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Abstract
Endoscopic diagnosis with histological evidence is neces
sary to decide the best strategy for treating esophageal 
squamous cell carcinoma and Barrett’s-associated 
neoplasia, and the recent development of endoscopic 
technologies have made possible real-time information of 
malignant hallmarks. We focused on the development of 
optical coherence tomography (OCT), the only technology 

that can depict real-time cross-sectional images with 
high resolution. With the improvements in image 
resolution, acquisition rate and demonstrable area of 
three-dimensional devices with Doppler capability, OCT 
imaging was shown to enable visualization of structural/
functional alterations in the mucosal/submucosal 
tissue of the esophagus, resulting in more accurate 
preoperative diagnosis of such malignancies. Moreover, 
it approved to be useful for targeting malignant areas 
for biopsy and treatment as well as for predicting the 
treatment effects. Therefore, further development of 
this technology is expected to overcome the current 
clinical issues in management strategies of esophageal 
malignancies.
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Core tip: Optical coherence tomography (OCT) provides 
real-time cross-sectional images with extremely high 
resolution. We previously reported that OCT provided 
significantly more accurate preoperative staging 
of esophageal squamous carcinoma (ESCC) than 
endosonography. With remarkable improvements in 
this technology, such as three-dimensional devices with 
Doppler capability, for the detection of Barrett’s-asso
ciated neoplasia, the diagnostic accuracy gradually 
became better through enhanced visualization of 
structural/functional alterations in mucosal/submucosal 
tissue. Recent reports suggested its usefulness for 
targeting malignant lesions for endoscopic intervention 
and for predicting treatment effects. Therefore, 
further development of OCT should promote improved 
management strategies for esophageal malignancies, 
including ESCC.
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INTRODUCTION
Both endoscopic assessment and histological evidence 
of gastrointestinal malignancies are necessary to decide 
the best treatment strategy. Notably, image-enhanced 
endoscopic technologies have been developed to 
provide real-time information on malignant hallmarks. 
In this review, we focused on the development of optical 
coherence tomography (OCT), the only technology that 
can depict real-time cross-sectional images of biological 
tissue at a near-microscopic level without contrast 
agents[1]. 

OCT IMAGING
Mechanism of OCT imaging and its advantage
OCT images by near infrared light in the wavelength 
range of 700-1500 nm are similar to the B-mode images 
of ultrasonography. To construct an image, optical inter
ferometry measures the delay between the emission 
of an invisible beam and the detection of its reflection 
to determine the distance from the emitter to the site. 
Its axial resolution is determined by coherence length 
of the light source. Most of the OCT devices reported 
in previous studies were first-generation probe-types 
[Light Lab Imaging (Boston, United States)] that used 
a super-luminescent diode light source with a center 
wavelength of 1300 nm, a bandwidth of 50 nm, and 
power output of 10 mW[2-7]. They had 10-20 μm of axial 
resolution, 5-25 times higher than that of high-frequency 
endosonography, which was another cross-sectional 
imaging device. Although its image acquisition rate was 
gradually improved from 1 frame/s to 9.8 frames/s with 
a lower signal-to-noise ratio, 4.0 frames/s could be used 
for the easy interpretation of images (Table 1)[8-10]. As a 
result, detailed OCT images can be constructed in gray-
scale.

These mechanical characteristics provides several 
advantages to OCT in comparison with other advanced 
endoscopic technologies, as follows. First, it provides 
high-resolution cross-sectional images in real-time. OCT 
shows tissue structures in the mucosal/sub-mucosal 
layers at a microscopic scale, such as “pit and gland” 
morphology, revealing crypts/villi/vessels[4,6,7,11,12], as 
well as intracellular strictures, such as nuclei and other 
organelles, based on their different intensity of signal 
scattering[13]. Second, OCT does not always need tissue 
contact or coupling, although a biocompatible chemical 
agent was reported to possibly enhance its signal 
penetration depth[14]. Actually, we used a probe-type OCT 
[HOYA (Tokyo, Japan)] to depict detailed structures of the 
esophageal wall components, regardless of the location, 

while EUS-based imaging required acoustic coupling with 
a water preparation or a water-filled balloon, resulting in 
some difficulty in avoiding artifacts[2]. Third, a prototype 
OCT has a through-the-endoscope design, which may be 
easier to handle during endoscopic examination. In the 
next section, we will describe the technique for acquiring 
high-quality images using the OCT.

