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Abstract
Radiotherapy is a cornerstone of anticancer treatment. 
However in spite of technical evolutions, important 
rates of failure and of toxicity are still reported. Although 
numerous pre-clinical data have been published, we 
address the subject of radiotherapy-stem cells interaction 
from the clinical efficacy and toxicity perspective. On 
one side, cancer stem cells (CSCs) have been recently 
evidenced in most of solid tumor primary locations and 
are thought to drive radio-resistance phenomena. It 
is particularly suggested in glioblastoma, where CSCs 
were showed to be housed in the subventricular zone 
(SVZ). In recent retrospective studies, the radiation 
dose to SVZ was identified as an independent factor 
significantly influencing overall survival. On the other 
side, healthy tissue stem cells radio-destruction has 
been recently suggested to cause two of the most 
quality of life-impacting side effects of radiotherapy, 
namely memory disorders after brain radiotherapy, and 
xerostomia after head and neck radiotherapy. Recent 
publications studying the impact of a radiation dose 
decrease on healthy brain and salivary stem cells niches 
suggested significantly reduced long term toxicities. 
Stem cells comprehension should be a high priority for 
radiation oncologists, as this particular cell population 
seems able to widely modulate the efficacy/toxicity ratio 
of radiotherapy in real life patients.
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Core tip: Radiotherapy is a cornerstone of anticancer 
treatments. However, significant levels of toxicity 
and recurrences are still reported. On the one hand, 
cancer stem cells have been recently suggested to be 
the root of radio-resistance, with strong pre-clinical 
rational. One the other hand, convincing pre-clinical 
data suggesting the importance of healthy tissue stem 
cells radiation-induced destruction in long term side 
effects of radiotherapy surfaced. This article provides an 
overview of the available literature analyzing from the 
clinical efficacy and toxicity perspective the interactions 
between stem cells and radiation. Significant improve
ment of radiotherapy toxicity/efficacy ratio is suggested.
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INTRODUCTION
Radiotherapy is a cornerstone of anticancer treatments, 
since it proved efficacy in various primary tumor loca­
tion when performed with intent to cure[1-4]. It also 
proved to be efficient for palliation of bone[5] and brain 
metastases[6], whatever histologic diagnosis. However, 
significant rates of failure and of radiation-induced 
toxicities are still reported in spite of recent technological 
improvements[1-6]. Radiation resistance seems mainly 
caused by biological phenomenon driven by cancer 
stem cells (CSCs)[7]. CSCs have been evidenced in the 
mid-90s in hematological tumors, but their presence 
has been proved recently in most of solid tumors (glio­
blastoma, prostate, breast, rectum, colon, and head 
and neck cancers)[7]. The CSC is defined by three main 
characteristics: It can initiate tumorigenesis and endlessly 
proliferate, it can self-renew, and it can give birth to a high 
number of progenitor parental cells (Figure 1). Although 
CSCs account for a very small number of cells considering 
the whole pool of tumor cells, they are thought to play 
a leading role in radiation resistance. Pre-clinical data 
showed that CSCs were able to redirect their cell cycle 
toward a radiation resistant state (the S-G0 phase), had 
a considerable capacity of tumor re-population, were 
not dependant of oxygen, and above it all - possessed 
hyperactive DNA repair processes[8]. Besides, CSCs 
seem highly gifted for invasion and migration[9] making 
them the supposed - main responsible for local and 
metastatic post-radiotherapy recurrences. Targeting 
CSCs in order to increase the therapeutic index (efficacy/
toxicity ratio) of radiotherapy is a very promising way 
of research[10]. But from another angle, it might lead to 

