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Abstract
Mesenchymal stromal cells (MSCs) possess great ther
apeutic advantages due to their ability to produce 
a diverse array of trophic/growth factors related to 
cytoprotection and immunoregulation. MSC activation via 
specific receptors is a crucial event for these cells to exert 
their immunosuppressive response. The aryl-hydrocarbon 
receptor (AhR) is a sensitive molecule for external 
signals and it is expressed in MSCs and, upon positive 
activation, may potentially regulate the MSC-associated 
immunomodulatory function. Consequently, signalling 
pathways linked to AhR activation can elucidate some 
of the molecular cascades involved in MSC-mediated 
immunosuppression. In this minireview, we have noted 
some important findings concerning MSC regulation via 
AhR, highlighting that its activation is associated with 
improvement in migration and immunoregulation, as 
well as an increase in pro-regenerative potential. Thus, 
AhR-mediated MSC activation can contribute to new 
perspectives on MSC-based therapies, particularly those 
directed at immune-associated disorders.

Key words: Mesenchymal stromal cells; Aryl-hydrocarbon 
receptor; Cell activation and immunosuppression

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The aryl-hydrocarbon receptor (AhR) is an endo
genous sensor expressed in mesenchymal stromal cells 
(MSCs), regulating their immunomodulatory function. 
Therefore, in this review, we summarize important reports 
that demonstrate that AhR activation can substantially 
modulate the function of MSCs by mechanisms as
sociated with: (1) The induction of the death signal 
in pro-inflammatory cells; (2) the suppression of pro-
inflammatory genes/cytokines; (3) the improvement of 
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migration and regenerative potential in acute inflammatory 
models; (4) the inhibition of mesodermal differentiation; 
and (5) the up-regulation of global immunosuppression. 
Thus, the influence of AhR activation on MSC function 
can establish new perspectives on MSC-based therapies, 
especially for immune-associated diseases.

de Almeida DC, Evangelista LSM, Câmara NOS. Role of aryl 
hydrocarbon receptor in mesenchymal stromal cell activation: A 
minireview. World J Stem Cells 2017; 9(9): 152-158  Available 
from: URL: http://www.wjgnet.com/1948-0210/full/v9/i9/152.
htm  DOI: http://dx.doi.org/10.4252/wjsc.v9.i9.152

INTRODUCTION
Multipotent mesenchymal stromal cells
Multipotent mesenchymal stromal cells (MSCs), also 
referred to as mesenchymal stem cells, were originally 
described by Alexander Friedenstein in 1976 as non­
haematopoietic marrow cells in culture[1]. MSCs were 
identified as stromal cells that present plastic adherent 
characteristics and the ability to form in vitro fibroblast-
like colonies (CFU-F). In 1991, Caplan defined MSCs as 
a supportive cell population capable of differentiating into 
several mesodermal cell lineages including muscle, bone 
marrow stroma, fibroblasts, osteocytes, adipocytes and 
chondrocytes[2].

Phenotypically, MSCs are characterized by the ex­
pression of surface membrane molecules such as endoglin 
(CD105), NT5E (CD73), and Thy-1 (CD90) and the lack 
of expression of haematopoietic (CD45, CD34, CD11b/c 
and CD19) and endothelial (CD31, KDR) markers and 
of HLA-DR, an immune-associated molecule linked to 
major histocompatibility complex class Ⅱ (MHC Ⅱ)[3]. 
In addition, MSCs resemble vascular pericytes, and due 
to their wide perivascular distribution[4,5], these cells can 
be identified and expanded ex vivo from a multitude of 
tissues and organs, for instance: (1) Bone marrow[6]; (2) 
the umbilical cord[7]; and (3) adipose tissue[8], highlighting 
MSCs as a very attractive cell subpopulation for several 
clinical applications.

From a therapeutic perspective, MSCs possess 
advantages such as low immunogenicity, migration to 
injured tissues and the production of various trophic/
growth factors (e.g., cytokines, chemokines and diverse 
growth factors), which may be related primarily to the 
mechanisms of immunoregulation, anti-fibrosis, the 
induction of endogenous tissue progenitor cells, anti-
apoptosis, pro-angiogenesis and chemoattraction. 
Moreover, MSCs may act as effector agents in the 
modulation of internal gene expression by releasing 
extracellular microvesicles enriched with small regulatory 
RNAs[9-11].