Best technique and indication for OCT imaging
Nowadays, two types of OCT probe-devices, such as a 
radial-probe/linear-probe, and one balloon-type device 
are available but only for research[10,11,13]. While linear 
scanning is able to sample only a small area, radial scan
ning creates an image similar to that of radial EUS with 
the potential for assessing larger areas, due to its easier 
identification of the scanning orientation compared with 
the linear scanning. Therefore, radial-type probes have 
been applied in most of the previous studies.

The OCT devices are inserted through the accessory 
channel of an endoscope and maneuvered under direct 
endoscopic observation so that the imaging plane is 
perpendicular to the gastrointestinal wall. Its position 
when scanning across the tissue surface is monitored 
using visible light. A series of tomograms are obtained, 
while its spot diameter is selected for maintaining the 
appropriate depth of focus, while the distance above 
the surface is controlled by endoscopic maneuvers. In 
fact, the distance between the device and the site may 
affect the penetration depth of its signal. While mucosal 
structures were well-focused when the probe was held 
about 1 mm above the surface, the structures in the 
deeper submucosa (SM) could be revealed when the wall 
was compressed or collapsed around the probe. Using 
such a technique, the penetration depth of the OCT 
signal and consequent image quality in the stomach, 
duodenum, and colon were reported to be inadequate 
compared with those in the esophagus, suggesting that 
the OCT device was most suitable for the esophagus[11]. 

Previous studies demonstrated close correspondences 
between the clear, five-layered morphologies in the 
OCT images and those of a normal esophageal wall in 
the histological findings[4,15]. It was shown that the first 
relatively less reflective layer corresponded to stratified 
squamous epithelium (EP); the second more reflective 
layer to the lamina propria mucosa (LPM); the third less 
reflective layer to the muscularis mucosa (MM); fourth 
more reflective layer to the SM; and fifth less reflective 
layer to the muscularis propria (MP) with deeper stru
ctures of the esophageal wall. Subsequent studies based 
on such findings promoted the development of OCT 
devices for the management of Barrett’s-associated 
neoplasia and esophageal squamous cell carcinoma 
(ESCC). Originally, the studies aimed to improve the 
quality of “optical biopsies” of OCT devices for Barrett’s-asso
ciated neoplasia and remarkable advances were achieved 
in the West from the first-generation conventional probe-
type OCT to the second-generation OCT (Table 1). In 
the East, we demonstrated the usefulness of the first-
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generation OCT in the preoperative staging of superficial 
ESCCs (SESCCs) (Table 1). Therefore, we review these 
achievements, and propose future roles for OCT in the 
management of esophageal disease.

OCT-BASED DIAGNOSIS OF BARRETT'S-
ASSOCIATED NEOPLASM
Significance of OCT in Barrett’s esophagus
Barrett’s esophagus (BE) is a precursor lesion with a 
30-40-fold increased risk of cancer occurrence, i.e., 
from specialized intestinal metaplasia (SIM) to low grade 
dysplasia (LGD) and high grade dysplasia (HGD) and, 
finally, to adenocarcinoma[16]. Based on knowledge of 
the multi-step transformation, a surveillance program 
with regular endoscopic examination is recommended, 
but the prognosis for adenocarcinoma remains poor, with 
an overall 5-year survival of less than 20%[17]. Previous 
studies suggested that some dysplasia and intramucosal 
adenocarcinoma might be overlooked until the advanced 
stage in the current clinical setting[18]. Most of them were 
shown to be minute with a patchy distribution in a wide-
ranging BE, and subsquamous SIM (SSIM) was found in 
71.4% of pre-treatment dysplastic BE when 0.4-6.8 mm 
of oral extension was observed, although the sampling 
area and depth by random biopsy were limited[18-22]. 
Therefore, there still remain controversies about samp
ling errors and costs/time of endoscopic biopsies in 
the current surveillance system[18,20,21]. Moreover, 
several studies have pointed out the low inter- or intra- 
observer agreement of their histological diagnoses[23-29]. 
Likewise, cutting-edge endoscopic technologies have 
difficulties in reaching a consensus on the recognition or 
interpretation of abnormal patterns, which can limit their 
clinical usefulness[30]. However, real-time visualization of 
high-resolution cross-sectional architectural information, 
even in the SM, analogous to the loupe image, is an 
important advantage of the OCT imaging. In this section, 
we list previous achievements by OCT devices employed 

for endoscopic “optical biopsies” of Barrett’s-associated 
neoplasm. 