concurrently kill stem cells located in the surrounding 
healthy tissues, and induce serious radiation-caused 
toxicities. Ideally, radiotherapy should simultaneously 
destroy CSCs and spare normal tissue stem cells. Several 
research approaches actually tried to reach this goal with 
recent publications regarding the CSC pharmacological 
targeting[10], the CSC dosimetric targeting, and the 
healthy tissue stem cells sparing. Interesting potential 
pharmacological targets have been recently suggested: 
Wnt/β-caderines pathway inhibitors are currently under 
clinical investigation[11], with the strong pre-clinical rational 
that Wnt/β-caderines ex–pression is directly related with 
radiation-resistance[12], de-differentiation, adhesion, and 
invasion[13]. Notch-1 (involved in CSC repopulation[14], 
proliferation and radiation-induced apoptosis resistance[15]), 
SHH (involved in metastases[16], CSC proliferation, 
survival, morphogenesis and radioresistance[17]), JAK/STAT 
(involved in CSC de-differentiation, apoptosis resistance, 
and proliferation[18]) and PI-3 kinase/Akt (involved in CSC 
survival after radiation[19]) are pharmacological targets of 
interest, with inhibitors that are currently tested in pre-
clinical studies. Hypoxia is also a major topic of interest, 
since CSCs are thought to be located in hypoxic niches. 
In pre-clinical studies, decreasing CSC hypoxia resulted in 
reduced CSCs self-renewing and multiplication[20,21]. The 
pharmacological targeting of tumor and vascular stroma 
(using PDGF inhibitors) seems therefore promising, with 
the in vitro radio-sensitisation of CSCs that were initially 
radio-resistant[22]. Contrary to pharmacological targeting, 
the CSC “dosimetric targeting” (i.e., directly targeting 
stem cells by radiation) is still at its early stages. However, 
most of the publications consist in clinical studies with 
already promising outcomes. The sparing of organs at 
risk stem cells is also a hot topic, since healthy tissue stem 
cell death was suggested to be directly related to side 
effects widely impacting patients’ quality of life, occurring 
after both curative and palliative radiotherapy. The 
present article’s objective is to address the radiotherapy/
stem cells topic from the clinical efficacy and perspective.

TARGETING CSC WITH RADIATION: 
EFFICACY DATA
Clinical outcomes: The glioblastoma model
Glioblastoma is a major model of radioresistance since in 
spite of a multi modal approach (ideally combing surgery, 
radiotherapy and chemotherapy), the median overall 
survival time only reaches 12-15 mo, with most of the 
recurrences located in the radiation fields. The underlying 
phenomena leading glioblastoma to radioresistance are 
still misunderstood but it was suggested in animal pre-
clinical models that the genesis of glioblastoma was linked 
to a loss of tumor suppressor gene in neural stem cells 
(NSCs)[23]. NSCs were shown to be physiologically housed 
in the subventricular zone (SVZ), an area surrounding the 
lateral ventricles[24-27]. Therefore, delivering high doses 
of radiation to niches of “healthy tissue” (i.e., the SVZ) 
possibly harboring glioblastoma CSCs might allow to 
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overcome its radioresistance. This hypothesis was tested 
in 2010 by Evers et al[28]. Data of 55 patients treated for 
a glioblastoma between 2003 and 2009 in California, 
United States, were retrospectively reviewed. Dosimetric 
data of radiotherapy were analyzed in order to estimate 
the dose delivered to the supposed CSC niches (i.e., 
the SVZ), and correlate it with patient global outcomes. 
Only patients with histopathologically diagnosed anap­
lastic glioma (grade 3) or glioblastoma (grade 4), with 
at least 1 mo of follow-up, and who completed the 
whole planned radiotherapy were included. SVZ was 
defined based on previous publications, and doses to 
the volumes of interest could be a posteriori calculated. 
The authors estimated that the median dose received 
by the bilateral SVZ was 43 Gy. They then divided the 
population into a “low dose group” (receiving less than 
the median dose, n = 27) and a “high dose group” 
(receiving more than the median dose, n = 28). The 
two groups were well balanced on all essential prognosis 
factors (RPA classification, age, Karnofsky performance 
scale), but one. Complete resection was less achieved 
in the “high dose” group (n = 6, 21%) than in the “low 
dose” group (n = 16, 59%). The mean dose received 
by bilateral SVZ was 50 Gy ± 2 Gy for the “high dose 
group” and 27 Gy ± 5 Gy for the “low dose group”. The 
median progression free survival (PFS, defined as the 
time between radiotherapy completion and glioblastoma 
recurrence) was 15 mo for the “high dose group” 
and 7.2 mo for the “low dose group”. This difference 
was statistically significant (P = 0.03). Hazard ratio 
concerning glioblastoma progression was significantly 
decreased for the “high dose” group (HR = 0.74, 95%CI: 
0.567-0.951, P = 0.0019). All other statistical analyses 
comparing important characteristics could not evidence 
significant differences, particularly regarding the total 
dose (P = 0.83), highlighting the high degree of gliobla­
stoma’s radioresistance due to CSCs[29]. No correlation was 
shown between the total dose and dose to SVZ, since 
SVZ was most of the time outside of the clinical target 
volume. Therefore, doses per fraction on the SVZ were 
limited (1.36 Gy CI: 1.2-1.5). The fact that low doses 
of radiation could result in an increased radio-sensitivity 

