iTCR: Invariant T cell receptor.

Table 3  Mucosal-associated invariant T cells in the diseases

Category Mouse strains Disease model Phenotype Ref.

Bacterial infection MR1-/-

Vα19 iTCR Tg
Vβ6 Vβ8 Tg

Escherichia coli
Micobacterium abcessus

Increase in the bacterial burden
Repression of the bacterial burden

[16]

MR1-/- Klebsiella pneumoniae Increased susceptibility to K. pneumoniae 
infection

[36]

MR1-/- Mycobacterium bovis BCG Enhanced bacterial growth at the early stage of 
infection

[35]

Francisella tularensis Delayed adaptive immune reaction [34]
Autoimmune diseases Vα19 iTCR Tg Experimental autoimmune 

encephalomyelitis (model of MS)
Suppressed disease induction and progression [78]

MR1-/- Collagen-induced arthritis (model of 
rheumatoid arthritis)

Improved CIA score [86]

Adoptive transfer Jα33+ 
MAIT cells into BALB/c

TNBS induced colitis Improved disease index [105]

B10.RⅢ Spondyloarthropathy by IL-23 Enthesitis induced by IL-22 produced from IL-
23R+RORγt+CD4-CD8- T cells (MAIT cells?) in 

the entheses

[91]

Others Vα19 iTCR Tg NOD Non-obese diabetes Delayed disease onset [106]
Vα19 iTCR Tg Delayed-type hypersensitivity to sheep 

erythrocytes (type Ⅳ allergy)
Suppression of the disease [106]

MAIT: Mucosal-associated invariant T; IL: Interleukin; CIA: Collagen-induced arthritis; iTCR: Invariant T cell receptor.
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cues, migrated to different tissues, and proliferated in 
mice. Such interactions most likely occur via chemokine 
receptors on reMAIT cells and via mouse MR1 bound with 
ligands from commensal flora or with an endogenous one. 
The data suggest that the function of reMAIT cells could 
be assessed in vivo, which opens up new horizons for 
modeling human diseases in mice.

Accordingly, the protective mechanisms of MAIT cells 
against bacterial infection have been examined using 
reMAIT cells[71]. Upon adoptive transfer, reMAIT cells 
protected mice from M. abscessus, as demonstrated 
by a decrease in bacterial burden. Such an protective 
activity mirrors that observed with MAIT cells from 
PBMCs[16]. Granulysin has been identified as an effector 
molecule in the control of mycobacterial infection. 
Granulysin is present together with granzymes and 
perforin in the cytolytic granules of cytotoxic cells such 
as CD8+ T and NK cells as well as MAIT cells[32,82]. 
Granulysin plays a crucial role not only in the destruction 
of infected cells but also in killing pathogens[83,84]. Given 
that mice are devoid of granulysin and its homologue[85], 
mice harboring reMAIT cells could serve as a novel 
model to decipher the roles of human-specific factors. 

There is accumulating evidence that MAIT cells 
play a pivotal role in inflammatory and autoimmune 
diseases. Nonetheless, delineating how MAIT cells are 
implicated in these diseases has to await the advent of 
appropriate animal models. Experimental autoimmune 
encephalomyelitis (EAE) and collagen-induced arthritis 
(CIA) are animal models for MS and RA, respectively. By 
using Vα19 iTCR transgenic mice and/or MR1-knockout 
mice, the implication of MAIT cells in autoimmune 
diseases has been investigated[78,86]. In Vα19 iTCR mice, 
the severity of EAE was ameliorated in both induction 
and progression of demyelination compared with control 
littermates[78,86]. In marked contrast, the severity of CIA 
was improved in MR1-knockout mice, whereas adoptive 
transfer of MAIT cells from Vα19 iTCR transgenic 
mice resulted in aggravation of the disease[78,86]. EAE 
and CIA are intended to induce autoreactive T cells, 
especially focused on Th17 or Th1 responses, through 
hyperimmunization of putative target antigens (myelin 
basic proteins or type Ⅱ collagen) with Freund’s 
adjuvant. Induced T cells could migrate to target tissues 
and secrete proinflammatory or anti-inflammatory 
cytokines, which may further worsen tissue damage or 
help resolve the damage. It has been believed that such 
mechanisms recapitulate the etiology and pathology 