First-generation of probe-type OCT
Previous studies demonstrated that in vivo or ex vivo use 
of probe-type OCT devices could provide characteristic 
images of normal human esophagus, gastric mucosa, 
BE, dysplastic BE and adenocarcinoma, although 
subsequent studies showed that the differences in OCT 
images between non-dysplastic BE and dysplastic BE 
were subtle. Bouma et al[13] first reported the ability of 
in vivo OCT to provide detailed images of structures in 
Barrett’s-associated neoplasia by investigating biopsy-
correlated OCT images, and proposed OCT-based grading 
criteria for characterizing dysplastic BE, as follows: (1) 
normal squamous epithelium: homogenous layered 
structures; (2) BE: absence of the layered-structure of 
normal esophagus in addition to abnormal/disorganized 
glandular structure of low reflectance within/under the 
mucosa; (3) dysplastic BE: highly reflective intensity of 
the background correlated with increased architectural 
disorder and heterogeneity; and (4) Barrett’s adeno
carcinoma: abnormal configuration of neoplastic 
epithelium containing large pockets and surrounded by 
cellular stroma.

In 2001, using 288 biopsy-correlated OCT images 
of 121 patients, Poneros et al[4] demonstrated that in 
vivo OCT had sensitivity of 97% and specificities of 
92% for the diagnosis of BE. In 2005, Isenberg et al[5] 
conducted a prospective study to evaluate diagnostic 
accuracy of in vivo OCT for dysplastic/non-dysplastic BE 
in comparison with the histological diagnosis of jumbo 
biopsy specimens. They used a 2.4 mm-diameter 
probe under a two-channel endoscope fitted with a cap 
attachment, which might stabilize the OCT device on 
the mucosal surface during the procedure. Using a total 
of 314 biopsy-correlated OCT images of 33 patients, 
they reported sensitivity of 68%, specificity of 82%, and 
positive predictive value of 53%, negative predictive 
value of 89%, and diagnostic accuracy of 78% for the 
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OCT: Optical coherence tomography; OFDI: Optical frequency-domain imaging; VLE: Volumetric laser 
endomicrography.

OCT device

Manuscript Type Resolution Diameter (mm) Image acquisition rate (frame/s)

Axial (μm) Transverse (μm)
4 Probe 10 25 4
5 Probe 10 25 2.4 -
6, 7 Probe 10 - 2.5 2
2 Probe 11 30 1.5 4
3
33 Probe 5 - 1.8 4
34 Probe Approximately 2 5.6 - -
39 Probe 5 14 - 60
41 Probe-3D 5 15 - 60
10 Balloon (OFDI) 7 30 18 4
46 Balloon (VLE) 7 - 20 10

Table 1  Specification of optical coherence tomography devices
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near-microscopic level, large field of view, and rapid data 
acquisition[10]. 

Three-dimensional probe-type OCT: Volumetric data 
of a 10-mm circumference and 20-mm length could 
be acquired in 20 s by the helical scan of a prototype 
three-dimensional OCT, and each of data set provided 
comprehensive imaging of the glandular structure over 
a sampling area of 200 mm2, which was 30-60 times 
as large as those of approximately 6 mm2 by jumbo 
biopsy forceps and those of approximately 2.5 mm2 by 
conventional biopsy forceps[39]. Additionally, the imaging 
depths of 3D-OCT and biopsy were 1.5-mm and < 1 
mm, respectively. Using data of biopsy-correlated OCT 
images of 3 patients, Adler et al[39] demonstrated the 
usefulness of a three-dimensional OCT system for the 
detection of large areas of a normal esophagus, non-
dysplastic BE and post-ablative BE. The increase in the 
data volume of three-dimensional OCT improved the 
clear detection of SSIM at 300-500 μm depth beneath 
neosquamous epithelium, and they therefore proposed 
its use to guide decisions concerning additional treatment 
sessions or biopsy points with a reduction of sampling 
error[39]. Subsequent studies demonstrated that the pre-
treatment thickness of Barrett’s mucosa and the presence 
of residual glandular structures immediately after focal 
radiofrequency ablation (RFA) in the three-dimensional 
OCT images were correlated with the treatment response 
determined by surveillance endoscopy with biopsy 6-8 
wk after the latest session[40,41]. Accordingly, the three-
dimensional OCT findings might be used as a promising 
real-time predictor of successful ablative therapy for BE.