has already been described in glioblastoma[30,31], but not 
in CSCs[32]. The underlying biological phenomenon is 
hypothesized to be the non-detection of DNA damages 
in case of small doses per fractions, while the CSC 
radio-resistance is supposedly linked with the over-
expression of DNA damage checkpoints[33]. However, 
CSC high sensitivity to low doses must be studied 
in prospective clinical studies. Interestingly, when 
statistical analyses were performed regarding the doses 
received by the ipsilateral periventricular zone only, 
no significant difference could be evidenced. Linked 
with the observation that glioblastoma cells can widely 
migrate within the healthy brain tissue, causing frequent 
contralateral recurrences[34], it was hypothesized that 
ipsilateral CSCs could take shelter in contralateral CSC 
niches. Targeting radio-resistant CSC might therefore 
be more efficient if all the possible CSC harbors are 
damaged, but this hypothesis is still to be demonstrated. 
In 2012, Gupta et al[35] published outcomes of 40 
glioblastoma patients treated between 2008 and 2010 
at the Tata Memorial Centre, India. All patients were 
treated for histologically proven glioblastoma using 
standard treatment. Dosimetric data were retrospectively 
reviewed, and doses to SVZ were a posteriori calculated 
and linked with global outcomes. Median dose to 
bilateral SVZ was 56.2 Gy, and patients were divided 
as previously described into a “high dose group” (n = 
20, mean dose to ipsilateral, contralateral and bilateral 
SVZ of 60.1 Gy, 59.9 Gy and 60 Gy respectively) and 
a “low dose group” (n = 20, mean dose to ipsilateral, 
contralateral and bilateral SVZ of 57.5 Gy, 47.4 and 52.5 
respectively). Most of known prognosis factors were 
unfavorably distributed in the “high dose group” vs “low 
dose group”: Patients were older (55 yo vs 46 yo), with 
higher RPA class (85% of class Ⅳ-Ⅴ vs 55%), with less 
frequent extensive resection (50% vs 70%), and with 
more frequent MGMT methylation (55% vs 40%). At 
a median follow-up of 15 mo, 25 out of the 40 patients 
experienced progression, with 21 deaths. Age and RPA 
class (well known prognosis factors) were significantly 
linked with survival in univariate analysis, as well as the 
dose to contralateral SVZ (P = 0.05). A Kaplan-meyer 