In light of their functional multipotentiality, MSCs 
are essentially distinguished from other cells by 
retaining immunomodulatory properties that globally 
reduce the inflammation process, suppressing cellular 

alloreactivity. In this regard, studies have shown that 
the infusion of MSCs reduces local and systemic tissue 
injury in distinct experimental models, e.g., neural 
encephalomyelitis[12], pulmonary fibrosis[13], kidney 
injury[14] and heart inflammation[15], mainly via shifting 
from a pro-inflammatory to an anti-inflammatory pro
file. Thus, the immunosuppressive abilities of MSCs 
may be useful to repair tissue damaged by immune 
system aggression, for instance: (1) Crohn’s disease[16]; 
(2) ulcerative colitis[17]; (3) graft-versus-host disease 
(GVHD) followed by halogen transplantation[18]; and (4) 
organ rejection in transplants[19]. However, the majority 
of clinical trials with MSCs remain in phase Ⅰ/Ⅱ stu­
dies, and most have not clearly described a precise 
therapeutic response[20]. In this context, the complete 
elucidation of the mechanisms associated with the in 
vivo therapeutic effects of MSCs remains a target of 
intense investigation.

To date, scientists have considered MSCs a hetero­
genous population with several factors that can interfere 
in their therapeutic efficacy, such as phenotype, pro­
liferation, secretory profile, tissue origin, donor age, 
culture and expansion method conditions (i.e., growth 
factors, cell confluence, passages, oxygen pressure and 
biomaterials)[21,22]. Considering MSCs a manufactured 
“product” for cell-based therapy, it is essential to 
standardize operational processes, which must be in 
accordance with guidelines assigned by the international 
programme of good manufacturing practices, also known 
as “GMP”. Thus, given the high heterogeneity of cultured 
MSCs, it is not surprising that MSC-based therapies have 
not yet become a reality in operating centers distributed 
in several countries.

In an attempt to establish a global organizational 
process for MSC therapeutic programmes, there are 
potential strategies for refining the preparation and 
application of MSC cultures. According to several 
described approaches, the activation of MSCs via specific 
receptors is an innovative and accessible methodology 
for standardizing the use of these cell populations. 
Studies have found that MSCs express certain key 
receptors (e.g., TLRs, TNFRs, INFRs) that are activated 
by the inflammatory microenvironment, modulating 
its immunosuppressive activity[23,24]. This phenomenon 
was already demonstrated in vitro and in vivo, where 
important molecules (i.e., TNF-α, INF-γ, PAMPs, DAMPs, 
IDO, iNOS, PGE-2) and signalling pathways (i.e., PKR, 
STAT-1, NF-kB) were shown to be regulated during MSCs 
activation. In fact, one study found that MSCs exposed 
to IFN-γ became activated and efficiently suppressed 
the deleterious effects of an in vivo GVHD experimental 
model almost five-fold more strongly than unstimulated 
MSCs[25]. However, the precise role of each receptor, its 
molecular interactions and its impact on the biology of 
MSCs yet remain to be investigated.

ARYL-HYDROCARBON RECEPTOR 
The aryl-hydrocarbon receptor (AhR) is a member of 
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the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) 
family of transcription factors and is characterized as 
ligand-dependent transcriptional regulator acting on the 
modulation of a distinct number of genes associated 
with several biological processes including: (1) The cell 
cycle; (2) apoptosis; (3) hypoxia; (4) the circadian cycle; 
(5) differentiation; (6) haematopoiesis; (7) migration; 
and (8) the immune response[26]. AhR is considered a 
multifunctional sensor that responds to toxic/pollutant 
signals from the environment (e.g., dioxins, pollutants 
and by-products of metabolism), promoting the 
regulation of gene expression in responsive cells. AhR 
can be stimulated by a myriad of specific endogenous 
or exogenous ligands called hydrophobic aromatic 
hydrocarbons [e.g., polycyclic aromatic hydrocarbons 
(PAHs), halogenated aromatic hydrocarbons (HAHs) 
and planar polychlorinated biphenyls (PCBs)], which 
can be represented by two main classes: (1) Synthetic 
and non-biological: e.g., dioxins and dibenzofurans; 
and (2) natural and biological: e.g., carotenoids, 
flavonoids and tryptophan-derived metabolites, such as 
kynurenines[27,28].