Use of OFDI/volumetric laser endomicrography: 
OFDI can provide more than 100-fold faster imaging, 
compared with the conventional probe-type OCT[42]. 
The optical components in the inner sheath, positioned 
at the center of a 1.8 mm-diameter balloon catheter, 
are rotated helically, and cross-sectional images of the 
esophageal wall are revealed when the balloon is in 
contact with the mucosal surface, whose demonstrable 
area in the circumferential lumen might be affected by 
the degree of contact. All raw data are simultaneously 
stored and displayed in real-time. The OFDI/volumetric 
laser endomicrography (VLE) image with balloon-
compression has four advantage, as follows: (1) the 
acquirement of microstructural data over large areas; 
(2) increased contrast of anatomical architecture; (3) 
increased signal penetration depth; and (4) reduced 
artifacts during imaging process. 

Originally, volumetric OFDI images of the mucosa 
extended to the outer layer of the MP, with clear delin
eation of each layer, obtained for 4.5-cm-long segments 
in less than 6 min. In 2008, in a single-center study, 
complete acquisition of the OFDI data was successfully 
performed in 8 of 12 patients, and their images were 
consistent with the histological findings obtained 
by target/random biopsy specimens[10]. The loss of 

diagnosis of BE. When the analysis was restricted to the 
diagnosis of HGD/ adenocarcinoma based on findings, 
such as: (1) lack of epithelial surface maturation; (2) 
gland architecture disarray; and (3) cytologic atypia[31,32], 
its sensitivity and specificity was 54% and 72%, 
respectively. Although such a negative predictive value 
may be advantageous for directing the examiners’ 
attention to malignant areas for the biopsy target, there 
remained limitations, such as large variability in the 
endoscopists’ accuracy rates, 56%-98%. Therefore, 
more refined criteria for differentiating dysplastic BE 
from non-dysplastic BE were required. In 2006, in 
a prospective study, Evans et al[6] investigated the 
relationship between a new scoring system, a “dysplasia 
index”, based on both the OCT findings of surface 
maturation and gland architecture, and biopsy-proven 
histology of HGD/adenocarcinoma in BE subjects. Using a 
total of 177 biopsy-correlated OCT images, the threshold 
of > 2 in the scoring system had sensitivity of 83% 
and specificity of 75% for the diagnosis of HGD/aden
ocarcinoma. Accordingly, these studies demonstrated 
that discrimination between non-dysplastic BE and 
dysplastic BE using OCT devices with standard resolution 
still remained a challenging issue.

Then, Chen et al[33] developed an ultra-high resolution 
OCT (UHR-OCT) with 5-μm axial resolution and com
pared its image quality and diagnostic accuracy with 
those of a standard OCT with 12-μm axial resolution. 
Using a total of 233 biopsy-correlated OCT images of 50 
patients, the accuracy of UHR-OCT for making a diagnosis 
of normal squamous epithelium, non-dysplastic BE, 
HGD and adenocarcinoma was 100%, 98.1%, 83.3% 
and 100%, respectively. Actually, UHR-OCT depicted 
smaller/finer structures and sharper layered structures, 
resulting in improved discrimination and more detailed 
features of dysplastic BE. In 2010, Cobb et al[34] reported 
that UHR-OCT detected clearly SSIM as well as abnormal 
structures of non-dysplastic BE/HGD/adenocarcinoma in 
14 post-surgical specimens. Accordingly, these studies 
suggested that higher-resolution OCT with the developed 
criteria might be more useful for targeting biopsies to 
differentiate between BE and normal esophagus, or 
between dysplastic/cancerous BE and non-dysplastic 
BE. However, some studies pointed out that the point-
sampling nature of a probe-type OCT, similar to those 
of biopsy, might miss dysplastic lesions in large surface 
areas of BE[10]. 