A B C

Figure 1  Cancer stem cells main biological characteristics. A: Self-renewal/endless proliferation; B: Giving birth to a high number of progenitor parental cells; C: 
Tumorigenesis initiation.
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analysis showed significantly increased overall survival 
(P = 0.05) and progression free survival (P = 0.02) for 
patients with the highest doses to contralateral SVZ. In 
multivariate analysis, RPA class, Karnofsky performance 
status and dose to ipsilateral SVZ were identified as 
independent prognosis factors of overall survival (HR 
= 0.87, 95%CI: 0.77-0.98, P = 0.025). These results 
corroborate the efficacy of targeting CSCs by radiation 
in glioblastoma. However, the ideal target (ipsilateral 
or contralateral SVZ) and the dose threshold (43 Gy? 
50 Gy?) are still to be clarified. The brain model is 
certainly one of the most interesting models for the CSC 
dosimetric targeting: Due to its anatomical conception, 
CSC niches are distinct from differentiated cells, making 
the result of a precisely delivered radiotherapy easier to 
interpret.

Properly imaging CSC through hypoxia: A necessary 
condition for an efficient radiotherapy?
These two publications also reflect the need for reliable 
imaging of CSC niches. The recent development of 
spectroscopy (identifying the specific metabolic profile 
of glioblastoma CSCs) is certainly a very promising 
technique that could allow a precise dosimetric targeting 
of CSCs in the future[36,37]. Out of the glioblastoma 
model, the CSC imaging systems are mainly based 
on hypoxia[38]. Hypoxia is thought to be a cornerstone 
of radiation resistance since it was clearly proven that 
the biological effects of conventional radiotherapy (i.e., 
the DNA damages caused by chain oxidization) are 
potentiated by oxygen. In case of hypoxia, the efficacy 
of radiotherapy is de facto significantly reduced. It also 
seems clear that tumor hypoxic niches harbor CSCs 
(in glioblastoma but also in other solid tumors[39]) and 
therefore represent a target of interest for radiotherapy: 
The most radioresistant cells are housed in a micro-
environment enhancing radioresistance. Imaging the 
hypoxic niches and targeting them by radiation might be 
the key to overcome cancers radioresistance since higher 
doses could induce the destruction and the re-oxygenation 
of these niches, initiating a virtuous cycle. The challenge 
of properly imaging hypoxia is still ongoing. Efficient 
nitroimidazole-based tracers were developed during the 
past 30 years, based on the fact that hypoxia induces 
a transformation of nitro-imidazole intermediates into 
alkylating agents that bind to cell component[40]. These 
elements could be then coupled with positron emitting 
radionuclides (18F, 64Cu, 60Cu) in order to be detected by 
positron emission tomography (PET) imaging devices. 
(18F) Fluoromisonidazole and (18F) 1-(5-fluoro-5-deoxy-
α-Darabinofuranosyl)-2-nitroimidazole were validated 
(regarding specificity) by invasive gold standard methods 
and can be now clinically used. However, sensitivity is 
still limited due to low tumor-to-plasma ratios and poor 
spatial resolution of PET imaging systems[38]. Techni­
ques based on magnetic resonance imaging (MRI) have 
been developed, resolving the issue of spatial resolution 
(Blood oxygen dependent MRI imaging, Mapping of 

Oxygen by Imaging Lipid Relaxation Enhancement, 
and Dynamic-Contrast-Enhanced MRI), but sensitivity 
issues remained[38]. Moreover, recent data suggested 
that CSC were not necessarily located in the most 
hypoxic areas[41], making multi-modal imaging methods 
absolutely needed (coupled PET-MRI, or imaging 
techniques detecting CSC surface marker). In this field, 
nanoparticles are very promising theragnostic tools, since 
they can be used both as MRI contrast agents, and as 
radiotherapy targets[42,43]. Finally, the ideal solution might 
be a radiotherapy technique capable of destroying as well 
CSC as differentiated cancer cells. Hadrontherapy (carbon 
or proton-based radiotherapy) seems to fulfill these 
criteriae, showing in vitro the ability to kill with the same 
efficacy CSCs and conventional cancer cells, thanks to 
the absence of oxygen effect[44]. However, the high cost 
of this technique might be a clear drawback to its routine 
application. Moreover, radio-resistance phenomena have 
been very recently described in vitro and need to be fully 
investigated to evaluate their possible clinical impact[45].