AhR activation starts when a chemical signal enters 
the target cells and binds with strong affinity to the 
AhR cytosolic multiprotein complex, which is associated 
with actin filaments in the cytoplasm. This complex is 
composed of two Hsp90 chaperone molecules, along 
with co-chaperones such as hepatitis B virus X-associated 
protein (XAP2 or AIP) and p23 protein. After stimulation, 
AhR changes its conformational structure to present 
the nuclear localization sequence, which promotes its 
own translocation from the cytoplasm to the nucleus via 
the importin β protein. In the nucleus, the AhR-ligand 
complex detaches from the triplex protein (hsp90/XAP2/
p23) to form a dimer with a nuclear protein responsible 
for AhR translocation, ARNT, which converts AhR to an 
active isoform with elevated affinity for DNA. Then, the 
AhR-ligand-ARNT complex binds to a specific promoter 
regulatory region on DNA [5’-T (N) GCGTG-3’] known as 
the dioxin-responsive element/sequence (DRE), which is 
located upstream of the specific CYP1A1 locus or other 
genes responsive to the AhR signal. In contrast, the 
dimerization of ARNT with AhR repressor protein (AhRR) 
leads to non-association of the AhR-ligand complex and 
ARNT protein, and consequently, the AhR-ligand complex 
exposes its nuclear export sequence to the cytoplasm 
and is further conducted to the ubiquitination and 
proteasome degradation process (Figure 1)[29,30].

AhR is closely linked to the regulation and control of 
immunity, and there is a substantial amount of evidence 
supporting the hypothesis that AhR may influence PAH/
HAH/PPB-mediated immunoregulation[28,31]. Thus, some 
reports have shown that AhR activation by particular 
ligands (i.e., LPS, tetrachlorodibenzo-p-dioxin or TCDD, 
tryptophan metabolites) can differentially modulate 
various effects on immunological cells, for example: (1) 
The function and development of regulatory T cells; (2) 
the differentiation of Th17 cells; (3) the generation and 
activity of monocytes and dendritic cells[32-34]; (4) the 

growth and maturation of mast cells; (5) differentiation/
maturation and antibody production by B cells; (6) 
polarization and cytokine production in macrophages[35-37]; 
and (7) haematopoietic stem cell expansion, migration, 
and plasticity[38,39]. Another emerging aspect associated 
with AhR transcriptional biology involves its cooperative 
relationship with other signalling pathways, which may 
interact with AhR or by antagonism, such as the nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-κB), or by synergism, such as the signal transducer 
and activator of transcription 1 (STAT-1) and the nuclear 
factor (erythroid-derived 2)-like-2 factor (Nrf2). These 
multiple interactions of different signalling pathways can 
generate distinct responses according to the nature of 
the stimulus and the cell type target and thus qualifies as 
a tissue-specific molecular interchange[27,30,40].

Functionally, AhR can regulate an extensive number 
of protein-coding genes, specifically those associated 
with xenobiotic metabolizing enzymes, such as CYP1A1, 
which is a member of the superfamily of oxidative en­
zymes called cytochrome P-450 monooxygenases[29]. 
Among the potential ligands related to AhR activation, the 
tryptophan degradation products (i.e., tryptamine and 
kynurenine) are considered natural endogenous stimuli. 
Under normal conditions, these metabolites are classified 
as weak inducers, but after a physiological disturbance, 
their concentration may rise abruptly, leading to strong 
activation via CYP1A1 signalling[29]. In this sense, we can 
assume that an environment of intense inflammation and 
tissue injury may contain sufficient tryptophan-derived 
products for MSC activation via AhR, improving the MSC-
mediated immunotherapeutic responses. According to 
these findings, we believe that the immunomodulatory 
potential of MSCs can be strictly regulated by AhR, and 
their activation may be essential for MSCs to exert their 
immunosuppressive response. Indeed, some PAH/HAH-
derived metabolites themselves can, either directly or 
indirectly via AhR, down-regulate immune-associated 
pathways such as the antigen-specific T and B cell 
responses, compromising lymphocyte development. 
However, the influence of AhR on the regulation of 
MSC-induced immunosuppression remains poorly in­
vestigated[31].