of human diseases. Nonetheless, it is not appropriate 
to use such mice for disease modeling because MAIT 
cells do not react with peptide antigens, although they 
may respond to the components of adjuvant such as 
those from M. tuberculosis. Furthermore, the paucity of 
murine MAIT cells is another issue. Even though Vα19 
iTCR transgenic mice can be used in a disease model, 
the nature of transgenic MAIT cells may be different from 
that present in the control. Given that MAIT cells are 
competent to produce a plethora of cytokines, a nature 
prerequisite for immunoregulatory functions, the above 
disease models may not be suitable for deciphering the 
etiology and pathology, in that such a crucial feature of 
MAIT cells is largely overlooked or distorted. 

Exploring a disease model with reMAIT cells could 
further our knowledge of the etiology and pathology 
of MS. It has been reported that inflammatory dem-
yelinating lesions are infiltrated by IL-17-expressing 
T cells in the mouse brain when they received cere-
brospinal fluid from a progressive MS patients[87]. A 
longitudinal study in MS patients indicated massive 
expansion of MAIT cells or MAIT cell-like cells, harboring 
canonical or atypical TCR Vα and β chains but do not 
react with bacterial antigens, could play an important 
role in the onset and the formation of early active MS 
lesions[47]. The above data implied the presence of yet-to-
be-identified ligands responsible for the negative effects 
of MAIT cells in disease. Use of reMAIT cells could make 
it possible to examine whether or not sole ligands for 
MR1 or any epigenetic modifications of MAIT cells are 
responsible for disease. In either case, mice with reMAIT 
cells are useful to identify such ligands and to create a 
novel autoimmune disease model. 

Should MAIT cells play a pivotal role in autoimmune 
diseases, it is tempting to anticipate that granulysin 
per se or in combination with granzymes and perforin 
exerts a cytolytic activity against the target tissue. In 
line with this hypothesis, granulysin may play crucial 
roles in transplant rejection and epidermal necrosis 
in toxic epidermal necrolysis and Stevens-Johnson 
syndrome[85,88,89]. Furthermore, combined with the ectopic 
expression of human cytokines and/or chemokines, mice 
with reMAIT cells could be further fine-tuned to mimic 
human diseases by controlling tissue migration[90,91]. 
Provided such an exquisite model is available, we can 
go to the next step of drug discovery and/or screening. 
Compounds that interfere either with the development of 
MAIT cells or the function of MAIT cells can be screened 

reMAIT cell engrafted mouse model

reMAIT cells

NOG mouse
NOD/Shi-scid IL2Rγnull

Infectious disease

Autoimmune disease

Inflammatory disease

Drug discovery

Figure 3  Utility of mucosal-associated invariant T cells 
from induced pluripotent stem cells (redifferentiation of 
mucosal-associated invariant T cells) for modeling human 
diseases. Severely immunocompromised mice received MAIT 
cells from induced pluripotent stem cells. reMAIT cells are useful 
for deciphering the physiological functions of MAIT cells in health 
and disease. MAIT: Mucosal-associated invariant T; reMAIT: 
Redifferentiation of MAIT.
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in such a mouse model (Figure 3). 

CONCLUSION
Recent studies have shed light on the unique properties 
of MAIT cells and on their possible involvement in a 
variety of human diseases, although MAIT cells have 
been overlooked behind conventional T cells and other 
innate immune cells for a long time. The paucity of 
MAIT cells in laboratory mice and their extremely poor 
proliferative capacity are the biggest obstacles to fully 
understand the function of MAIT cells in health and 
diseases. Reprograming and redifferentiation of MAIT 
cells from iPSCs have overcome these difficulties. 
Furthermore, mice with reMAIT cells will pave the way for 
unveiling the mechanisms underlying the diseases and 
open up new horizons in medical research.
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