SPARING NORMAL STEM CELLS DURING 
RADIOTHERAPY: TOXICITY DATA 
Clinical outcomes: The whole brain radiotherapy model
Memory disorders are a well known long term side effect 
of whole brain radiotherapy (WBRT), performed in case 
of multiple brain metastases. Radio-damaged neural 
stem cells (NSCs) located in the subgranular zone of the 
hippocampal dentate gyrus[46] have been hypothesized to 
cause the reported cognitive decline following WBRT[47]. 
Thanks to the development of the intensity modulated 
radiotherapy (IMRT), Gondi et al[48] showed the feasibility 
of a WBRT avoiding (i.e., reducing the delivered dose 
of ≥ 80% to) the hippocampal NSC niches, without 
impairing the quality of coverage of the remaining brain. 
IMRT offers the possibility to spare areas that could not 
be spared with conventional radiotherapy indeed, thanks 
to highly conformal dose painting (Figure 2). Gondi et 
al[49] published in 2014 the outcomes of an international 
single-arm phase Ⅱ trial, comparing the results of a 
WBRT sparing hippocampal NSCs with the results of 
a 2003 phase Ⅲ trial using conventional WBRT for 
brain metastasis. Patients treated using WBRT for solid 
tumor brain metastasis were assessed for standardized 
cognitive assessments [Hopkins Verbal Learning Test-
Revised Delayed Recall (HVLT-R DR)] at baseline, 2-, 4- 
and 6-mo follow-up, with a primary endpoint being the 
HVLT-R DR at 4 mo. At 4 mo, the mean relative decline 
in HVLT-R DR score from baseline was of 30% in the 
2003 control trial. In the experimental trial, hippocampal 
NSC niches definition was standardized and based on 
MRI fusion with planning computed tomography-scan. 
Standard (and similar to the control trial) fractionation 
scheme was delivered, with 30 Gy in 10 fractions. Doses 
were limited to 9 Gy to the entire hippocampus, with 
a maximum focal dose of 16 Gy. Between 2011 and 
2012, 113 patients were included, with 42 patients being 
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analyzable for the primary endpoint. At 4 mo, the mean 
relative HVLT-R DR impairment was significantly lower in 
the population who experienced the hippocampal NSC 
protection compared to the population who did not (7% 
vs 30%, P < 0.001). Interestingly, if most of patients 
experienced intracranial progression, with a mean overall 
survival of 6.8 mo, only 4.5% of patients developed 
intra-hippocampal progression. The authors concluded 
that the avoidance of hippocampal NSC was significantly 
related to memory preservation, bringing a direct clinical 
evidence that hippocampal NSC niche was implicated in 
the pathophysiology of radiotherapy-induced memory 
decline. Of course, the main limitation of this article is the 
absence of direct control group, but phase Ⅲ trials have 
been approved and will clarify the place and efficacy of 
NSC avoidance during WBRT.

Clinical outcomes: The head and neck radiotherapy 
model
Xerostomia is one of the most quality of life-impacting 
late side effects of head and neck radiotherapy. Oral 
dryness frequently ruins patients’ everyday life inducing 
ulcerations, speech, taste and swallowing difficulties. 
Even with modern radiotherapy techniques minimizing 
mean dose to salivary glands, important rates of 
mucosal complications (15% to 40% of treated patients) 
are still reported[50,51]. It was clearly demonstrated 
that the xerostomia was linked with the irradiation of 
salivary glands, because of the high radiosensitivity of 
stem cells niches located in the salivary glands[50,52,53]. 
Xerostomia seemed to be proportionally linked with 
the dose delivered to salivary gland stems cells niches, 
determining the quantity of post radiotherapy viable 
salivary stem cells[52,54]. However, the clinically relevant 
threshold dose of radiotherapy damaging stem cells is 
still undetermined and only techniques delivering doses 
as low as reasonably achievable to parotid stem cells-rich 
regions were tested. Moreover, the exact location of these 
areas is still debated, the strongest hypothesis being they 
could be located in the larger excretory ducts[55]. Based on 
animal models, van Luijk et al[56] suggested that the centre 
of the parotid (containing the major ducts) was certainly 