Second generation of OCT
These drawbacks of the probe-type OCT might have 
been mainly caused by the relatively slow image-
acquisition rate, while recent improvements in OCT 
technology have enabled dramatic increases in imaging 
speed[35-38]. As a result, three-dimensional balloon-type 
OCT, referred to optical frequency-domain imaging 
(OFDI) and three-dimensional probe-type OCT (Light-
Lab Imaging, Massachusetts, United States), could be 
developed with a combination of high-resolution at a 
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an appropriate image due to inadequate contact of 
the balloon was observed in 0.37% ± 0.79% of the 
total tubular esophageal surface area/patient. More 
recently, the Nvision Volumetric laser endomicrography 
Imaging System (Nine Point Medical, Cambridge, MA) 
was developed as a commercially available device. It 
is derived from OFDI and provides real-time three-
dimensional images of mucosa/SM over a 6-cm length 
of the esophagus in 90 s. Baron et al[43] demonstrated 
that in vivo use of VLE clearly depicted SSIM proven by 
random endoscopic biopsy in 3 post-RFA BE patients, 
and Leggett et al[44] revealed that ex vivo use of VLE 
clearly detected subsquamous adenocarcinoma of 
endoscopic mucosal resection specimens, which could 
not be seen by conventional endoscopy or confocal laser 
endomicroscopy (CLE). In a multicenter prospective 
feasibility study, 4 lesions of HGD/adenocarcinoma were 
detected by VLE in 74 BE patients[45]. 

However, there still remain two drawbacks. First, 
previous studies pointed out that inadequate contact 
of the balloon, due to the interference of blood/mucus, 
existing motion artifacts, or excessive compression of 
the balloon on the mucosal surface, might still reduce 
the image quality. Especially, in some parts of the 
esophagus, such as in large hiatal hernias, tissue contact 
with the balloon surface was not maintained throughout 
the imaging window. Second, it is impossible to make 
one-to-one correlations between OFDI/VLE images and 
the histological evidence, because the balloon-centering 
system is not suitable for the subsequent biopsy proce
dure, nor is the technology to localize the region of 
interest in the three-dimensional data. Unfortunately, 
unreliable correlations between them may make it 
difficult to determine whether the possible discrepancies 
are caused by either a sampling error or misdiagnosis 
of the images, so we cannot assess abnormal findings 
detected in only one session of OFDI/VLE. Actually, the 
true biological significance of SSIM has not been clarified 
by the current OFDI/VLE system without histological 
evidence. To overcome this issue, a biopsy guidance 
platform that provides endoscopically visible laser 
markings at VLE-determined sites was developed, and 
its feasibility was demonstrated in a pilot study[46]. During 
the examination of VLE, the marks were made in 2 s at 
410 mW of electric current, with the thermal-damage 
predominantly limited to the mucosa[47]. The accuracies 
of endoscopy, VLE intent-to-biopsy, and corrected VLE 
post-marking images for diagnosing tissue between the 
marks were 67%, 93%, and 100%, respectively. The 
transverse and longitudinal targeting error was 1.2 ± 
1.3 mm and 0.5 ± 0.9 mm, respectively, while there 
were no longitudinal targeting errors in 21 of 30 cases. 
Henceforth, larger trials by VLE-guided biopsy can be 
expected to evaluate its practical usefulness. 

Doppler OCT: Doppler OCT can directly visualize the 
intensity of the blood-flow data derived from moving 
erythrocytes, and its velocity resolution was reported 

to be 10-100-times as high as that of Doppler EUS[48]. 
Previous studies demonstrated that it could depict 
dramatic alterations in the functional microvascular 
network, which might provide additional clues for 
improved identification of the layer structure, during the 
sequential development of Barrett’s carcinogenesis[42,49]: 
(1) Normal esophagus: Distinct layers with small 
vessels in the LPM and medium vessels in the SM; (2) 
BE: Absence of the distinct layers with diffuse/small 
vessels and glandular structure; and (3) Esophageal 
Adenocarcinoma: Absence of distinct layers with diffuse/
small vessels. 

Recently, Tsai et al[50] developed OCT-angiography 
with an ultrahigh-speed (more than 10 times than that 
of conventional systems) and minimal motion artifacts, 
enabling imaging of the finer/denser microvascular archite
cture in BE. With an image acquisition of 400 frames/s, 
the total area of its image acquisition was improved 
to > 100 mm2 in 8 s. Because of these technological 
advances, the OCT-angiography could reveal more 
detailed structural/functional changes in the subsurface 
vasculature/glandular structure for early identification of 
Barrett’s carcinogenesis.