AhR ACTIVATION IN MSCs
To explore the participation of AhR in MSC activation, it 
was predicted that MSC priming by AhR is a mechanism 
intimately associated with its immunotherapeutic res­
ponse. According to this perspective, it has been shown 
in vitro that MSCs, under standard conditions, support 
the growth/differentiation of B lymphocytes, but when 
the MSCs are pre-stimulated by AhR agonist (i.e., 
DMBA), these cells exert an inverse immunoregulatory 
response, inducing apoptosis by cell-cell contact in CD43+ 
pro/pre-B cells. This cell death signal is regulated mainly 
via a specific soluble stromal cell-dependent death signal 
that is presumably regulated by its responsive AhR gene, 
CYP1A1[31,41-43]. Later, the authors of the same study 
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reported that the addition of a precise and competitive 
inhibitor of AhR, α-naphthoflavone (α-NF), blocked 
DMBA-induced pre-B cell apoptosis in these bone marrow 
cell co-cultures[41].

Subsequently, another work showed that the 
activation of AhR in MSCs can also modulate their se­
cretory profile. In this report, the MSCs were stimulated 
with AhR-specific ligands (i.e., DMBA and TCDD), and 
after stimulation, these cells had their production of 
mRNA/protein of interleukin-6 (IL-6) suppressed through 
a process partially regulated by the coactivation of NF-
κB signalling pathways[41]. IL-6 is required for the growth 
and terminal differentiation of progenitor blood cells, 
and its aberrant expression is reportedly associated 
with autoimmune-related disorders (i.e., systemic lupus 
erythematosus, rheumatoid arthritis, and multiple 
sclerosis)[44-47]. Thus, this evidence illustrates the intrinsic 
importance of AhR-mediated MSC activation, highlighting 
the role of the IL-6/AhR axis in the regulation of the 
immune system.

Additionally, it was observed that the therapeutic 
abilities of MSCs can be modulated by AhR activation. 
The MSCs were activated by AhR-specific agonists (i.e., 
TCDD and cockroach allergen extract) and showed 
increased CYP1A1 and CYP1B1 expression. This process 
was accompanied by an elevated migration potential 
in vitro. Later, the authors also demonstrated in mouse 
models of experimental asthma that MSCs activated by 
AhR efficiently engrafted to injury sites and attenuated 
allergen-induced lung inflammation (i.e., reduced 
cell infiltrate and change cytokine profile), mainly via 
TGF-β1 modulation[48]. 

Moreover, it was determined that AhR stimulation in 
MSCs can also prevent their multipotent differentiation 
potential. It was shown that treatment with benzo(a)­
pyrene (BPs), a specific AhR agonist, markedly inhibited 
the terminal adipogenic differentiation of MSCs in an 
AhR-dependent manner, with reduced expression of 
classical adipogenic markers (FABP4), triglyceride en­
zymes (G3PDH) and adipogenic transcription factors 
(PPARγ and CEBPβ)[49]. Despite the decreased expression 
of AhR in differentiated MSCs, the expression of its 
target gene CYP1B1 remained elevated, indicating that 
AhR activation was fully functional during adipogenesis. 
Later, this same study demonstrated that the use of 
α-NF, an AhR antagonist, abrogated the AhR-mediated 
inhibition of MSC adipogenesis[49]. Complementarily, 
another report demonstrated that BP treatment inhibited 
adipocyte differentiation in vitro by down-regulating 
the PPARγ signal and increased the expression of 
cytochrome P450 (CYP1A1) in canine MSCs[50]. In 
addition, it was detected in vitro that TCDD-stimulated 
MSCs suppressed the mRNA levels of osteoblastic 
markers (i.e., Runx2, Ocn and Alp) in a dose-dependent 
manner through a process mediated by the inhibition 
of β-catenin expression. Later, similar observations in 
MSCs derived from inflamed collagen-induced arthritis 
mice (a possible environment for AhR activation) 
showed elevated nuclear expression and translocation 