rich in stem cells, since its restricted irradiation leaded to 
long term saliva production collapse. This hypothesis was 
recently tested in humans[55]. Salivary and dosimetric 
data of 74 patients treated for a head and neck cancer 
without salivary gland involvement were retrospectively 
reviewed. Spatial dose distribution inside the parotid 
could be correlated to salivary flows 1 year after radio
therapy completion (with a dose-dependent effect 
relationship), defining a stem cell region located near the 
dorsal edge of the mandible, at the occurrence of the first 
branching of Stensen’s duct, in concordance with animal 
stem cells locations. Doses delivered to this area were 
more predictive of salivary flow than (routinely used) 
parotid mean dose. Moreover, after radiotherapy, only 
cells provided by biopsies of these zones could be grown 
in vitro. A feasibility study was performed in 22 patients, 
showing that the preservation of the parotid stem 
cell niche seemed feasible with IMRT, even in case of 
impossible avoidance of the whole parotid. Other areas of 
parotid have been suggested to house stem cells capable 
of salivary long-term regeneration. It was suggested 
in one retrospective cohort derived from an important 
phase Ⅲ study that sparing the superficial lobe of the two 
parotid glands could induce a better salivary preservation 
than complete contralateral parotid gland sparing[57]. 
These data need to be validated in larger patient cohorts, 
but might be a significant progress in order to limit 
radiation-induced xerostomia. The main limitation of 
these articles (out of their retrospective nature) is that the 
link between salivary flow and xerostomia is still unclear: 
The major salivary glands (parotid glands, submandibular 
glands and sublingual glands) produce 90% of saliva, but 
minor salivary glands (thousands of small glands located 
in the oral cavity) secrete the major quantity of mucin, 
the saliva lubricating agent. Mucin is also secreted for a 
small account by submandibular glands and sublingual 
glands. Therefore, only shielding parotids stem cells 
might insufficient to guarantee the restoration of good 
quality saliva after radiotherapy. Pre-clinical and clinical 
data are certainly needed concerning the radio-sensitivity 
and the location of stem cells in the submandibular and 
minor salivary glands. Currently, no reliable biological or 
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Figure 2  Three dimensional conventional radiotherapy vs intensity modulated radiotherapy. A: Three dimensional conventional radiotherapy; B: Intensity 
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imaging markers have been validated to precisely locate 
salivary stem cells, making progresses difficult to be 
made.

CONCLUSION
If the interaction between radiotherapy and CSCs is an 
en vogue topic[58], targeting CSC by radiation is at its 
early stage of development. Combining radiotherapy 
with biological drugs targeting CSC could be an efficient 
mean to overcome local and metastatic recurrences, 
with various agents that are currently tested based on 
solid pre-clinical rationales[59]. But directly targeting CSC 
using radiation is also a promising anticancer therapy 
with already interesting clinical results. The evolution of 
modern techniques of radiotherapy might widely depend 
of the imaging progresses in term of sensitivity. In order 
to increase the therapeutic index of radiotherapy, spar­
ing stem cells of healthy tissue is also a major topic of 
interest since significant improvements regarding quality 
of life-impacting side effects following radiotherapy can 
be achieved. More than ever, prospective trials with 
solid methodologies are needed to confirm or infirm 
the suggested trends. Finally, both cancer and normal 
tissue stem cells seem to be central elements modulating 
the toxicity and the efficacy of radiotherapy. A better 
comprehension of stem cells location and their intrinsic 
radio-sensitivity is crucial, and permanent return trips 
between pre-clinical and clinical data are mandatory.
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