OCT-BASED TUMOR STAGING OF 
SUPERFICIAL ESOPHAGEAL SQUAMOUS 
CELL CARCINOMA
Significance of OCT-based staging
In the East, ESCC is the most predominant type of 
esophageal carcinoma, and its mortality rate remains still 
high. With the development of endoscopic technologies, 
the indication for endoscopic treatment for SESCCs has 
been expanded, since it is a minimally invasive procedure 
with few complications and after-effects. According to the 
esophageal cancer treatment guidelines of the Japanese 
Society of Esophageal Diseases, the definitive indication 
for endoscopic resection (ER) is limited to carcinoma in 
situ and tumors invading the LPM, regardless of tumor 
size[51]. Although more precise preoperative staging 
has been required for curative treatment, the accuracy 
of EUS has not yet been satisfactory, due to its limited 
visualization[52,53]. 

Establishment of staging criteria of SESCCs
Second, we established the criteria of OCT-based staging 
for SESCCs in a phase I study. We used a probe-type 
OCT system under endoscopic observation in order to 
detect every part of a key finding for tumor staging[2]. 
After we investigated correlation the between OCT-
based staging and histological staging of en bloc ESD 
specimens, the criteria of OCT-based staging for SESCCs 
were established. The criteria were classified into 3 
categories based on the treatment guidelines: clinical 
EP/LPM, clinical MM, and clinical SM: (1) Clinical EP/
LPM: the thick or normal layer Ⅰ with regular interfacial 
signal of layer Ⅱ or involvement of the tumor signal 
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into layer Ⅱ without involvement of layer Ⅲ; (2) Clinical 
MM: involvement of the tumor signal into layer Ⅲ with 
regular interfacial signal of layer Ⅳ; and (3) Clinical SM: 
Destruction of layers Ⅰ to Ⅲ and irregular interfacial 
signal of layer Ⅳ or loss of layer Ⅴ architecture by high 
backscattering.

Thereafter, in a prospective phase Ⅱ study, we 
investigated the accuracy based on the criteria in 62 
consecutive patients[2]. The overall accuracy was 92.7%, 
and the accuracy of EP/LPM, MM, and SM cancer was 
94.7%, 85.0%, and 90.9%, respectively. Although the 
staging accuracy was not significantly different among 
tumor locations (P = 0.79), the 0.46 (range 0.10-1.5) 
mm thickness of the lesion in the images without deep 
attenuation was significantly thinner than the 2.5 
(1.2-5.0) mm images with deep attenuation. Conversely, 
this study uncovered the following limitations of this 
modality: (1) the limited depth of OCT signal penetration; 
(2) the inability to distinguish between cancer cell 
invasion and inflammatory cell infiltration; and (3) the 
inability to distinguish between intraepithelial cancer and 
normal tissue. Still, this phase-Ⅱ study suggested that 
the criteria might be applicable for clinical use with high 
accuracy of tumor staging for SESCCs. 

Comparison of tumor staging accuracy between OCT 
and EUS
Finally, we investigated the clinical usefulness of OCT-
based staging of SESCCs in a single-center prospective 
study by comparing the staging accuracy of OCT with 
that of 20-MHz probe-type EUS (UM-3R; Olympus, 
Tokyo) without a water-filled balloon for a total of 131 
SESCCs in 123 consecutive patients[3]. The histological 
staging was confirmed by specimens obtained by en 
bloc ESD or surgical resection. As the primary endpoint, 
the accuracy for EP/LPM, a definitive indication for ER, by 
OCT was significantly higher than that by EUS (94.6% vs 
80.6%, respectively, P < 0.05). The overall accuracy of 
OCT and EUS was 90.1% and 77.1%, respectively (P = 
0.0046). Although there were no significant differences 
in the accuracy of OCT among tumor locations, the 
accuracy of EUS in the distal esophagus was significantly 
lower than that in the middle esophagus (P = 0.023). 
Further, due to the inferiority of EUS in image resolution, 
we found that the accuracy rate in 33.6% of the cases, 
which had less than 9-layer visualization in the EUS 
finding, was significantly lower than that in the remaining 
cases, which showed a clear discrimination of the 9-layer 
structure (P = 0.015). This study demonstrated that, 
because of mechanical advantage of OCT compared to 
EUS, the accuracy of OCT was significantly superior to 
that of EUS for the preoperative staging of EP/LPM in 
the clinical management of SESCCs. However, we noted 
3 drawbacks of OCT: (1) a limitation in the penetration 
depth; (2) the limited width of the depiction area (limited 
to 4 mm); and (3) the inability to distinguish between 
cancer invasion and inflammatory cell infiltration. 
Accordingly, since the first-generation OCT-device still 

had limited usefulness in the management of SESCCs, 
further development of the OCT devices will be needed.