of AhR and, in consequence, inhibition of osteogenesis-
associated genes as well as reduced β-catenin ex­
pression[51]. In fact, an additional study verified that 
AhR activation by BPs inhibited the MSC mesodermal 
differentiation, and when these activated MSCs were 
applied in a mouse model of bone fracture, the tibial 
ossification was affected mainly via SMAD-dependent 
(e.g., TGF-β1/SMAD4) and SMAD-independent (e.g., 
TGF-β1/ERK/AKT) signals[52]. Therefore, these results 
illustrate that the adipogenesis and osteogenesis 
signalling pathways are also potential targets for AhR 
regulation in MSCs.

Finally, another group found that the activation of 
MSCs through kynurenine, a natural AhR agonist, can 
enhance its immunosuppressive response. The authors 
detected that MSCs stimulated by kynurenine were more 
effective in suppressing in vitro lymphocyte proliferation 
than MSCs stimulated by IFN-γ and TGF-β separately. 
Further, the analysis of cytokines in the supernatants 
of lymphocyte/MSC co-cultures demonstrated that the 
combination of kynurenine with IFN-γ and TGF-β stimuli 
significantly reduced IL-6 and IL-17 secretion. In line 
with these findings, the authors also found that the 
combination of three effector stimuli (IFN-γ, TGF-β and 
kynurenine) promoted the overexpression of important 
immunomodulatory genes in MSCs (e.g., iNOS, IDO, 
COX2, HO-1, PGE-2, LIF and PD-L1). Later, when these 
triple-activated MSCs were used in the treatment of 
an experimental model of GVHD, the stimulated MSCs 
substantially decreased the inflammation and tissue 
injury score at a more significant level than normal 
unstimulated MSCs[53].

Altogether, these recent studies suggest that AhR 
activation can substantially modulate the function of 
MSCs by mechanisms associated with: (1) The induction 
of the death signal in pro-inflammatory cells, i.e., pre-B 
cells; (2) the suppression of pro-inflammatory cytokines, 
i.e., IL-6; (3) the improvement of migration and 
regenerative potential in acute inflammatory models, 
i.e., asthma and GVHD; (4) the inhibition of mesodermal 
differentiation, i.e., adipogenesis and osteogenesis; and 
(5) the up-regulation of global immunosuppression, i.e., 
the up-regulation of immunoregulatory genes (Figure 1).

CONCLUSION
The immunosuppressive properties of MSCs are of 
great interest for cellular therapy; however, randomized 
double-blind clinical studies have not shown clear 
benefits to date[54,55]. This inconclusive large-scale 
clinical result may be associated with the variety of 
cytokines/agonists in the distinct environments that 
MSCs encounter in vivo. In this context, the molecular 
mechanisms involved in the reparative status of MSCs 
through the activation of sensitive immune-associated 
receptors are so far unclarified, and, therefore, they are 
indispensable parameters for investigation. Thus, MSC 
activation is currently considered a sine qua non condition 
for MSCs and their bioproducts (i.e., trophic factors and 
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microvesicles) to exert their immunoregulatory response.
Considering this perspective, the quality of the 

immunoregulatory profile of MSCs can be considerably 
improved when these cells are exposed to sufficient 
levels of sensitive ligands (i.e., cytokines/growth 
factors). On the other hand, MSCs not subjected 
to pre-stimulation tend to decrease or lose their in­
trinsic immunosuppressive potential, promoting an 
undesired inflammatory response[53]. In this context, 
we hypothesized that the optimal immunomodulatory 
potential of MSCs can be obtained by establishing a 
steady regulatory phenotype in MSCs using precise MSC-
responsive ligands as AhR agonists. Thus, the activation 
of AhR in MSCs should be extensively explored as a 
mechanism in relevant pre-clinical and experimental 
studies, in the attempt to improve the applicability 
of MSCs in a set of degenerative and immunological 
diseases.