PERSPECTIVE
From the point of view that OCT may have advantages 
in the real-time visualization of the mucosal/submucosal 
architecture with/without functional alterations, we 
review promising research data on OCT-devices for 
providing “optical biopsies” for early detection of 
neoplastic changes during Barrett’s carcinogenesis or 
for accurate staging of SESCCs to improve treatment 
curability. However, to apply this technology in the 
clinical setting, the following issues will needed to be 
addressed, i.e.: (1) easy interpretation with low inter-
observer variability; (2) real-time image acquisition for 
large-areas; and (3) cost effectiveness.  

As for the first issue, more refined criteria for easy 
interpretation with less variability are needed for effective 
and stable stratification during surveillance. Although 
accurate interpretation is necessary for both well-trained 
endoscopists and well-trained pathologists, Qi et al[54] 
demonstrated 82% sensitivity, and 74% specificity in a 
computer-aided algorithm for the diagnosis of dysplastic 
BE based on the current criteria. Hence, future computer-
aided algorithms can be realized by easy-to-identify 
criteria. 

For the next two issues, OFDI/VLE may provide great 
cues toward real-time imaging of structural/functional 
alterations in the 6 cm-length circumferential esophageal 
mucosa during cancer development and the after-effects 
of endotherapies. Although no study has demonstrated 
a close correspondence between the OFDI/VLE imaging 
and histological evidence, a monitoring system for 
occult lesions, such as SSIM and tiny dysplastic Barr
ett’s mucosa, with a laser marking platform at VLE-
determined sites for biopsy-guidance might unmask their 
true malignant potential during surveillance. Actually, 
there has been no study of them using conventional 
endoscopic imaging, CLE or the first-generation OCT, 
due to the limited sampling width/depth[55]. Instead, 
recent studies have proposed that OCT devices might be 
used to guide the biopsy target for enhanced detection 
of malignant Barrett’s mucosa or to assist in predicting 
the treatment effect[39,40,49]. Future monitoring by biopsy-
correlated OFDI/VLE imaging might yield more effective 
management strategy with a risk-stratification, which 
could have the greatest impact on cost-effectiveness and 
clinical risk-management.

Regarding this point, we also emphasize that the 
second-generation OCT-devices with marking equipment 
may have a great impact on the development of new 
management strategies for SESCCs. In fact, there 
remain two difficulties in the current strategy for SESCCs. 
First, accurate staging for large-sized SESCCs by the 
detection of tiny abnormalities of superficial microvascular 
structure in the magnifying endoscopic findings with 
point-sampling characteristics is more difficult than that 
for small-sized SESCCs[56]. Second, another well-known 
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difficulty is achieving early detection of the subepithelial 
recurrence of SESCCs after chemo-radiation therapy 
(Figure 1). However, the newly advanced OCT-devices 
can help with early detection by revealing tiny and 
invasive spots in large lesions and small subepithelial 
lesions[57]. Accordingly, real-time inspection with the OCT 
devices, after further technologic innovation, may play 
a central role in the histological diagnosis and choice of 
management strategies for esophageal malignancies.

CONCLUSION
In this review, we described previous achievements by 
which endoscopic OCT enhanced the visualization of 
structural/functional alterations in mucosal/submucosal 
tissue of the esophagus, and suggested that it might be 
useful for guiding/monitoring the area to be targeted 
for biopsy and treatment as well as to predict the 
treatment effect. Basically, it is important that the 
examiner/reviewer have familiarity and expertise in both 
histopathology and OCT imaging in order to achieve high 
accuracy in the diagnostic process. However, if reliable 
criteria of OCT imaging can be developed with computer-
aid algorisms, the general use of OCT-related devices 
may provide “optical biopsies” or “optical staging” of 
Barrett’s-associated neoplasia and SESCCs. Therefore, 
further development of OCT technology is required for 
the future progress of management strategies of the 

esophageal malignancies.
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