However, questions regarding the mechanisms of 
the MSC immunoregulatory response remain incon­
clusive. In this sense, MSC immunoregulation can vary 
among species, for instance, IDO up-regulation in MSCs 
is better described in humans, while inducible nitric 
oxide synthase (iNOS) is a key regulatory enzyme in 
mouse MSC immunomodulation[53]. In addition, the 
elucidation of the cross-talk between AhR agonists and 
other sensitive molecules (e.g., IFNγ, TGF-β, TNF-α, 

LPS and others) is a detrimental factor in applying 
the immunosuppressive response of MSCs. Moreover, 
the influence of MSCs in another set of experimental 
models is also important to consider. In line with 
this purpose, Hinden et al[53] (2015) reported that 
kynurenine, in combination with other effector stimuli 
(IFNγ and TGF-β), can induce elevated IDO, COX2, 
iNOS, and PGE-2 expression in MSCs and, at the same 
time, reduce the expression of EGFR, MHC Ⅱ and IL-6. 
Thus, further investigations should focus on identifying 
the major components that trigger the activation of 
the AhR signal and its cross-talk with other signalling 
pathways, to precisely understand the regulatory 
mechanism of AhR influence on MSC function. In line 
with this goal, aspects of this mechanism have begun 
to be investigated, such as the impact of AhR activation 
on MSC adipogenesis or osteogenesis; nevertheless, 
the specific AhR-dependent signalling pathways by 
which AhR agonists affect MSC-associated mesodermal 
differentiation also remain to be determined. 

In conclusion, we hope that the findings discussed 
here in this minireview will contribute to better com­
prehension of the major mechanisms behind MSC 
immunoregulation and provide a basic background 
for the development of innovative studies focused on 
the molecular cascade associated with AhR activation 
in MSCs. In summary, the study of AhR activation 

Cultivated MSCs

Proteasomal
degradation Nucleus

Cytoplasm

DRE

p23
HSP90

Xap2

AhR

Benzopyrenes (PBs)
TCDD
DMBA
kynurenineActin filament

AhR proteasomal
degradation

p23
HSP90

Xap2

AhR

AhR ARNT

AhR
agonist

AhR
agonist

AhR
agonist

ARNT

p23
HSP90

AhR

Xap2

AhR
agonist

AhR
agonist

AhR

AhRR NFkB

AhR/ARNT
complex disruption

Tissue inflammation
in vivo
Tissue regeneration
in vivo

Cell migration
in vitro

Apoptosis in pre-B cells
in vitro

IL-6 expression
in vitro

Engraftment and 
regeneration in vivo

Immunomodulation 
in vitro

Adipogenesis and 
osteogenesis in vitro

Lung; GVHD and bone fracture models
         Lower inflammatory cell infiltration
         Pro-survival gene/cytokine profile
         Tissue recovery

Figure 1  Illustration demonstrating a hypothetical summary of the potential effect of aryl-hydrocarbon receptor activation on multipotent mesenchymal 
stromal cell function. AhR-mediated MSC activation occurs by a cascade of events that substantially modulate the function of the MSCs by mechanisms associated 
with: (1) The induction of death signalling in pro-inflammatory cells, i.e., pre-B cells; (2) suppression of pro-inflammatory cytokines, i.e., IL-6; (3) the improvement of 
migration and regenerative potential in acute inflammatory models, i.e., asthma; (4) the inhibition of mesodermal differentiation, i.e., adipogenesis; and (5) the up-
regulation of global immunosuppression, i.e., the up-regulation of immunoregulatory genes. AhR: Aryl-hydrocarbon receptor; MSC: Multipotent mesenchymal stromal 
cell.
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can promote new insights for the better investigation 
of molecular signalling pathways associated with the 
regenerative and immunosuppressive potential of 
MSCs, and consequently, these studies will support the 
development of potential MSC-derived therapies for a 
wide variety of immune-associated disorders.
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